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Abstract: In this paper, we study the uniqueness solution for impulsive fractional differential equation of order α ∈ (2,3) existence by

using Banach fixed point theorem, Schauder fixed point theorem and we present an example to illustrate the uniqueness result.
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1 Introduction

Differential equations study with varying impulsive effects can be narrated with a contrasting description that will talk
about evolutionary processes that are nature-inspired. The varying detailed process about relevant development in
fractional calculus and functional differential equations with a state-dependent delay has been studied thoroughly in the
references [1–12]. Feckan et al. [7] talk about a counter-example to show the importance of error in the formula of the
solution to the impulsive Cauchy problems for varying differential equations with fractional order q ∈ (0,1). Feckan et
al. [7] correctly found that method and establish existence by using a fixed point theorem. Wang et.al [8] established an
agreeable conditional context for the continuance of the solutions by applying fixed point theorem first for linear and
nonlinear impulsive conditions. Recently, Liu et al. [13] studied and talked about the existence and uniqueness of
solutions for nonlinear singular multi-term impulsive fractional differential equations. The present work on which we are
working was motivated by the papers [7,8,13]. This research work will talk about the study of linear impulsive fractional
functional integro differential equations:

Dα
t y(t) = J3−α

t f (t,yt), t ∈ J = [0,T ], t 6= k, (1)

△y(tk) = xk,△y′(tk) = zk,△y′′(tk) = pk;k = 1,2,3,4, ....,m, (2)

y(t) = φ(t),y′(t) = ϕ(t),y′′(t) = η(t);t ∈ [−d,0], (3)

where y′ denotes the first order derivative and y′′ denotes the second order derivative of y with respect to t and Dα
t is

denoted Caputo’s derivative of order α ∈ (2,3). f : J ×PC0 −→ X , is given continuous function and PC0 is a abstract
phase space with yt be the element of PC0 defined by yt(θ ) = y(t +θ ),θ ∈ [−d;0].

We have impulsive point 0 = t0 < t1 < .. < tm < tm+1 = T , and xk;zk; pk ∈ R.

The presented research work is concerned with the existence result for impulsive fractional functional integro
differential equations with varying state-dependent delay subject to certain initial conditions. To the best of the author’s
knowledge, this work is a new state of the art. The state of artwork has been divided into four sections. First part talks
about the introduction and the second part talks about some percussive preliminaries. The section three presents the main
result of this manuscript and the section fourth contains an illustrative example.
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2 Preliminaries

Let (X ;‖.‖x) be a complex Banach space of function with the norm. To circumvent the repetitive iterations, of some
definitions, we will be adopting some basic preliminaries from [14] such as Riemann-Liouville fractional operator,

Caputo’s derivative, phase space PC0;PC
′

0 and others preliminary.

Definition 21Caputo’s derivative of order α > 0 with lower limit a, for a function f : [a;∞]→R such that f ∈Cn([a;∞];X),
is defined as

Dα
t f (t) =

1

Γ (n−α)

∫ t

a
(t − s)n−α−1 f n (s)ds = Jn−α

t f n (s), t > a, (4)

where a ≥ 0;n− 1 < α < n;n ∈ N.

Definition 22The Riemann- Liouville fractional integral operator of order α > 0 with lower limit a, for a continuous

function f : [a;∞)→ R is defined by

aJα
t f (t) =

1

Γ (α)

∫ t

a
(t − s)α−1 f (s)ds, t > a, (5)

where a ≥ 0 and Γ (.) is Gamma function.

Lemma 1.A piecewise continuous differential function y(t) : [−d,T ]→ X is a solution of the system (1)-(3) if and only if

it satisfied the following integral equation

y(t) =



















































φ(0)+ϕ(0)t +η(0) t2

2
+

∫ t
0(t − s) f (s,yt )ds, t ∈ [0, t1],

φ(0)+ϕ(0)t +η(0) (t−t1)
2

2
+∑0<tk<t xk+

∑0<tk<t(t − tk)zk +∑0<tk<t
(t−tk)

2

2
Ek+

∑0<tk<t

∫ tk
tk−1

(tk − s) f (s,yt )ds+

∑0<tk<t(t − tk)
∫ tk

tk−1
f (s,yt )ds+

∑0<tk<t
(t−tk)

2

2

∫ tk
tk−1

f (s,yt )ds+
∫ t

tk
(t − s) f (s,yt)ds t ∈ [tk, tk+1].

