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Abstract: In this work, we study the dynamics of fractional-order SIRS epidemic model with standard incidence rate and its

discretization. It is shown that the discretized system exhibits much richer dynamical behaviors than its corresponding fractional-order

form. Local stability of the fractional-order model is studied. Also, many types of bifurcation have been obtained. Numerical

simulations are carried out to verify theoretical results obtained.
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1 Introduction

The theory of epidemics showed that, the mathematical models divided into two types: the first type, the discrete-time
models described by difference equations and the second type, the continuous-time models described by differential
equations. A lot of authors investigated the continuous-time epidemic models in many manuscripts [1,2,3,4,5,6,7,8,9,
10]. In the last years, we interested to the discrete-time models because of the statical data showed that the discrete-time
epidemic models more appropriate and accurate than the continuous-time models,

the numerical simulations obtained by the discrete-time models more accurate than the numerical simulations which
are obtained by continuous-time models.
It is also known that, there are many status to get discrete-time epidemic models: firstly, by using the property of the
epidemic disease directly [11,12]. Secondly, by transforming the continuous-time model into discrete- time model by
using the center manifold theorem and the forward Euler scheme [13].

Moreover, a discrete-time models have more rich dynamical behaviors than its counterparts from a continuous-time
models.
In recent years, mathematical models are the main objective to understand the epidemiological patterns and diseases
control for along time. There are different approximation to investigate epidemic models, such as ordinary differential
equations, difference equations, fractional-order differential equations and so on.
In [14,15], the fractional-order differential equations (FOD) have been used to study the modeling of memory and and
genetical effects.

So, the fractional-order differential equations have been used in many mathematical biology [16,17] and other fields
[18,19,20,21]. A lot of models in interdisciplinary fields can be investigated by the fractional-order differential
equations such as nonlinear oscillation of earthquakes [21], hydrologic models [22], viscoelastic material models [23],
diffusion waves [24], and other fields (see [25,26,27,28,29]). Moreover, the fractional-order differential equations can
be used in the study of mathematical biology [30]. So, fractional-order equations widely used utilized in mathematical
biology [31,32,33,34].
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There exist a lot of definitions for the fractional derivatives. The most famous definitions is Caputo definition of
fractional derivatives [35] is given as follows

Dα f (t) = Il−α f (l)(t), α > 0, (1)

01285542995

where f (l) is l-derivative of f , l = [α] is the value of α and Iθ is the Riemann-Liouville integral operator of order θ
given as follow

Iθ h(t) =
1

Γ (θ )

∫ t

0
(t − τ)θ−1h(τ)dτ, θ > 0, (2)

where Γ (θ ) is the Euler’s Gamma function. The operator Dα denoted to Caputo differential operator of order α .
Usually, in the theory of disease spreading, the population is divided into three kinds of individuals: susceptible (S),
infective (I), and recovered (R). In the last years, A lot of authors investigated the qualitative properties of
fractional-order population models [36,34,37,38,39,40]. The work pioneers Kermack and Mckendrick [41] introduced
the first mathematical model of an epidemic. Many authors studied different types of epidemic models to recognize to
diseases transmission [42,43,44,45,46,47]. Also, the authors [48,49,50] investigated the local stability and global
stability of the disease free and endemic equilibrium for some kinds of diseases such as SI, SIS and SIR types.The aim of
this manuscript to study one type of the basic epidemic models in details and compare between the theoretical results and
its numerical simulations of the model.
The rest of this paper is organized as follows: in section 2, we study the fractional-order of SIRS epidemic model.
Stability of the fractional differential equations are investigated in section 3. In section 4, we investigate stability analysis
of the fractional-order SIRS epidemic model. We study dynamics of the fractional-order SIRS epidemic model and its
discretization in section 5. In section 6, stability of the equilibrium points of the discretized system are studied. In section
7, the numerical simulations are carried out to confirm the theoretical results. Finally, the concluding remarks are given
in section 8.

