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Abstract: In this paper, a continuous fractional boundary value problem invovling fractional q-derivative of the Riemann-Liouville

type is considered. Using Krasnoselskii’s fixed point theorem, the existence of positive solutions for the problem is obtained. By

applying Leggett-Williams fixed-point theorem, the multiplicity of positive solutions is also achieved. Moreover, two examples are

presented to illustrate the existence and multiplicity of positive solutions for the problem.
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1 Introduction

q-difference calculus (i.e. quantum calculus) was first
introduced by Jackson[1,2]. Then, it was extended to
fractional q-difference calculus by Agarwal[3] and
Al-Salam[4]. Due to its various applications in many
subjects, including quantum mechanics, particle physics
and hypergeometric series, many researchers devoted
their efforts to develop the theory in this field and many
results were made, such as the q-Taylor’s formula,
q-Laplace transform[5], ...etc.

During the last few years, the study of positive
solutions for fractional boundary value problems as well
as their its various applications in physics and engineering
flourished. Many results were obtained by applying
Caputo derivative and standard Riemann-Liouville
fractional derivative (see [6,7,8,9,10] and references
therein). But for fractional q-difference boundary value
problems, there were few. In 2011, R. Ferreira[11]
investigated existence of positive solutions for a class of
fractional q-difference boundary value problems

(A)

{

Dα
q u(t) =− f (t,u(t)), 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0.

where f : [0,1] × [0,+∞) → [0,+∞) is nonnegative
continuous and 2 < α ≤ 3. Recently, Li et al.[12,13] have
addressed eigenvalue problems of problem (A), some

existence and nonexistence theorems for solutions with
different eigenvalues were obtained.

In this paper, we consider a continuous fractional
boundary value problem

(P)







Dα
q u(t) =− f (t,u(t)), 0 < t < 1,

u(0) = Dk
qu(0) = 0, 1 ≤ k ≤ n− 2,k ∈ N,

D
β
q u(1) = 0, 1 ≤ β ≤ n− 2.

where n− 1 < α ≤ n, n ≥ 3, n ∈ N, f : [0,1]× [0,+∞)→
[0,+∞) is nonnegative continuous and Dα

q is the fractional
q-derivative of Riemann-Liouville type with order α . Let
n = 3, β = 1 in the problem (P), it becomes problem (A).
Thus, the problem (P) we considered is a more general
case and the results we obtained will extend the work of
R. Ferreira and Li et al.

This paper is designed as follows: In Section 2, we
recall some notations of q-integral and q-derivative. Then,
the corresponding Green’s function is obtained and some
fixed points theorems are given. In Section 3, the
existence and multiplicity of positive solutions are
obtained using the fixed point theorems on cone. In
Section 4, two examples are presented to show the main
results.
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2 Preliminaries

We use the notations indicated in Jackson’s work [1,2]. q-
derivative of function u(t) for 0 < q < 1 is defined by

(Dqu)(t) =
u(t)− u(qt)

(1− q)t
, (Dqu)(0) = lim

t→0
(Dqu)(t),

and for higher order q-derivative,

(D0
qu)(t) = u(t), (Dn

qu)(t) = Dq((D
n−1
q u)(t)), n ∈N.

For q-integral of function u defined on [0,b], we have

(Iqu)(t) =

∫ t

0
u(s)dqs = t(1− q)

∞

∑
n=0

qnu(tqn), t ∈ [0,b],

The fundamental formula of calculus can also be applied
to q-derivative and q-integral, i.e.

(DqIqu)(t) = u(t),

and if lim
t→0

u(t) = u(0), then

(IqDqu)(t) = u(t)− u(0).

Let [α]q =
1−qα

1−q
, α ∈ R. The power function (a− b)α

can be expressed as

(a− b)(α) = aα
∞

∏
n=0

a− bqn

a− bqα+n
.

From the definition, we can see (a− b)(α) = aα(1− b
a
)(α)

and a(α) = aα .
Let

Γq(α) =
(1− q)(α−1)

(1− q)α−1
, α ∈ R\ {0,−1,−2, · · ·},

and we have Γq(α + 1) = [α]qΓq(α).
Fractional q-difference calculus was established by

Agarwal [3] and Al-Salam [4]. Here we use Agarwal’s
notations.

