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Abstract: In this paper, Bayesian and E-Bayesian estimation of unknown parameters of Inverse Lomax probability distribution based

on Type-II censored samples has been obtained under De Groot Loss Function (DLF), Al-Bayyati Loss function (ABLF), Entropy

Loss Function (ELF), Linex Loss Function (LLF) and Minimum Expected Loss Function (MELF). To derive these estimators, we

have considered a conjugate gamma prior and uniform hyperprior distributions. The Monte Carlo simulation method has been used to

generate a Type-II censored data from Inverse Lomax probability distribution. The performance of the estimators has been tested and

compared by computing mean square error (MSE). Further, the relationship between the E-Bayesian estimators has been established in

the form of theorems.
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1 Introduction

Bayesian approach has opened new vistas to the tools and techniques of the estimation of parameter(s). The effectiveness
of this approach is more or less linked with choice of prior. A suitable prior distribution plays an effective role in
reducing error in the estimation. A number of authors had considered the problem of estimation of the unknown
parameter by using Bayesian approach which is otherwise a quite difficult task, by using methods of classical statistics.
Zellner [1] had studied Bayesian estimation and prediction using asymmetric loss function. Basu and Ebrahimi [2]
provided Bayesian approach for life testing and reliability estimation by using asymmetric loss functions. Bayesian
estimation for three parameter Weibull distribution was studied by Green et al. [3]. Ahmed et al. [4] developed an
approximate method of Bayesian estimation for the shape parameters of a mixture of two Weibull distributions under
Type-II censoring. Balakrishnan and Aggarwala [5] studied Bayesian inference for Type-II doubly censored Rayleigh
data. Bayesian estimation of progressively censored data from Burr model has been discussed by Mousa and Jaheen [6].
Parameter estimation of modified Weibull distribution under Progressively Type-II censored samples was provided by
Ng [7]. Wu et al. [8] developed Bayesian inference for Rayleigh distribution under progressively Type-II censored
scheme. Singh and Kumar [9] provided Bayesian estimate of the unknown parameter of exponential distribution under
multiple Type-II censoring scheme. Kundu and Howlader [10] developed Bayesian inference and prediction of inverse
Weibull distribution under Type-II censored data.Yadav et al. [11] developed estimates of unknown parameters,
reliability and hazard functions by using Bayesian approach for hybrid censoring scheme. Thus, in light of the above
quoted research, one can comment that Bayesian estimation has found great importance in literature more than in
classical estimation. Another major approach used for estimation is Expected-Bayesian (E-Bayesian), which is a new
approach of Bayesian estimation introduced by Han [12]. Han [13] developed the E-Bayesian and hierarchical Bayesian
estimates of reliability and unknown parameters of exponential distribution under Type-I censoring, by using quadratic
loss functions. Jaheen and Okasha [14] obtained E-Bayesian estimation of Bur type-3 model based on Type-II censoring.
Okasha [15] developed Bayesian and E-Bayesian method for estimating scale parameter, reliability and hazard function
of Weibull distribution under Type-II censored samples by considering the squared error loss functions. Reyad and
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Ahmed [16] derived E-Bayes estimators of Gumbel distribution under censoring. Wang and Chen [17] studied the
properties of the Bayes and E-Bayes estimates of the system reliability parameter with zero-failure data. Singh et al. [18]
derived prediction of inverse Weibull distribution based on Type-II censored sample. Devi et al. [19] studied E-Bayesian
estimators of truncated geometric distribution and shown that E-Bayes estimators are better than Bayes estimators. Lee et
al. [20] provided estimates for the generalized exponential distribution based on multiple progressive Type-II censored
samples. Reyad and Ahmed [21] obtained E-Bayesian and Bayesian estimates of unknown parameters for the
Kumarswamy distribution based on Type-II censoring. E-Bayesian and hierarchical Bayesian estimates of the failure
probability and the parameter of Pareto distribution were investigated by Han [22]. Rabie and Li [23] studied Bayesian
and E-Bayesian estimators of Burr-X distribution under squared error and Linex loss functions.
We have considered Inverse Lomax Distribution (ILD) which has wide applications in Stochastic modeling of decreasing
failure rate of life components and one of the most frequently used distribution in economics, geography, actuarial and
medical fields, see Kleiber and Kotz [24]. Kleiber [25] studied ILD to get Lorenz ordering relationship among ordered
statistics. Rahman and Aslam [26] analyzed order statistics of two component mixture of ILD of Type-II censoring
through Bayesian approach. Singh et al. [27] developed reliability estimates of ILD under Type-II censoring scheme.
Rahman and Aslam [28] studied the estimation of two-components mixture inverse Lomax model via Bayesian
approach. Recently, Reyad and Othman [29] constructed E-Bayesian estimates of two component mixture of ILD under
Type-I censoring. Sing et al. [30] studied Bayesian estimation of the stress-strength reliability parameter of ILD.
In this article, Bayesian and E-Bayesian approaches have been used to obtain the estimate of unknown parameter α of
the ILD. The article organised: in section 2, we have discussed the model of ILD under censoring scheme. In sections 3
and 4, we have developed the Bayesian and E-Bayesian estimates of the distribution using different error loss functions.
In section 5, we established the relation among the obtained E-Bayesian estimators, and performance of the different
estimators have been compared by using simulation techniques. Section 6 has comprised of numerical findings of results
obtained in previous sections.