(6)

Proof: If t ∈ (0, t1] then by the standard procedure the solution of (1). We get,

y(t) = a0 + b0t +
c0t2

2
+

∫ t

0
(t − s)2 f (s,yt )ds (7)

using initial condition y(0) = φ(0),wegeta0 = φ(0), then (7) become

y(t) = φ(0)+ b0t +
c0t2

2
+

∫ t

0
(t − s) f (s,yt )ds. (8)

On differentiating (6) with respect to t and by initial condition y′(0) = ϕ(0), we get b0 = ϕ(0), then the equation (8)
become

φ(0)+ϕ0t +
c0t2

2
+

∫ t

0
(t − s) f (s,yt )ds (9)

Now again differentiating equation (6) with respect to t and by initial condition y”(0) = η(0)

then equation (9) become

φ(0)+ϕ0t +
η(0)t2

2
+

∫ t

0
(t − s) f (s,yt )ds. (10)

.
If t ∈ (t1, t2) , then the solution of equation (1),we have

y(t) = a1 + b1(t − t1)+
c1(t − t1)

2

2
+

∫ t

t1

(t − s) f (s,yt )ds. (11)
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. By impulsive condition y(t+1 )− y(t−1 ) = x1, the equation (11)written as y(t+1 )− y(t−1 ) = a1. Similarly by impulsive

condition y(t+1 ) = x1, the equation (8)written as

y(t−1 ) = φ(0)+ϕ0t +
η(0)t2

2
+

∫ t

0
(t − s) f (s,yt )ds (12)

from equation (11) and (12), we get

a1 = φ(0)+ϕ0t +
η(0)t2

2
+ x1 +

∫ t

0
(t1 − s) f (s,yt)ds. (13)

Hence equation (9) can we written as

y(t) = φ(0)+ϕ0t +
η(0)t2

2
+ x1 + b1(t − t1)+

c1(t − t1)
2

2
+

∫ t

0
(t1 − s) f (s,yt)ds+

∫ t

t1

(t − s) f (s,yt )ds. (14)

On differentiating equation (13) with respect to t and by impulsive condition y′(t+1 )− y′(t−1 ) = z1 we get y′(t+1 ) = b1 on

differentiating equation (6) with respect to t and by impulsive condition y′(t+1 )− y′(t−1 ) = z1, we get

y′(t−1 ) = ϕ(0)+η(0)t+

∫ t1

0
f (s,yt )ds. (15)

From equations (14) and (15), we get

b1 = ϕ(0)+η(0)t + z1 +
∫ t1

0
f (s,yt )ds. (16)

Hence equation (13) can be written as

y(t) = φ(0)+ϕ0t1 +
η(0)t2

1

2
+ x1 + z1(t − t1)+

c1(t − t1)
2

2
+

(t − t1)

∫ t1

0
f (s,yt )ds)+

∫ t

0
(t1 − s) f (s,yt )ds+

∫ t

t1

(t − s) f (s,yt )ds.

(17)

Now double differentiating equation (13) with respect to t and by impulsive condition y
′′
(t+1 )− y

′′
(t−1 ) = E1 , we get

y
′′
(t+1 ) =C1. On double differentiating equation (6) with respect to t and by impulsive condition y

′′
(t+1 )− y

′′
(t−1 ) = E1

, we get

y
′′
(t+1 ) = η(0)+

∫ t1

0
f (s,yt )ds. (18)

. From equations (17) and (18)

C1 = E1 +η(0)+
∫ t1

0
f (s,yt )ds (19)

hence equation (17) become

y(t) = φ(0)+ϕ0t +
η(0)(t − t1)

2

2
+ x1 + z1(t − t1)+

E1(t − t1)

2
+

∫ t

t1

(t − s) f (s,yt )ds+

(t − t1)

∫ t1

0
f (s,yt )ds)+

(t − t1)
2

2

∫ t

0
f (s,yt )ds+

∫ t

t1

(t − s) f (s,yt)ds.