Definition 1.[3] Let α ≥ 0 and u be a function defined on

interval [0,1]. The fractional q-integral of

Riemann-Liouville type is (I0
q u)(t) = u(t) and

(Iα
q u)(t)=

1

Γq(α)

∫ t

0
(t−qs)(α−1)u(s)dqs, α > 0, t ∈ [0,1].

Definition 2.[3] The definition of fractional q-derivative

of Riemann-Liouville type on interval [0,1] is (D0
qu)(t) =

u(t) and

(Dα
q u)(t) = (Dm

q Im−α
q u)(t), α > 0,

where m is the smallest integer satisfying m ≥ α .

Lemma 1.[3] The following formulas hold for t ∈ [0,1]
and α,β > 0

(1) (I
β
q Iα

q u)(t) = (Iα
q I

β
q u)(t) = (I

β+α
q u)(t);

(2) (Dα
q Iα

q u)(t) = u(t);

(3) (Iα
q Dp

qu)(t) = (Dp
qIα

q u)(t)−
p−1

∑
k=0

tα−p+k

Γq(α +k−p+1)
(Dk

qu)(0),

p ∈ N,p ≥ α.

Next, we list some equalities that will be used later. They
have been proved by R. Ferreira[11].

Lemma 2.[11] Let tDq be the derivative with respect to t.

Then the following formulas hold:

(1) tDq(t− s)(α) = [α]q(t− s)(α−1);

(2) Dβ
q tα =

Γq(α + 1)

Γq(α −β + 1)
tα−β ;

(3) (t− a)(α) ≥ (t− b)(α)
, a ≤ b ≤ t, α > 0.

Lemma 3.Problem (P) has a unique solution with

u(t) =

∫ 1

0
G(t,s) f (s,u(s))dqs

where G(t,s) is the Green’s function of problem (P) with

G(t,s) =
1

Γq(α)

{

(1−qs)(α−β−1)tα−1 − (t−qs)(α−1) , 0 ≤ s ≤ t ≤ 1,

(1−qs)(α−β−1)tα−1
, 0 ≤ t ≤ s ≤ 1.

Proof.From (Dα
q u)(t) = − f (t,u(t)) and Lemma 2.1(3)

with p = n, we have (Iα
q Dn

qIn−α
q u)(t) = −Iα

q f (t,u(t)).
Then the general solution to the problem is

u(t) =−
1

Γq(α)

∫ t

0
(t − qs)(α−1) f (s,u(s))dqs+

c1tα−1 + c2tα−2 + · · ·+ cntα−n
.

From condition u(0) = 0, we can get cn = 0. Then,
differentiating both sides with respect of t, we can get

(Dqu)(t) =−
1

Γq(α)

∫ t

0
[α −1]q(t −qs)(α−2) f (s,u(s))dqs

+[α −1]qc1tα−2 +[α −2]qc2tα−3 + · · ·+[α −n+1]qcn−1tα−n
.

Boundary condition (Dqu)(0) = 0 means cn−1 = 0.
Differentiating both sides with respect of t successively
and using boundary condition (Dk

qu)(0) = 0,
k = 2,3, . . . ,n − 2 similarly, we obtain
cn−2 = cn−3 = · · · = c2 = 0. Now, the equation becomes
u(t) = −Iα

q f (t,u(t)) + c1tα−1. Differentiating both sides

with order β , where 1 ≤ β ≤ n − 2 and with Lemma
2.2(2), we obtain

(Dβ
q u)(t) =−Dβ

q Iβ
q Iα−β

q f (t,u(t))+ c1Dβ
q tα−1

=−Iα−β
q f (t,u(t))+ c1

Γq(α)

Γq(α −β )
tα−β−1

=−
1

Γq(α −β )

∫ t

0
(t − qs)(α−β−1) f (s,u(s))dqs

+ c1

Γq(α)

Γq(α −β )
tα−β−1

.
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By boundary condition (D
β
q u)(1) = 0, we have

c1 = 1
Γq(α)