2 The Inverse Lomax Model

Kleiber [25] introduced the Inverse Lomax Distribution (ILD) and defined it. If the random variable Z follows the Lomax
distribution, then the distribution of X = 1

Z
will be Inverse Lomax distribution. The cumulative distribution function and

probability density function of ILD are defined as

F(x) =

(

1+
β

x

)−α

; x ≥ 0,α,β ≥ 0 (1)

where α is the shape parameter, and β is the scale parameter of the distribution
and

f (x) =
αβ

x2

(

1+
β

x

)−
(

1+α
)

; x ≥ 0,α,β ≥ 0 (2)

Reliability function R(t) of ILD is

R(t) = 1−

(

1+
β

t

)−α

(3)

Using (1) and (2), hazard rate of the distribution will be

H(t) =
f (x)

R(t)

H(t) =

αβ

(

1+ β
x

)−
(

1+α
)

x2

(

1+ β
t

)−α (4)

Balakrishnan and Aggarwala [5], in their book, have extensively discussed different censoring schemes and their
applications. Suppose that n independent items are put on a test at time zero, and failure times of the first r units are
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observed, the ordered r-failure are denoted by x(1) ≤ x(2) ≤ ·· · ≤ x(r), then joint likelihood function of (2) is obtained by
integrating out x(r+1) ≤ x(r+2) ≤ ·· · ≤ x(n) , which is given as

L(α,β/x) =
n!

(n− r)!

r

∏
i=1

f (xi)

(

1−F(xi)

)i

, x(1) < x(2) < · · ·< x(r) (5)

L(α,β/x) =
n!

(n− r)!
(αβ )r

r

∏
i=1

(

x−2
i

1+ β
xi

)

exp

{

−α
r

∑
i=1

log

(

1+

(

β

xi

))

+

(

n− r
)

log

(

1+

(

β

xr

)

}

Let Sr = ∑r
i=1 log

(

1+

(

β
xi

))

+(n− r)log

(

1+

(

β
xr

))

, then

L(α,β/x) =
n!

(n− r)!
(αβ )r

r

∏
i=1

(

x−2
i

1+ β
xi

)

exp

(

−αSr

)

; (6)

which is the joint likelihood function of (2).

3 Bayesian Estimation of Parameters of ILD for Different Loss Functions

In this section, we have obtained Bayes estimators of unknown parameter α of the ILD under Type-II censoring scheme.
The estimators of the parameter have been obtained by using gamma informative prior under a different loss function.
The gamma prior distribution with shape parameter c and scale parameter p is defined as

g(α|c, p) =
pc

Γ (c)
α(c−1)e−pα ; c ≥ 0, p ≥ 0 (7)

Taking the product of the joint likelihood (6) and (7), we get the posterior distribution as

π(α|x) =
kpcβ r

Γ (c)

r

∏
i=1

x−2
i

(

1+ β
xi

)αc+r−1exp

{

−α(Sr + p)

}

(8)

On simplification, the posterior density function of α will be

π(α|x) =

(

Sr + p
)c+r

Γ (c+ r)
αc+r−1 exp

{

−α
(

Sr + p
)

}

(9)

Next, we will derive the Bayes estimators of α for different loss functions.

3.1 Bayesian Estimation Under De Groot Loss Function

If α̂ is an estimator of α , the De Groot [31] loss function is defined as

L(α̂) =
α − α̂

α̂
(10)

Bayes estimate, using De Groot loss function, will be

α̂
DG

=
E(α2|x)

E(α|x)
(11)
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We have

E(α2|x) =

(

c+ r+ 1
)(

c+ r
)

(

Sr + p
)2

(12)

and

E(α|x) =

(

c+ r
)

(

Sr + p
) (13)

So, by using (12) and(13), we get the Bayes estimator of α under De Groot loss function as

α̂
DG

=

(

c+ r+ 1
)

(

Sr + p
) (14)

3.2 Bayesian Estimation Under Al-Bayyati Loss Function

Al-Bayyati [32] introduced additional parameter c
1

which determines a flatter loss function and is a generalization of the
squared error loss function. Al-Bayyati loss function is defined as

L(α, α̂) = αc
1

(

α̂ −α
)2

; c
1
εR (15)

Bayes estimator under Al-Bayyati loss function will be

E(L(α, α̂)) =

∫ ∞

0
αc

1

(

α̂ −α
)2

π(α|x)dα

=

(

Sr + p
)c+r

Γ (c+ r)

Γ (c+ r+ c
1
)

(

Sr + p
)c+r+c

1

{

α̂2 +

(

c+ r+ c
1

)(

c+ r+ c
1+1

)

(

Sr + p
)2

−
2α̂
(

c+ r+ c
1

)

Sr + p

}

After simplification, we get Bayes estimator of α under Al-Bayyati loss function as

α̂
AB

=

(

c+ r+ c
1

)

Sr + p
(16)

3.3 Bayesian Estimation of α Under Minimum Expected Loss Function

Tummala and Sathe [33] suggested Minimum Expected Loss Function (MELF) which is defined as

L(α, α̂) =
(α̂ −α)2

α2
(17)

Bayes estimator of α under MELF will be

E(L(α, α̂)) =
∫ ∞

0

(α̂ −α)2

α2
π(α|x)dα

=
α̂2Γ (c+ r+ 2)