2 The fractional-order SIRS epidemic model

In the following section, the continuous-time SIRS epidemic model given by the equations.

dS

dt
= A− d1S(t)−β S(t)I(t)+σR(t),

dI

dt
= β S(t)I(t)− d2I(t)− γI(t),

dR

dt
= γI(t)− d3R(t)−σR(t),

(3)

where S(t), I(t) and R(t) denote the numbers of susceptible, infective and recovered individuals at time t, respectively, A

is the recruitment rate of the population, di(i = 1,2,3) is the death rate of S(t), I(t) and R(t), respectively, γ is the recovery
rate of the infective individuals, β SI is the bilinear incidence rate and σ is the rate by which the recovered individuals
become susceptible again. If we considered di(i = 1,2,3) = m1.
The model (3) becomes:

dS

dt
= A−m1S(t)−β S(t)I(t)+σR(t),

dI

dt
= β S(t)I(t)− (m1+ γ)I(t),

dR

dt
= γI(t)− (m1 +σ)R(t),

(4)
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by letting t̄ = m1t, A
m1

= ā, β
m1

= b̄, σ
m1

= c̄ and
γ

m1
= m̄,

The model (4) transformed to:

dS

dt
= a− S− bSI+ cR,

dI

dt
= bSI− (1+m)I,

dR

dt
= mI− (1+ c)R.

(5)

The fractional-order of SIRS model (5) is given as follows

dα S

dtα
= a− S− bSI+ cR,

dα I

dtα
= bSI− (1+m)I,

dαR

dtα
= mI− (1+ c)R,

(6)

with initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0

.
Where α denote the fractional order verifying 0 < α ≤ 1. In (6), we study the fractional-order SIRS epidemic model to
deduce the memory-effect on its complex nonlinear dynamics.

3 Stability of fractional-differential equations and applications to dynamical systems

In [51,52,53], we get the stability conditions of fractional-order systems. the following equation denote to the nonlinear
fractional-order model

Dα S(t) = f (S(t)), S(0) = S0, (7)

where α ∈ (0,1], S(t) ∈ R3. In [51] the Matignons conditions showed that the stability of the equilibrium points.

|arg(λi)|> απ/2, (i = 1,2,3), (8)

where λ1, λ2 and λ3 are the eigenvalues J = ∂ f
∂S

.

4 Stability of the fractional-order SIRS epidemic model

In order to calculate the equilibrium points of model (6), we put dα S
dtα = 0, dα I

dtα = 0, dα R
dtα = 0.

We deduced that the system has two equilibrium points:

1.E1 = (a,0,0) is the disease-free equilibrium.

2.E2 = (S∗, I∗,R∗) = (m+1
b

, (ab−m−1)(1+c)
b(m+c+1) , abm−m2−m

b(m+c+1) ) is an endemic equilibrium.

At the endemic point (S∗, I∗,R∗) the Jacobian matrix of model (6) take the form

J(S∗, I∗,R∗) =





−1− bI∗ −bS∗ c

bI∗ bS∗− (1+m) 0
0 m −(1+ c)



 . (9)

Theorem 1.The disease-free equilibrium E1(a,0,0) has the following topological properties

1.E1 is sink if ba < 1+m,c > 0.
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2.E1 is saddle if ba > 1+m,c < 0.

Proof.The Jacobian matrix for E1 is given by

J(E1) =





−1 −ba c

0 ba− (1+m) 0
0 m −(1+ c)



 . (10)

The eigenvalues corresponding to E1 are λ1 =−1,λ2 = ba− (1+m) and λ3 =−1− c. It is clear that |λ1|< 0, |λ2|< 0 if
ba < 1+m and |λ3|< 0 if c > 0 which implies that E1 of the system (5.1.4) is a sink, so the sink is locally asymptotically
stable, E1 is saddle if |λ1|< 0, |λ2|< 0 if ba > 1+m and |λ3|< 0 if c < 0.