∫ 1
0 (1− qs)(α−β−1) f (s,u(s))dqs. Then, we can

get

u(t) =
tα−1

Γq(α)

∫ 1

0
(1− qs)(α−β−1) f (s,u(s))dqs

−
1

Γq(α)

∫ t

0
(t − qs)(α−1) f (s,u(s))dqs

=
1

Γq(α)

{

∫ t

0
((1− qs)(α−β−1)tα−1s

− (t − qs)(α−1)) f (s,u(s))dq

+

∫ 1

t
(1− qs)(α−β−1)tα−1 f (s,u(s))dqs

}

=

∫ 1

0
G(t,s) f (s,u(s))dqs.

The proof is complete.

Next, we will give some properties of Green’s function.

Lemma 4.The Green’s function of problem (P) satisfies

following conditions:

(1) for 0 ≤ t,s ≤ 1,G(t,s)≥ 0,

(2) for 0 ≤ s ≤ 1, max
0≤t≤1

G(t,s) = G(1,s),

(3) for any 0 < τ < 1 and 0 ≤ s ≤ 1,

min
τ≤t≤1

G(t,s)≥ τα−1G(1,s).

Proof.(1) For 0 ≤ s ≤ t ≤ 1, we write

G1(t,s) =
1

Γq(α)
{(1− qs)(α−β−1)tα−1 − (t − qs)(α−1)},

and for 0 ≤ t ≤ s ≤ 1,

G2(t,s) =
1

Γq(α)
(1− qs)(α−β−1)tα−1

.

Obviously, G1(0,s) = 0 and G2(t,s) ≥ 0. For t 6= 0, using
Lemma 2.2 (3), we can obtain

G1(t,s) =
1

Γq(α)
{(1−qs)(α−β−1)tα−1 − (t −qs)(α−1)}

=
1

Γq(α)
{(1−qs)(α−β−1)tα−1 − (1−q

s

t
)(α−1)tα−1}

≥
tα−1

Γq(α)
{(1−qs)(α−β−1)− (1−qs)(α−1)} ≥ 0.

Therefore, for 0 ≤ t,s ≤ 1, we obtain G(t,s)≥ 0.
(2) Obviously, for variable t, G2(t,s) increases

monotonically. And for fixed 0 ≤ t ≤ 1, we get

tDqG1(t,s) =
1

Γq(α)
{(1−qs)(α−β−1)[α −1]qtα−2

− [α −1]q(t −qs)(α−2)}

=
tα−2

Γq(α)
[α −1]q{(1−qs)(α−β−1)− (1−q

s

t
)(α−2)}

≥
tα−2

Γq(α)
[α −1]q{(1−qs)(α−β−1)− (1−qs)(α−2)}.

Here, α − β − 1 ≤ α − 2 since 1 ≤ β ≤ n − 2. So

tDqG1(t,s) ≥ 0. Then, for variable t, G1(t,s) also
increases monotonically. Hence, max

0≤t≤1
G(t,s) = G(1,s).

(3) If 0 ≤ s ≤ t ≤ 1,

G1(t,s)

G(1,s)
=
(1− qs)(α−β−1)tα−1 − (t − qs)(α−1)

(1− qs)(α−β−1)− (1− qs)(α−1)

=
tα−1{(1− qs)(α−β−1)− (1− q s

t
)(α−1)}

(1− qs)(α−β−1)− (1− qs)(α−1)

≥
tα−1{(1− qs)(α−β−1)− (1− qs)(α−1)}

(1− qs)(α−β−1)− (1− qs)(α−1)
= tα−1

.

If 0 ≤ t ≤ s ≤ 1,

G2(t,s)

G(1,s)
= tα−1

.

Hence G(t,s)≥ tα−1G(1,s).
The proof is complete.

Lemma 5.[14](Krasnoselskii’s fixed point theorem) Let

subset K be a cone in Banach space E. There exist two

bounded open subsets Ω1, Ω2 in K satisfying

0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If operator T : Ω2 \ Ω1 → K is

completely continuous and satisfies one of following

conditions:

(1) ||Tu|| ≤ ||u||, u ∈ ∂Ω1 and ||Tu|| ≥ ||u||, u ∈ ∂Ω2;

(2) ||Tu|| ≥ ||u||, u ∈ ∂Ω1 and ||Tu|| ≤ ||u||, u ∈ ∂Ω2.