(c+ r− 2)(c+ r− 2)Γ (c+ r− 2)(Sr + p)
+ 1

−
2α̂Γ (c+ r− 1)(Sr + p)c+r

(c+ r)Γ (c+ r− 1)(Sr + p)c+r−1

On solving the integral, the Bayes estimator will be

α̂
ME

=

(

c+ r− 2
)

(

Sr + p
) (18)
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3.4 Bayesian Estimation Under Linex Loss Function

Zellner [1] defined Linex Loss Function (LLF) with two parameter m >0,w 6= 0 as

L(α, α̂) = m

[

exp
(

w(α − α̂)
)

−w(α̂ −α)− 1

]

; (19)

where m is the scale parameter and w is the shape parameter of loss function. Without loss of generality, we assume m = 1,
the Bayes estimators of α will be given by

α̂
LL
=−

1

w
log
(

E(e−wα |x)
)

(20)

Bayes estimator of α under LLF will be

α̂
LL
=−

1

w
log

{

(

Sr + p

Sr + p+w

)c+r
}

(21)

3.5 Bayesian Estimation Under Entropy Loss Function

Dey et al. [34] defined Entropy Loss Function (ELF) as

L(α, α̂) ∝
( α̂

α

)

− log
( α̂

α

)

− 1 (22)

The Bayes estimator of α for this loss function will be

α̂
EL

=

[

E(α−1/x)

]−1

[

E(α−1/x)

]

=

∫ ∞

0
α−1π(α|x)dα

So, Bayes estimates of α under ELF will be

α̂
EL

=
c+ r− 1

Sr + p
(23)

In this section, the expression have been derived for the Bayes estimators under different loss functions. In the next section,
we have derived expression for E-Bayes estimators using different prior.

4 E-Bayesian Estimation

Based on Han [35], prior parameters c and p must be selected to guarantee that g(α|c, p) in (7) is a decreasing function

of α . So to ensure these conditions
∂g(α |c,p)

∂α must be negative.

∂g(α|c, p)

∂α
=

pc

Γ c
αc−2e−bc

[

(c− 1)− pα

]

(24)

Note that if c>0 , p> 0 and α > 0 and then 0 < c < 1and p > 1 results in
∂g(α |c,p)

∂α < 0. Thus, the prior distribution

g(α|c, p) is a decreasing function of α. Given 0<c<1 , as p grows larger, the tail of the gamma density function will
become thinner. However, as far as the robustness of Bayesian estimation concerns us, Berger [36] provided that the
thinner tailed prior distribution often reduces the robustness of Bayesian estimate. For this reason, upper bound λ is set
for parameter p, where λ is a constant to be determined. Therefore, hyperparameters c and p should be selected with the
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restriction of 0<c<1 and 0<p<λ .
The E-Bayesian estimate of α (expectation of Bayesian estimate of α) can be written as

α̂
EB

= E(α|x)

=

∫ 1

0

∫

Ω
α̂

B
π(α,c, p)d p dc ; (25)

where Ω is the domain of p, and α̂
B

is the Bayes estimate of α under the different loss function. E-Bayesian estimates of
α depends on hyperparameters c and p given below in, (26) to (28). These distributions are used to study the impact of
the different prior distributions on the E-Bayesian estimate of α . We have used the uniform hyperprior distribution as the
distribution of hyperparameters c and p.

π1(c, p) =
2(λ − p)

λ 2
; 0<c<1,0<p<λ (26)

π2(c, p) =
1

λ
; 0<c<1,0<p<λ (27)

π3(c, p) =
2p

λ 2
; 0<c<1,0<p<λ (28)

Using above hyperprior distribution, next, we have derived the E-Bayesian of the parameters.

4.1 E-Bayesian Estimation Under De Groot Loss Function

E-Bayes estimate of α , under De Groot loss function based on π1(α,c, p), denoted as α̂
EBDG1

, is obtained by using (14)

and (26) as

α̂
EBDG1

=
∫ 1

0

∫ λ

0

(c+ r+ 1)

(Sr + p)
.2
(λ − p)

λ 2
d p dc

=
2

λ 2

∫ 1

0

[

(c+ r+ 1)(λ + Sr)

{

log(Sr +λ )− logSr

}

−λ

]

dc

=
2r+ 3

λ 2

[

(λ + Sr)

{

log(Sr +λ )− logSr

}

−λ

]

(29)

Similarly, α̂
EBDG2

is the E-Bayes estimate of α under De Groot loss function based on π2(α,c, p) and obtained by using

(14) and (27) as

α̂
EBDG2

=

∫ 1

0

∫ λ

0

(c+ r+ 1)

(Sr + p)
.
1

λ
d pdc (30)

=
1

λ

∫ 1

0
(c+ r+ 1)

[

log

(

Sr +λ

Sr

)

]

dc

=
2r+ 3

2λ

[

log

(

Sr +λ

Sr

)

]

(31)

Similarly, α̂
EBDG3

is the E-Bayes estimate of α under De Groot loss function based on π3(α,c, p) and is obtained by using

(14) and (28) as

α̂
EBDG3

=

∫ 1

0

∫ λ

0

(c+ r+ 1)

(Sr + p)
.
2p

λ 2
d p dc

=
2

λ

∫ 1

0
(c+ r+ 1)

[

λ − Sr log

(

Sr +λ

Sr

)