5 Dynamical behaviors of the fractional-order SIRS epidemic model and its discretization

We study dynamical behaviors of the fractional-order SIRS epidemic model and its discretization for equation (6). We
used a discretization method to discretize fractional-order differential equations (see [54],[55]).
the following steps to get the discretization method is:
when S(0) = S0, I(0) = I0, R(0) = R0 are the initial conditions of system (6). The discretization process of model (6)
with piecewise constant arguments as follow

Dα S(t) = a− S([t/s]s)− bS([t/s]s)I([t/s]s)− cR([t/s]s),

Dα I(t) = bS([t/s]s)I([t/s]s)− (1+m)I([t/s]s),

Dα R(t) = mI([t/s]s)− (1+ c)R([t/s]s),

(11)

we put t verify the condition 0 ≤ t < s, which implies that 0 ≤ t
s
< 1. Therefore, the Eq.(11) becomes

Dα S(t) = a− S0− bS0I0 − cR0,

Dα I(t) = bS0I0 − (1+m)I0,

Dα R(t) = mI0 − (1+ c)R0,

(12)

and the solution of (12) becomes

S1(t) = S0 + Iα [a− S0− bS0I0 − cR0] = S0 +
tα

αΓ (α)
[a− S0− bS0I0 − cR0],

I1(t) = I0 + Iα [bS0I0 − (1+m)I0] = I0 +
tα

αΓ (α)
[bS0I0 − (1+m)I0],

R1(t) = R0 + Iα [mI0 − (1+ c)R0] = I0 +
tα

αΓ (α)
[mI0 − (1+ c)R0],

then, we take t ∈ [s,2s), which makes 1 ≤ t
s
< 2. Hence, we get

Dα S(t) = a− S1− bS1I1 − cR1,

Dα I(t) = bS1I1 − (1+m)I1,

Dα R(t) = mI1 − (1+ c)R1,

by discretizing the previous equation the solution become

S2(t) = S1 +
(t − s)α

αΓ (α)
[a− S1− bS1I1 − cR1],

I2(t) = I1 +
(t − s)α

αΓ (α)
[bS1I1 − (1+m)I1],

R2(t) = R1 +
(t − s)α

αΓ (α)
[mI1 − (1+ c)R1],
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by repeating the discretization method n times, we get

Sn+1(t) = Sn(ns)+
(t − ns)α

αΓ (α)
[a− Sn(ns)− bSn(ns)In(ns)− cRn(ns)],

In+1(t) = In(ns)+
(t − ns)α

αΓ (α)
[bSn(ns)In(ns)− (1+m)In(ns)],

Rn+1(t) = Rn(ns)+
(t − ns)α

αΓ (α)
[mIn(ns)− (1+ c)Rn(ns)],

(13)

where ns ≤ t < (n+ 1)s. As t approaches to (n+ 1)s, the system (13) is reduced to

Sn+1 = Sn +
sα

αΓ (α)
[a− Sn− bSnIn − cRn],

In+1 = In +
sα

αΓ (α)
[bSnIn − (1+m)In],

Rn+1 = Rn +
sα

αΓ (α)
[mIn − (1+ c)Rn].

(14)

Remark 2 In Eq. (14) if the parameter α tends to one, we get the forward Euler discretization of model (6).

6 Stability of the equilibrium points of the discretized system

In this section, we study the stability of the equilibrium points of model (14) at the same equilibrium points of model (6).
The stability of model (14) can be get by calculating the Jacobian matrices at its equilibrium points. The Jacobian matrix
of model (14) take the form

J(Sn, In,Rn) =







1+ sα

αΓ (α)(−1− bIn) − sα

αΓ (α)bSn
sα

αΓ (α)c
sα

αΓ (α)bIn 1+ sα

αΓ (α)(bSn − (1+m)) 0

0 sα

αΓ (α)
m 1− sα

αΓ (α)
(1+ c)






. (15)

In order to study the stability analysis of the equilibrium points of system (14), we recall the following lemma.

Lemma 1.[56] Let λ1,λ2 and λ3 are the three roots of matrix J(E), we have the following definitions

(i) If |λ1|< 1, |λ2|< 1 and |λ3|< 1, then the equilibrium point E(S∗, I∗,R∗) is locally asymptotically stable (sink).