Then, T has a fixed point in Ω2 \Ω1.

Definition 3.[15] Let K be a cone of Banach space E. If

θ : K → [0,+∞) is a continuous map and for u,v ∈ K,

0 < t < 1, the following inequality holds

tθ (u)+ (1− t)θ (v)≤ θ (tu+(1− t)v).

Then, function θ is concave, nonnegative and continuous

on cone K.

Lemma 6.[15](Leggett-Williams fixed-point theorem) Let

K be a cone of Banach space E. θ defined above is

concave, nonnegative and continuous on K and satisfies

θ (u) ≤ ||u||. Denote Kr1
= {u ∈ K : ||u|| ≤ r1}. For all

u ∈ Kr1
, let K(θ ,r1,r2) = {u ∈ K : ||u|| ≤ r1,θ (u) ≥ r2}.

If T : Kr1
→ Kr1

is completely continuous and the

following conditions hold for 0 < r3 < r2 < r1:

(C1) ||Tu||< r3 for u ≤ r3;
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(C2) Set {u ∈ K(θ ,r1,r2) : θ (u) > r2} is non-empty,

and θ (Tu)> r2 for u ∈ K(θ ,r1,r2).
Then, there exist three different fixed points u1, u2, u3 of T

with

θ (u1)< r2, ||u1||> r3, θ (u2)> r2, ||u3||< r3.

3 Main Results

We consider problem (P) in Banach space C[0,1]. The
norm ||u|| is defined by ||u||= max

0≤t≤1
|u(t)|.

Let K = {u∈C[0,1] : min
τ≤t≤1

u(t)≥ τα−1||u||,u(t)≥ 0},

where τ = qn for a given n ∈N. Then K ∈C[0,1] is a cone
containing nonnegative functions.

For 0 ≤ t ≤ 1, u ∈ K, denote T as

(Tu)(t) =

∫ 1

0
G(t,s) f (s,u(s))dqs.

Then Tu ∈C[0,1] is well defined.

Lemma 7.Operator T : K → K is completely continuous.

Proof.Given u∈K, from nonnegativity of G, f and Lemma
2.4, one has Tu ≥ 0 and

min
τ≤t≤1

Tu(t) = min
τ≤t≤1

∫ 1

0
G(t,s) f (s,u(s))dqs

≥
∫ 1

0
τα−1 max

0≤t≤1
G(t,s) f (s,u(s))dqs

=τα−1||Tu||.

Thus, Tu ∈ K. T is continuous by continuity of f ,G. For
any bounded set Ω ⊂ K and u ∈ Ω , we have ||u|| < M

where M is a positive constant. Let
L = max

0≤t≤1,0≤u≤M
f (t,u)+ 1. We can get

|Tu(t)| ≤

∫ 1

0
|G(t,s) f (s,u(s))|dqs ≤ L

∫ 1

0
G(1,s)dqs

≤
L

Γq(α)

∫ 1

0
(1− qs)(α−β−1)dqs

≤
L

Γq(α)
<+∞.

Therefore, T (Ω) is bounded. Next, we consider the
equicontinuity of T (Ω). That is, given ε > 0, let

δ =
Γq(α)

L
ε , for each u ∈ Ω , 0 ≤ t1 < t2 ≤ 1, and

t2 − t1 < δ , then |(Tu)(t2)− (Tu)(t1)|< ε . In fact,

|(Tu)(t2)− (Tu)(t1)|=
∣

∣

∣

∫ 1

0
(G(t2,s)−G(t1,s)) f (s,u(s))dqs

∣

∣

∣

≤ L

∫ 1

0
(G(t2,s)−G(t1,s))dqs

≤
L

Γq(α)

(

∫ t1

0

(

(1− qs)(α−β−1)(t2
α−1 − t1

α−1)− ((t2 − qs)(α−1)

− (t1 − qs)(α−1))
)

dqs

+

∫ t2

t1

(

(1− qs)(α−β−1)(t2
α−1 − t1

α−1)− (t2 − qs)(α−1)
)

dqs

+

∫ t1

t2

(1− qs)(α−β−1)(t2
α−1 − t1

α−1)dqs

)

≤
L

Γq(α)

∫ 1

0
(1− qs)(α−β−1)(t2

α−1 − t1
α−1)dqs ≤

L

Γq(α)
δ = ε.