]

dc

=
2r+ 3

λ 2

[

λ − Sr log

(

Sr +λ

Sr

)

]

(32)
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4.2 E-Bayesian Estimation Under Al-Bayyati Loss function

We obtained E-Bayes estimates of α under Al-Bayyati loss function based on π1(α,c, p), denoted by α̂
EBAB1

, by using

(16) and (26) as

α̂
EBAB1

=
∫ 1

0

∫ λ

0

(c+ r+ c−1)

(Sr + p)
.
2(λ − p)

λ 2
d p dc

=
2

λ 2

∫ 1

0

[

(c+ r+ c
1
)(λ + Sr)

{

log(Sr +λ )− logSr

}

−λ

]

dc

=
2r+ 2c

1
+ 1

λ 2

[

(λ + Sr)

{

log(Sr +λ )− logSr

}

−λ

]

(33)

Similarly, α̂
EBAB2

is the E-Bayes estimates of α under Al-Bayyati loss function based on π2(α,c, p) and obtained by using

(14) and (27) as

α̂
EBAB2

=
∫ 1

0

∫ λ

0

(c+ r+ c
1
)

(Sr + p)
.
1

λ
d p dc

=
1

λ

∫ 1

0
(c+ r+ c

1
)

[

log

(

Sr +λ

Sr

)

]

dc

=
2r+ 2c

1
+ 1

2λ

[

log

(

Sr +λ

Sr

)

]

(34)

Similarly, α̂
EBAB3

is the E-Bayes estimates of α under Al-Bayyati loss function based on π3(α,c, p) is obtained by using

(14) and (28) as

α̂
EBAB3

=

∫ 1

0

∫ λ

0

(c+ r+ c
1
)

(Sr + p)
.
2p

λ 2
d p dc

=
2

λ

∫ 1

0
(c+ r+ c

1
)

[

λ − Srlog

(

Sr +λ

Sr

)

]

dc

=
2r+ 2c

1
+ 1

λ 2

[

λ − Srlog

(

Sr +λ

Sr

)

]

(35)

4.3 E-Bayesian Estimation of α Under Minimum Expected Loss Function

E-Bayes estimation of α , using π1(α,c, p) under Minimum Expected Loss Function denoted by α̂
EBME1

, is obtained by

using (18) and (26) as

α̂
EBME1

=

∫ 1

0

∫ λ

0

(c+ r− 2)

(Sr + p)
.
2(λ − p)

λ 2
d pdc

=
2

λ 2

∫ 1

0

[

(c+ r− 2)(λ − Sr)

{

log(Sr +λ )− logSr

}

−λ

]

dc

On simplification , we get

α̂
EBME1

=
2r− 3

λ 2

[

(λ − Sr)

{

log(Sr +λ )− logSr

}

−λ

]

(36)
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Similarly, α̂
EBME2

is the E-Bayes estimation of α using π2(α,c, p) under Minimum Expected Loss Function is obtained

by using (18) and (27) as

α̂
EBME2

=

∫ 1

0

∫ λ

0

(c+ r− 2)

(Sr + p)
.
1

λ
d pdc

=
1

λ

∫ 1

0
(c+ r− 2)

[

log

(

Sr +λ

Sr

)

]

dc

We get

=
2r− 3

2λ

[

log

(

Sr +λ

Sr

)

]

(37)

Similarly, α̂
EBME3

is the E-Bayes estimation of α using π3(α,c, p) under Minimum Expected Loss Functions obtained by

using (18) and (28) as

α̂
EBME3

=

∫ 1

0

∫ λ

0

(c+ r− 2)

(Sr + p)
.
2p

λ 2
d pdc

=
2

λ

∫ 1

0
(c+ r− 2)

[

λ − Sr log

(

Sr +λ

Sr

)

]

dc

=
2r− 3

λ 2

[

λ − Sr log

(

Sr +λ

Sr

)

]

(38)

4.4 E-Bayesian Estimation af α Under Entropy Loss Function

E-Bayes estimates of α under Entropy Loss Function based on π1(α,c, p), denoted by α̂
EBEL1

, is obtained by using (23)

and (26) and is given as

α̂
EBEL1

=

∫ 1

0

∫ λ

0

(c+ r− 1)

(Sr + p)
.
2(λ − p)

λ 2
d pdc

=
2

λ 2

∫ 1

0

[

(c+ r− 1)(λ − Sr)

{

log(Sr +λ )− logSr

}

−λ

]

dc

On solving the above integral, we get

α̂
EBEL1

=
2r− 1

λ 2

[

(λ − Sr)

{

log(Sr +λ )− logSr

}

−λ

]

(39)

Similarly, α̂
EBEL2

is the E-Bayes estimates of α under Entropy Loss Function based on π2(α,c, p) and is obtained by using

(23) and (27) as

α̂
EBEL2

=

∫ 1

0

∫ λ

0

(c+ r− 1)

(Sr + p)
.
1

λ
d pdc

=
1

λ

∫ 1

0
(c+ r− 1)

[

log

(

Sr +λ

Sr

)

]

dc

On simplification, we get

α̂
EBEL2

=
2r− 1

2λ

[

log

(

Sr +λ

Sr

)

]

(40)
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Similarly, α̂
EBEL3

is the E-Bayes estimates of α under Entropy Loss Function based on π3(α,c, p) and is obtained by using