(ii) If |λ1|> 1, |λ2|> 1 and |λ3|> 1, then the equilibrium point E(S∗, I∗,R∗) is unstable (source).

(iii) If |λ1|> 1, |λ2|> 1 and |λ3|< 1 (or |λ1|< 1, |λ2|< 1 and |λ3|> 1), then the equilibrium point E(S∗, I∗,R∗) is locally

unstable (saddle).

(iv) If |λ1|= 1 or |λ2|= 1 or |λ3|= 1, then the equilibrium point E(S∗, I∗,R∗) is called non-hyperbolic.

Then, we study the local stability of the equilibrium points of discrete-time model (14).

Theorem 2.The equilibrium point E1 of model (14) has four various topological types of equilibrium points:

(i) E1 is a sink if one of the following conditions holds:

(i.1) (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))≥ 0, c >−1,
−2+(1+m)ε

ε < ba < 1+m, where ε = sα

αΓ (α)
,

(i.2) (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))< 0, c > ε−2
1−ε ,

−2+(1+m)ε
ε < ba < 1+m.

(ii) E1 is a source if one of the following conditions holds:

(ii.1) (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))≥ 0, c <−1,
−2+(1+m)ε

ε > ba > 1+m,

(ii.2) (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))< 0, c < ε−2
1−ε ,

−2+(1+m)ε
ε > ba > 1+m.

(iii) E1 is non-hyperbolic if one of the following conditions holds:

(iii.1) (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))≥ 0, c =−1, ba = −2+(1+m)ε
ε or ba = 1+m,

(iii.2) (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))< 0, c = ε−2
1−ε , ba = −2+(1+m)ε

ε or ba = 1+m.

(iv) E1 is a saddle for the other values of parameters except those values in (i)-(iii).
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Proof.At the free-disease point E1 the Jacobian matrix (11)take the form

J(E1) =





1− ε −εba εc

0 1+ ε(ba− (1+m)) 0
0 εm 1− ε(1+ c)



 (16)

where the eigenvalues are λ1 = 1+ ε(ba− (1+m)) and

λ2,3 =
(2−ε(2+c))±

√
(2−ε(2+c))2−4(1+ε(2+c)+ε2(1+c))

2
.

This showed that the characteristic equation λ 2 −TrMλ +DetM = 0 is verified at λ2,3, where

J(M) =

(

1− ε εc

0 1− ε(1+ c)

)

,

TrM = 2− ε(2+ c), DetM = 1− ε(2+ c)+ ε2(1+ c). Applying Jurys criterion [57] and using lemma (11), we achieve
the results (i)-(iv).

Theorem 3.The disease-free equilibrium point E1 = (a,0,0) loses its stability:

(i) Through a flip point when c 6=−1, ba = −2+(1+m)ε
ε and ba 6= 1+m.

(ii) Through a Neimark-Sacker point at c = ε−2
1−ε and ba 6= −2+(1+m)ε

ε or ba 6= 1+m.

Proof.At one of the eigenvalues equals to -1 and the other eigenvalues not equal to 1 nor -1 in this case the a flip bifurcation
occurs in three-dimensional [57]. When the condition (iii.1) of theorem (2) holds, the model (14) give a flip bifurcation at
the equilibrium point E1 = (a,0,0) at small neighborhood of FBE1

where

FBE1
= {(a, b, c, m): c 6=−1, ba = −2+(1+m)ε

ε and ba 6= 1+m and (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))≥ 0}.
Also, when two eigenvalues are a pair of complex conjugate and the others eigenvalues not equal to 1 nor -1 in this case
a Neimark-Sacker bifurcation occurs. When the condition (iii.2) of theorem (2) holds, the equilibrium point E1 = (a,0,0)
undergoes a Neimark-Sacker bifurcation at c change in a small neighborhood of NSBE1

where

NSBE1
= {(a, b, c, m): c = ε−2

1−ε , ba 6= −2+(1+m)ε
ε and ba 6= 1+m and (2− ε(2+ c))2− 4(1− ε(2+ c)+ ε2(1+ c))< 0}.