Then T : K → K is completely continuousby by Arzela-
Ascoli theorem. The proof is complete.

Denote

A =

∫ 1

0
G(1,s)dqs, B = min

τ≤t≤1

∫ 1

τ
G(t,s)dqs.

Theorem 1.Suppose f (t,u) defined on [0,1]× [0,+∞) is

nonnegative continuous. Let τ = qn,n ∈N and 0 < r1 < r2

be two positive constants. If the following assumptions are

satisfied

(H1) for (t,u) ∈ [0,1]× [0,r1], f (t,u)≤ r1
A

;

(H2) for (t,u) ∈ [τ,1]× [τα−1r2,r2], f (t,u)≥ r2

τα−1B
.

Then, there exists one positive solution u∗ ∈ K to problem

(P).

Proof.Denote Ω1 = {u ∈ K : ||u||< r1}, then for u ∈ ∂Ω1,
we get 0 ≤ u ≤ r1 on [0,1]. By assumption (H1), we can
obtain

||Tu||= max
0≤t≤1

∣

∣

∫ 1
0 G(t,s) f (s,u(s))dqs

∣

∣≤
∫ 1

0 G(1,s) r1
A

dqs = r1 = ||u||.

Hence, for u ∈ ∂Ω1, we have ||Tu|| ≤ ||u||.
Denote Ω2 = {u ∈ K : ||u|| < r2}, then for u ∈ ∂Ω2, we

have τα−1r2 = τα−1||u|| ≤ u ≤ r2 on [τ,1]. By assumption
(H2) for t ∈ [τ,1], we can obtain

(Tu)(t) =
∫ 1

0
G(t,s) f (s,u(s))dqs ≥ τα−1

∫ 1

τ
G(1,s)

r2

τα−1B
dqs

≥ τα−1
∫ 1

τ
min

τ≤t≤1
G(t,s)

r2

τα−1B
dqs = r2.

Hence, for u ∈ ∂Ω2, we have ||Tu|| ≥ ||u||. Hence, by
completely continuity of T on K and Lemma 2.5, there
exists one fixed point u∗ of T in Ω2 \ Ω1 with
r1 ≤ ||u∗|| ≤ r2. Therefore, the proof is complete.

The following theorem concerns the multiplicity of
positive solutions.
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Theorem 2.Suppose f (t,u) defined on [0,1]× [0,+∞) is

nonnegative continuous. Let τ = qn,n ∈ N and 0 < a <

τα−1b. If the following assumptions are satisfied:

(A1) for (t,u) ∈ [0,1]× [0,b], f (t,u)≤ b
A

;

(A2) for (t,u) ∈ [0,1]× [0,a], f (t,u)≤ a
A

;

(A3) for (t,u) ∈ [τ,1]× [τα−1b,b], f (t,u)≥ τα−1b
B

.

Then there exist three positive solutions u1, u2, u3 of

problem (P) satisfying

max
0≤t≤1

|u1|> a > max
0≤t≤1

|u3|, min
τ≤t≤1

|u2|> τα−1b> min
τ≤t≤1

|u1|

Proof.From Lemma 2.6, we denote θ (u) = min
τ≤t≤1

|u|, r1 =

b, r2 = τα−1b and r3 = a.
If u ∈ Kb, then 0 ≤ u ≤ b. By assumption (A1), we obtain

||Tu||= max
0≤t≤1

∣

∣

∫ 1

0
G(t,s) f (s,u(s))dqs

∣

∣≤
∫ 1

0
G(1,s)

b

A
dqs = b.

Hence Tu ∈ Kb, T : Kb → Kb is completely continuous.
From assumption (A2), for u ≤ a, we can similarly get
||Tu||< a. This is condition (C1).