(23) and (28) as

α̂
EBEL3

=

∫ 1

0

∫ λ

0

(c+ r− 1)

(Sr + p)
.
2p

λ 2
d pdc

=
2

λ

∫ 1

0
(c+ r− 1)

[

λ − Sr log

(

Sr +λ

Sr

)

]

dc

=
2r− 1

λ 2

[

λ − Sr log

(

Sr +λ

Sr

)

]

(41)

5 Relation Among E-Bayesian Estimators of α Under Different Loss Function

In this section, we have established the relation among the different E-Bayesian estimators obtained in an earlier section.
α̂

EBDGi
, α̂

EBABi
, α̂

EBMEi
and α̂

EBELi
, i=1,2,3, are the different E-Bayes estimators based on different loss function as has

been defined in the previous section. We have established the relation between these estimators in the form of theorems
as follows.

Theorem 1.E-Bayes estimators of parameter α(α̂
EBDGi

, i = 1,2,3) under De Groot Loss Function obeys the following

relationships.

i) α̂
EBDG3

<α̂
EBDG2

<α̂
EBDG1

ii) lim
Sr→∞

α̂
EBDG1

= lim
Sr→∞

α̂
EBDG2

= lim
Sr→∞

α̂
EBDG3

Proof (i): From (29) and (30) , we have

α̂
EBDG1

− α̂
EBDG2

=
2r+ 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(42)

From (30) and (32),

α̂
EBDG2

− α̂
EBDG3

=
2r+ 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(43)

From (42) and (43), we get

α̂
EBDG1

− α̂
EBDG2

= α̂
EBDG2

− α̂
EBDG3

=
2r+ 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(44)

Using log(1+ z) = z−
z2

2
+

z3

3
+

z4

4
+ . . . f or zε

(

− 1,1
)

(45)

Let z = λ
Sr

; when 0< λ
Sr
<1, we get

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

=

[

λ 2

12Sr
2
+

λ 3

6Sr
3
+ . . .

]

> 0 (46)

So, from (44) and (46), we get

α̂
EBDG1

− α̂
EBDG2

= α̂
EBDG2

− α̂
EBDG3

>0

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


94 A. Sharma, P. Kumar: Estimation of parameters of Inverse Lomax distribution...

=⇒ α̂
EBDG3

<α̂
EBDG2

<α̂
EBDG1

⊓⊔

Proof (ii): From (44),

lim
Sr→∞

(

α̂
EBDG1

− α̂
EBDG2

)

= lim
Sr→∞

(

α̂
EBDG2

− α̂
EBDG3

)

= lim
Sr→∞

2r+ 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

= 0 (47)

Thus,

lim
Sr→∞

α̂
EBDG1

= lim
Sr→∞

α̂
EBDG2

= lim
Sr→∞

α̂
EBDG3

⊓⊔

Theorem 2.E-Bayes estimator of parameter α(α̂
EBABi

, i = 1,2,3) under Al-Bayyati loss function obeys the following

relationships.

i) α̂
EBAB3

<α̂
EBAB2

<α̂
EBAB1

ii) lim
Sr→∞

α̂
EBAB1

= lim
Sr→∞

α̂
EBAB2

= lim
Sr→∞

α̂
EBAB3

(48)

Proof (i): From (33) and (4.2), we have

α̂
EBAB1

− α̂
EBAB2

=
2r+ 2c

1
+ 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(49)

From (4.2) and (35),

α̂
EBAB2

− α̂
EBAB3

=
2r+ 2c

1
+ 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(50)

From (49) and (50), we get

α̂
EBAB1

− α̂
EBAB2

= α̂
EBAB2

− α̂
EBAB3

=
2r+ 2c

1
+ 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(51)

By using (45), let z = λ
Sr

; when 0< λ
Sr
<1, we get

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

=

[

λ 2

12Sr
2
+

λ 3

6Sr
3
+ . . .

]

> 0 (52)

So, from (51) and (52), we get

α̂
EBAB1

− α̂
EBAB2

= α̂
EBAB2

− α̂
EBAB3

>0

=⇒ α̂
EBAB3

<α̂
EBAB2

<α̂
EBAB1

⊓⊔

Proof (ii): From (51),

lim
Sr→∞

(

α̂
EBAB1

− α̂
EBAB2

)

= lim
Sr→∞

(

α̂
EBAB2

− α̂
EBAB3

)

= lim
Sr→∞

2r+ 2c
1
+ 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

= 0 (53)
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=⇒ lim
Sr→∞

α̂
EBAB1

= lim
Sr→∞

α̂
EBAB2

= lim
Sr→∞

α̂
EBAB3

⊓⊔ (54)

Theorem 3.E-Bayes estimator of parameter α(α̂
EBMEi

, i = 1,2,3) under Minimum Expected Loss Function obeys the

following relationships.

i) α̂
EBME3

<α̂
EBME2

<α̂
EBME1

ii) lim
Sr→∞

α̂
EBME1

= lim
Sr→∞

α̂
EBME2

= lim
Sr→∞

α̂
EBME3

Proof (i): From (36) and (37) , we have

α̂
EBME1

− α̂
EBME2

=
2r− 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(55)

From (37) and (38), we have

α̂
EBME2

− α̂
EBME3

=
2r− 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(56)

From (55) and (56), we get

α̂
EBME1

− α̂
EBME2

= α̂
EBME2

− α̂
EBME3

=
2r− 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(57)

From equation(45), we get

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

=

[

λ 2

12Sr
2
+

λ 3

6Sr
3
+ . . .