(20)

Repeating the process in this way,the solution y(t) fort ∈ (tk, tk+1] can be written as

y(t) = φ(0)+ϕ0t +
η(0)(t − t1)

2

2
+ ∑

0<tk<t

xk + ∑
0<tk<t

zk(t − tk)+ ∑
0<tk<t

Ek(t − tk)

2
+

∑
0<tk<t

∫ tk

tk−1

(tk − s) f (s,yt)ds+ ∑
0<tk<t

(t − tk)

∫ tk

tk−1

(tk − s) f (s,yt )ds)+

∑
0<tk<t

(t − tk)
2

2

∫ tk

tk−1

f (s,yt )ds+

∫ t

tk

(t − s) f (s,yt )ds.

(21)

Summarizing the result (21), it is clear that the solution given in (21) satisfies the system (1)-(3). This completes the proof
of the lemma.
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3 Existence result

To prove the result we have obtained, we shall assume the function ρ : [0,T ]X PC0 → [−d,T ] is continuous for the expected
informative analysis. The following assumptions need to be kept in mind

1.(k1) f : JXPC0 → X is jointly continuous function and there exist positive constant B f1 such that

f (t1,τ)− f (t,ζ )||X ≤ B f1||τ − ζ ||PC0.

2.(K2 f ) is continuous and there exist positive constant N1such that || f (t1,τ)|| ≤ N1 for every τ ∈ PC0.

By following the existence result, now it seems that there is no doubt to state the existence theorem based on the
contraction principle.

Theorem 1.Suppose that the assumption (K1) satisfied and δ = T 2

2
(2+2n+nT)B f1 < 1. Then the problem (1) to (3) has

a unique solution on J.

Proof: Consider the space PC
′′

0 = y ∈ PC
′′

0 : y(0) = φ(0) and y(t) = φ(t), t ∈ [−d,0],

Pyt = φ(0)+ϕ0t +
η(0)(t − t1)

2

2
+

∫ t

0
(t − s) f (s,yt )ds, t ∈ [0, t], (22)

φ(0)+ϕ0t +
η(0)(t − t1)

2

2
+ ∑

0<tk<t

xk + ∑
0<tk<t

zk(t − tk)+ ∑
0<tk<t

(t − tk)

∫ tk

tk−1

f (s,yt )ds)+

∑
0<tk<t

∫ tk

tk−1

(tk − s) f (s,yt)ds+ ∑
0<tk<t

(t − tk)
2

2

∫ tk

tk−1

f (s,yt )ds+

∫ t

tk

(t − s) f (s,yt )ds.

(23)

To show this , Let us consider y,y∗ ∈ PC
′′

0 for t ∈ [0, t1] then

||Pyt −Py∗(t)||× ≤
∫ t

0
(t − s)|| f (s,yt )− f (s,y∗t )||×ds ≤

T 2

2
(B f1)||y− y∗||× (24)

for t ∈ (tk, tk+1) we have

||Pyt −Py∗(t)||× ≤ ∑
0<tk<t

∫ tk

tk−1

(tk − s)|| f (s,yt )− f (s,y∗t )||ds

+ ∑
0<tk<t

(t − tk)

∫ tk

tk−1

|| f (s,yt )− f (s,y∗t )||ds+ ∑
0<tk<t

(t − tk)
2

2

∫ tk

tk−1

|| f (s,yt )− f (s,y∗t )||ds

+
∫ t

tk

(t − s)|| f (s,yt )− f (s,y∗t )||

≤
T 2

2
((B f1 + nT2(B f1)+

nT 3

2
(B f1)+

T 2

2
(B f1)||y− y∗||×

≤ T 2((B f1)+ nT2(B f1)+
nT 3

2
(B f1))||y− y∗||×

≤
T 2

2
(2+ 2n+ nT)||y− y∗||×(B f1)

(25)

for all t ∈ [0,T ]
||Py(t)−Py∗(t)||× ≤ δ ||y− y∗||× (26)

since δ < 1 , its implies that P is contraction mapping and P has a unique fixed point y ∈ PC
′′

0 .

It means that the system (1) -(3) has a unique solution. This complete the proof of the theorem.