The Jacobian matrix at an endemic equilibrium point E2 of system (14) given by the form

J(S∗, I∗,R∗) =





1+ ε(−1− bI∗) −εbS∗ εc

εbI∗ 1+ ε(bS∗− (1+m)) 0
0 εm 1− ε(1+ c)



 , (17)

where
E2 = (S∗, I∗,R∗) = (m+1

b
,
(ab−m−1)(1+c)

b(m+c+1) , abm−m2−m
b(m+c+1) ).

The characteristic equation of the Jacobian matrix J(E2) at the endemic equilibrium E2(S
∗, I∗,R∗) given by the equation

F(λ ) = λ 3 + q1(ε)λ
2 + q2(ε)λ + q3(ε) = 0, (18)

where
q1(ε) =−3+ ε(2+ c+ bI∗),
q2(ε) = 3− ε(2+ 2bI∗)+ ε2(1+ c+ bI∗+ bcI∗+ b2S∗I∗),
q3(ε) = 1− ε(2+ c+ bI∗)+ ε2(1+ c+ bI∗+ bcI∗+ b2S∗I∗)+ ε3(bcmI∗+ b2S∗I∗+ b2cS∗I∗).
The equation (18) transformed to

λ 3 + pλ + q = 0, (19)

according to the Cardano formula. We choose the parameters b,c,m, and ε satisfying ∆ > 0 and the conjugate complex
roots λ2,3 equal to one according to the condition (iv) of lemma (15) in [56]. At E2(S

∗, I∗,R∗) of system (14) appears

a Neimark-Sacker bifurcation. Equation (19) has one real root λ1 = −p
3
+ (−q

2
+
√

∆)
1
3 + (−q

2
−
√

∆)
1
3 , and a pair of

conjugate complex roots λ2,3 = α ±β i, where α = −p
3
− 1

2
[(−q

2
+
√

∆ )
1
3 +(−q

2
−
√

∆)
1
3 ], β =

√
3

2
[(−q

2
+
√

∆)
1
3 +(−q

2
−

√
∆)

1
3 ], ∆ = ( q

2
)2 +( p

3
)3, p =

q2(ε)− 1
3 (q1(ε))

2

3
, q =

2
27 (q1(ε))

3− 1
3 q1(ε)q2(ε)+q3(ε)

27
.
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7 Numerical simulations
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Fig. 1: Phase plane for system (14) with a = 3.20,b = 1.7,c = 1.5,m = 2.5,s = 0.6, and different α .
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Fig. 2: Phase plane for system (14) with a = 2.85,b = 1.51,c = 1.35,m = 1.85,s = 0.88, and different α .

In this section, we study the phase portraits and chaotic attractor of system (14) to confirm the above theoretical results.
By putting the parameters as a = 3.20,b = 1.7,c = 1.5,m = 2.5, and h = 0.6, we take the equilibrium points (S, I,R) =
(3.20,0.1,0.1) in all numerical simulation. Then we vary the parameters α . The phase portraits of model (14) are shown
in Fig. 1 (a-d) and chaotic behaviors of system (14) are illustrated in Fig. 1(e-g). Also, chaotic behaviors of system (14)
occurs when a = 2.85,b = 1.51,c = 1.35,m = 1.85,h = 0.88, and different α are shown in Fig. 2. At s is very small, we
deduce that the discrete-time model (14) be more convenient of the fractional-order model(11).

8 Conclusion

In this manuscripts, we have investigated some nonlinear dynamics of the fractional-order SIRS epidemic model and its
discretization . We have investigated the local stability of disease-free equilibrium and endemic equilibrium of the
fractional-order system and its discretized counterpart with standard incidence rate. It is show that the numerical
simulations are sufficient to prove the analytical analysis and to illustrate the difference the fractional-order SIRS
epidemic model and its discretized counterpart. These results show that the SIRS epidemic model with standard
incidence rate is very rich.
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