]

> 0 (58)

So, from (57) and (58), we get

α̂
EBME1

− α̂
EBME2

= α̂
EBME2

− α̂
EBME3

>0

=⇒ α̂
EBME3

<α̂
EBME2

<α̂
EBME1

⊓⊔

Proof (ii): From (57),

lim
Sr→∞

(

α̂
EBME1

− α̂
EBME2

)

= lim
Sr→∞

(

α̂
EBME2

− α̂
EBME3

)

= lim
Sr→∞

2r− 3

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

= 0 (59)

Thus,

lim
Sr→∞

α̂
EBME1

= lim
Sr→∞

α̂
EBME2

= lim
Sr→∞

α̂
EBME3

⊓⊔

Theorem 4.E-Bayes estimator of parameter α(α̂
EBELi

, i = 1,2,3) under Entropy Loss Function obeys the following

relationships.

i) α̂
EBEL3

<α̂
EBEL2

<α̂
EBEL1

ii) lim
Sst→∞

α̂
EBEL1

= lim
Sr→∞

α̂
EBEL2

= lim
Sr→∞

α̂
EBEL3

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


96 A. Sharma, P. Kumar: Estimation of parameters of Inverse Lomax distribution...

Proof (i): From (39) and (40) , we have

α̂
EBEL1

− α̂
EBEL2

=
2r− 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(60)

From (40) and (41), we have

α̂
EBEL2

− α̂
EBEL3

=
2r− 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(61)

From (60) and (61), we get

α̂
EBEL1

− α̂
EBEL2

= α̂
EBEL2

− α̂
EBEL3

=
2r− 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

(62)

Using (45), let z = λ
Sr

; when 0< λ
Sr
<1, we get

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

=

[

λ 2

12Sr
2
+

λ 3

6Sr
3
+ . . .

]

> 0 (63)

So, from (62) and (63), we get

α̂
EBEL1

− α̂
EBEL2

= α̂
EBEL2

− α̂
EBEL3

>0

=⇒ α̂
EBEL3

<α̂
EBEL2

<α̂
EBEL1

⊓⊔

Proof (ii): From (62),

lim
Sr→∞

(

α̂
EBEL1

− α̂
EBEL2

)

= lim
Sr→∞

(

α̂
EBEL2

− α̂
EBEL3

)

= lim
Sr→∞

2r− 1

λ 2

[

log

(

Sr +λ

Sr

)(

Sr

λ
+

1

2

)

− 1

]

= 0 (64)

Thus,

lim
Sr→∞

α̂
EBEL1

= lim
Sr→∞

α̂
EBEL2

= lim
Sr→∞

α̂
EBEL3

⊓⊔

6 Comparison of Performance of Bayes and E-Bayes Eestimators

To compare the performance, we have considered Mean Square Error (MSE) as a criterion of performance. For this, we
have generated different samples through Monte Carlo Simulation using the following algorithm.

1.Set the default values of β ,λ , n and r as 0.5, 0.7, (50,70,100) and (10,15,20), respectively.

2.Generate c and p from uniform hyperprior distribution and gamma hyperprior, respectively.

3.For generated values of c and p, generate α from gamma prior using equation (7).

4.For known values of β , draw a random Type-II censored sample.

5.Compute Bayes estimates and E-Bayes estimates of the unknown shape parameter given in (14), (16), (18), (21), (23),
(29), (30), (32), (4.2), (35), (36), (37), (38), (39), (40) and (41), respectively.

c© 2021 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 10, No. 1, 85-102 (2021) / www.naturalspublishing.com/Journals.asp 97

6.Repeat the process (1 to 5) 10,000 times and compute MSE where ,

MSE =
1

10000

r

∑
i=1

(α̂i −α)2

for all the estimates for different sample sizes and termination sample numbers (r). The simulation results obtained
after using the above algorithm are shown in Tables 1 and 2.

1.From Table 1 and 2, we observe that E-Bayes estimates are better than Bayes estimates for all the Loss functions
as they have lesser values of MSE with different combinations of n and r. Moreover, Bayes and E- Bayes under DE
Loss Function can be ordered as α̂EBDG3

<α̂EBDG2
<α̂EBDG1

<α̂DG; under AB loss function they can be ordered as
α̂EBAB3

<α̂EBAB2
<α̂EBAB1

<α̂AB; under ME loss function they are ordered as α̂EBME3
<α̂EBME2

<α̂EBME1
<α̂ME ; and

under E loss function they can be ordered as α̂EBEL3
<α̂EBEL2

<α̂EBEL1
<α̂EL.

2.Hierarchy among Bayes estimates can be ordered as α̂AB<α̂DE<α̂EL<α̂ME . Similarly, hierarchy observed among
E-Bayes estimates is ordered as α̂EBAB<α̂EBDE<α̂EBEL<α̂EBME .

3.MSE of all estimates generally decrease as n and r increase. Bayes estimates get closer to E-Bayes estimates as n and
r increase. This relation has been satisfied for all Bayes and E-Bayes estimates of α(α̂BS) and (α̂EBS), respectively.

The obtained estimators have been compared on the simulated data. To further check their performance and validity, we
have considered a real data set, which is a fitting case for ILD under Type-II censoring. The real data set has been taken
from Lee and Wang [37].