Theorem 2.If the assumption K2 hold then problem (1) -(3) have at least one solution.

c© 2020 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 6, No. 4, 283-288 (2020) / www.naturalspublishing.com/Journals.asp 287

Proof: Now we show that P is continuous, for this purpose, we consider a sequence yn → y,then

||Pyn −Py||× ≤ ∑(t − t1)
∫ t

0
( f (s,yn

t )− ( f (s,yt))ds+∑
∫ t

0
(t1 − s)( f (s,yn

t )− ( f (s,yt))ds

+
(t − t1)

2

2

∫ t

0
( f (s,yn

t )− ( f (s,yt))ds+

∫ t

0
(t − s)( f (s,yn

t )− ( f (s,yt))ds.

(27)

Since the function f is continuous so ||Pyn −Py||× → 0 as n → ∞, implies P is continuous.

(ii) To confirm P-map bounded set into the bounded set. We have provided

||Py||× ≤ (t − t1)

∫ t

0
|| f (t,ys)||ds+

∫ t

0
||t − s||.|| f (t,ys)||ds+ ||

(t − t1)
2

2
||

∫ t

0
|| f (s,yt )||ds+

∫ t

0
||t − s||.|| f (t,ys)||ds ≤ NT +

T 2

2
N +

T 2

2
N +

T 2

2
N+ ≤ NT +

3T 2

2
N = K(Constant).

(28)

This condition is for bounded set.

(iii) Next, we shall show that P is family of equicontinous functions.
Let l1, l2 ∈ [0,T ] such that 0 ≤ l1 ≤ l2 ≤ T . Then

||Py(l2)−Py(l1)||× ≤ ϕ(0)(l2 − l1)+
η(0)

2
((l2 − t1)

2 − (l1 − t1)
2)+

∑
0<tk<t

(l2 − tk)− (l1 − tk)zk + ∑
0<tk<t

Ek[(l2 − tk)
2 − (l1 − tk)

2]+

∑
0<tk<t

(l2 − tk)− (l1 − tk)

∫ tk

tk−1

f (s,yt )ds+ ∑
0<tk<t

[
(l2 − tk)

2

2
−

(l1 − tk)
2

2
]
∫ tk

tk−1

f (s,yt )ds+
∫ l2

tk

[(l2 − s)− (l1 − s)] f (s,yt)ds

−

∫ l1

tk

[(l2 − s)− (l1 − s)] f (s,yt )ds ≤ ϕ(0)(l2 − l1)+
η(0)

2
[(l2

2 − l2
1)− 2t1(l2 − l1)]

+ ∑
0<tk<t

(l2 − l1)zk + ∑
0<tk<t

Ek

2
[(l2

2 − l2
1)− 2tk(l2 − l1)]+ ∑

0<tk<t

(l2 − l1)

∫ tk

tk−1

f (s,yt )ds+ ∑
0<tk<t

(l2
2 − l2

1)− 2tk(l2 − l1)

2

∫ tk

tk−1

f (s,yt )ds+

∫ l2

l1

(l2 − l1) f (s,yt )ds.

(29)

if l2 → l1 Then ||Py(l2)−Py(l1)|| → 0.
So we can conclude by Arzela Ascoli’s theorem that P is a family of equicontinous map. Finally, it follows from the
Schauder’s fixed point theorem.

4 Example

Let us talk about the following non- linear impulsive fractional functional integral boundary value problem.

D
5
2
t (y(t)) =

1

Γ (3−α)

∫ t

0

(t − s)1−α .e−ty(1−σ(||y||))

(16+ et)(1+ y(t −σ(||y||)))
, (30)

y(t) = φ(t),y′(t) = ϕ(t),y”(t) = ζ (t)t ∈ [−d,0], (31)
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∆y|t= 1
2
=

x 1
2

7
,∆y′ |t= 1

2
=

z 1
2

16
,∆y”|t= 1

2
=

p 1
2

25
. (32)

For the phase space, by setting f (t,φ) = e−t .φ
(16+et)(1+φ) .

The equations (30) to (32) depicted above can be written in the abstract form as (1) -(3). With this, we can easily verify
all assumptions (K1) and (K2). Therefore, system (30) to (32) has uniqueness or at least one solution.
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