Let u(t) = τα−1+1
2

b. Since 0 < τ = qn < 1, then

τα−1b < θ (u) = τα−1+1
2

b < b. This means

u(t) = τα−1+1
2

b ∈ K(θ ,b,τα−1b) and

θ (u) = τα−1+1
2

b > τα−1b.

So set {u ∈ K(θ ,b,τα−1b) : θ (u)> τα−1b} is non-empty.
For u ∈ K(θ ,b,τα−1b), then for t ∈ [τ,1], we have
τα−1b ≤ u(t)≤ b. From assumption (A3), we have

θ (Tu) = min
τ≤t≤1

|(Tu)(t)|= min
τ≤t≤1

∣

∣

∫ 1

0
G(t,s) f (s,u(s))dqs

∣

∣

>

∫ 1

τ
min

τ≤t≤1
G(t,s)

τα−1b

B
dqs = τα−1b.

Hence, condition (C2) holds. Therefore, by Lemma 2.6,
the result is achieved.

4 Examples

To illustrate existence of positive solution, we present the
following example:

Example 1.Consider following fractional boundary value
problem

{

D3.5
0.5u(t) =−u2eu, 0 < t < 1,

u(0) = D0.5u(0) = D2
0.5u(0) = 0, D1.5

0.5u(1) = 0.

In this problem, α = 3.5,q = 0.5,β = 1.5, f (t,u) = u2eu.

A =

∫ 1

0
G(1,s)dqs ≤

1− (1− q)α−1

Γq(α)
≈ 0.3762,

and

B = min
0.5≤t≤1

∫ 1

0.5
G(t,s)dqs ≥ 0.5α−1

∫ 1

0.5
G(1,s)dqs

≥ 0.5α−1 (1−
q
2
)α−β−1 − (1− q)α−1

2Γq(α)
≈ 0.1301.

Let r1 =
3
4
, r2 = 25, τα−1 ≈ 0.1767,

f (t,u) = u2eu ≤ r2
1er1 ≈ 1.5878r1 < 2.6582r1 =

r1
0.3762

≤ r1
A

, for u ∈ [0,r1];

f (t,u) = u2eu ≥ (τα−1r2)
2eτα−1r2 ≈ 64.70r2 >

43.497r2 =
1

0.1767×0.1301
r2 ≥

r2

τα−1B
, for u ∈ [τα−1r2,r2].

Then by Theorem 3.1, there exists one solution u(t) of

this example with 3
4
≤ ||u|| ≤ 25.

To illustrate multiplicity of positive solutions, we
present another example as follows:

Example 2.Consider following fractional boundary value
problem

{

D3.5
0.5u(t) =− f (u), 0 < t < 1,

u(0) = D0.5u(0) = D2
0.5u(0) = 0, D1.5

0.5u(1) = 0.

where

f (u) =

{

10u2
, u ≤ 1,

9+ u, u ≥ 1.

From Example 4.1, we obtain A ≤ 0.3762, B ≥ 0.1301.
Choose a = 0.1, and b such that τα−1b = 1, then
b = 1

τα−1 ≈ 5.6593,

f (u)≤ 9+u ≈ 14.6593< 15.04 ≈ 5.6593
0.3762

≤ b
A

, for u ∈
[0,b];

f (u) = 10u2 = 0.1 < 0.2658 ≈ 0.1
0.3762

≤ a
A

, for
u ∈ [0,a];

f (u) = 9+ u > 9 > 7.686 ≈ 1
0.1301

≥ τα−1b
B

, for u ∈
[1,b].
Then by Theorem 3.2, there exist three positive solutions
u1, u2, u3 of this example with

max
0≤t≤1

|u1|> 0.1 > max
0≤t≤1

|u3|, min
0.5≤t≤1

|u2|> 1 > min
0.5≤t≤1

|u1|

That is

0.1 < max
0≤t≤1

|u1| ≤ 5.65935, 0 < min
0.5≤t≤1

|u1|< 1,

1< min
0.5≤t≤1

|u2|< max
0≤t≤1

|u2| ≤ 5.65935, 0< max
0≤t≤1

|u3|< 0.1.
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