Real data set analysis

The data set given below represents the remission times of a 128 bladder cancer patients.

0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09,
9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81,
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40,
5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.0

We generated Type-II censored random samples from the data set, and all computations were performed using the
programme developed through MatLab software. We have considered the gamma priors for α and β by assuming the
value of hyperparameters as λ = 1.5 and c = 1.4. Results are shown in table 3 and 4.
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Table 1: Bayes and E-Bayes Estimates of α and their MSE (within parenthesis) for different values of n and r

Loss f unction → DEF ABLF

α ↓ n ↓ r ↓ α̂DG α̂EBDG1
α̂EBDG2

α̂EBDG3
α̂AB α̂EBAB1

α̂EBAB2
α̂EBAB3

0.04392 0.04457 0.04455 0.04452 0.04541 0.04612 0.04609 0.04607

10 (0.00218) (0.00212) (0.00212) (0.00213) (0.00204) (0.00198) (0.00198) (0.00199)

0.07476 0.07559 0.07555 0.07551 0.07659 0.07742 0.07738 0.07734

0.09069 50 15 (0.00025) (0.00022) (0.00022) (0.00023) (0.00019) (0.00017) (0.00017) (0.00017)

0.10315 0.10408 0.10402 0.10397 0.10508 0.10602 0.10596 0.10590

20 (0.00018) (0.00017) (0.00017) (0.00017) (0.00024) (0.00023) (0.00023) (0.00023)

0.02633 0.02678 0.026779 0.026772 0.02726 0.02771 0.02771 0.02770

10 (0.01001) (0.00992) (0.00992) (0.00992) (0.00982) (0.00973) (0.00973) (0.00973)

0.03928 0.03976 0.03974 0.03973 0.04024 0.04072 0.04071 0.04071

0.12639 70 15 (0.00758) (0.00750) (0.00750) (0.00750) (0.00742) (0.00733) (0.00734) (0.00734)

0.07616 0.07691 0.07688 0.07684 0.07759 0.07834 0.07831 0.07827

20 (0.00252) (0.00244) (0.00245) (0.00245) (0.00238) (0.00230) (0.00231) (0.00231)

0.00998 0.01021 0.01021 0.01021 0.01033 0.010574 0.010573 0.010572

10 (0.00019) (0.00018) (0.00018) (0.00018) (0.00018) (0.00017) (0.00017) (0.00017)

0.01498 0.015227 0.015225 0.015224 0.015350 0.015596 0.015594 0.015593

0.27170 100 15 (7.80290e-05) (7.37471e-05) (7.376724e-05) (7.37873e-05) (7.75433e-05) (7.16449e-05) (6.75630e-05) (6.75827e-05)

0.02112 0.02139 0.02139 0.02138 0.02152 0.021789 0.021789 0.021786

20 (7.23036e-06) ( 5.86956e-06) (5.87816e-06) (5.88676e-06) ( 5.24878e-06) (4.09952e-06) (4.10684e-06) ( 4.11417e-06)
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Table 2: Bayes and E-Bayes Estimates of α and their MSE (within parenthesis) for different values of n and r

Loss f unction → MEF ELF

α ↓ n ↓ r ↓ α̂ME α̂EBME1
α̂EBME2

α̂EBME3
α̂EL α̂EBEL1

α̂EBEL2
α̂EBEL3

0.03231 0.03294 0.03292 0.03291 0.03618 0.03681 0.03680 0.03678

10 (0.00340) (0.00333) (0.00337) (0.00337) (0.00297) (0.00290) (0.00290) (0.00290)

0.06105 0.06184 0.06181 0.06178 0.06562 0.06643 0.06639 0.06635

0.09069 50 15 (0.00087) (0.00083) (0.00083) (0.00083) (0.00062) (0.00058) (0.00059) (0.00592)

0.08866 0.08956 0.08951 0.08946 0.093491 0.09440 0.09435 0.09429

20 (4.14306e-06) (1.28038e-06) (1.39729e-06) (1.51930e-06) (7.81439e-06) (1.37624e-05) (1.33704e-05) (1.29834e-05)

0.01935 0.01979 0.01979 0.01978 0.02168 0.02212 0.02212 0.02211

10 (0.01145) (0.01136) (0.01136) (0.01136) (0.01096) (0.01087) (0.01087) (0.01087)

0.03206 0.03253 0.03252 0.03251 0.03446 0.03494 0.03493 0.03492

0.12639 70 15 (0.00889) (0.00880) (0.008811) (0.008812) (0.008449) (0.008363) (0.008364) (0.008366)

0.06544 0.06618 0.06615 0.06612 0.06902 0.06975 0.06972 0.06970

20 (0.00371) (0.00362) (0.00362) (0.00363) (0.00329) (0.00320) (0.00321) (0.00321)

0.007317 0.007553 0.007552 0.007551 0.008206 0.008441 0.008442 0.008441

10 (0.00027) (0.00026) (0.00026) (0.00026) (0.00024) (0.00023) (0.00023) (0.00023)

0.01221 0.012458 0.012457 0.012456 0.013135 0.013381 0.013380 0.013379

0.27170 100 15 (0.000134) (0.000128) (0.000128) (0.000128) (0.00011) (0.000108) (0.000108) (0.000108)

0.01814 0.018407 0.018405 0.018403 0.01913 0.0191401 0.0191400 0.019139

20 (3.21859e-05) (2.92425e-05) (2.92590e-05) (2.92755e-05) (2.18882e-05) (1.94716e-05) (1.94850e-05) (1.95000e-05)
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Table 3: Bayes and E-Bayes Estimates of α , bias and their MSE (within parenthesis) for different values of r

Loss f unction → DEF ABLF
α ↓ r ↓ α̂DG α̂EBDG1

α̂EBDG2
α̂EBDG3

α̂AB α̂EBAB1
α̂EBAB2

α̂EBAB3

0.22008 25 0.35155 0.34952 0.34812 0.34671 0.35801 0.35603 0.35459 0.35316
0.13147 0.12944 0.12803 0.12662 0.13793 0.13594 0.13451 0.13307

(0.01728) (0.01675) (0.01639) (0.01603) (0.01902) (0.01848) (0.01809) (0.01770)

0.13552 20 0.23597 0.23303 0.23303 0.23221 0.24162 0.23952 0.23868 0.23784
0.10045 0.09833 0.09750 0.09668 0.10609 0.10400 0.10315 0.10231

(0.01009) (0.00966) (0.00950) (0.00934) (0.01125) (0.01081) (0.01064) (0.01046)

0.40953 15 0.12400 0.12167 0.12135 0.12103 0.12822 0.12590 0.12557 0.12524
-0.28553 -0.28786 -0.28818 -0.28850 -0.28131 -0.28363 -0.28396 -0.28429
(0.08152) (0.08286) (0.08305) (0.08323) (0.07913) (0.08044) (0.08063) (0.08082)

0.23685 10 0.45335 0.45069 0.44879 0.44689 0.46013 0.45749 0.45556 0.45363
0.21650 0.21384 0.21194 0.21004 0.22328 0.22064 0.21871 0.21678

(0.04687) (0.04572) (0.04491) (0.04411) (0.04985) (0.04868) (0.04783) (0.04699)

1.From Table 3 and 4, it can be observed that E-Bayes estimates are better than the Bayes estimators for all the
considered loss functions. Moreover, the MSE decrease with the decrease in the value of the r for all loss functions.
Moreover, Bayes and E-Bayes estimators can be ordered as α̂EBDG3

<α̂EBDG2
<α̂EBDG1

<α̂DG, for DE loss function,
under AB loss function, they can be ordered as α̂EBAB3

<α̂EBAB2
<α̂EBAB1

<α̂AB; under ME loss function they can be
ordered as α̂EBME3

<α̂EBME2
<α̂EBME1

<α̂ME ; and under Entropy loss function, they can be ordered as
α̂EBEL3

<α̂EBEL2
<α̂EBEL1

<α̂EL.

2.Hierarchy among Bayes estimates can be ordered as α̂ME<α̂EL<α̂DE<α̂AB. Similarly, hierarchy observed among
E-Bayes estimates is α̂EBME<α̂EBEF<α̂EBDE<α̂EBAB.

Table 4: Bayes and E-Bayes Estimates of α , Bias and their MSE (within parenthesis) for different values of r

Loss f unction → MEF ELF
α ↓ r ↓ α̂ME α̂EBME1

α̂EBME2
α̂EBME3

α̂EL α̂EBEL1
α̂EBEL2

α̂EBEL3

0.40953 25 0.08940 0.08993 0.08969 0.08945 0.09994 0.10051 0.10024 0.09998
-0.32009 -0.31960 -0.31984 -0.32007 -0.30959 -0.30902 -0.30928 -0.30955
(0.10245) (0.10214) (0.10224) (0.10244) (0.09584) (0.09549) (0.09565) (0.09582)

0.23685 20 0.40253 0.39967 0.39798 0.39630 0.41947 0.41667 0.41492 0.41316
0.16568 0.16281 0.16113 0.15944 0.18262 0.17982 0.17807 0.17631

(0.02745) (0.02651) (0.02596) (0.02542) (0.03335) (0.03233) (0.03170) (0.03108)

0.2208 15 0.30306 0.30075 0.29954 0.29833 0.31922 0.31701 0.31573 0.31445
0.08297 0.08067 0.07946 0.07825 0.09914 0.09693 0.09565 0.09437

(0.00688) (0.00650) (0.00631) (0.00612) (0.00982) (0.00939) (0.00914) (0.00890)

0.13552 10 0.19364 0.19133 0.19066 0.18999 0.20775 0.20551 0.20478 0.20406
0.05812 0.05581 0.05513 0.05446 0.07223 0.06998 0.06926 0.06853

(0.00337) (0.00311) (0.00304) (0.00296) (0.00521) (0.00489) (0.00479) (0.00469)
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7 Conclusion

In this article, Bayesian and E-Bayesian methods have been used to obtain the estimates of the unknown parameter of
inverse Lomax distribution for different loss functions such as De Groot Loss Function, Al-Bayyati Loss function,
Entropy Loss Function and Minimum Expected Loss Function.
It was observed that when we increasing sample size n and termination number r, the performance of both estimators
improves in terms of a decrease in MSE. It was seen that E-Bayes estimates with the decreasing loss function are
superior to E-Bayes estimates with constant and increasing loss functions. So, it is concluded that parameter to estimate
the parameters of ILD, E-Bayesian estimation is a good choice over the Bayesian estimation technique.
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