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1 Introduction, motivation and preliminaries

Mainly the concept of IT has originated from Fourier integral formula. The importance of ITs is to provide an effective
method for solving many mathematical models, IVPs and BVPs that appear in DEs. The IT is a prominent tool for
solving the DEs, FDEs and IEs arising in various sciences [1,2,3,4]. The DEs and FDEs have become important tools in
mathematical model [1,4]. There are several types of fractional derivatives Riemann-Liouvelli, Caputo, ABR and ABC
[5]. The fractional diffusion equation plays an important role in dynamical system, bio-information and finance [6]. In
recent years, considerable interest in ST [7,8,9,10] has been stimulated by the numerous applications in various fields,
such as applied mathematics, physics, and engineering. Also in [11] Belgacem and Karaballi investigated ST
fundamental properties and applications. Recently, Khalil et al. have defined the conformable derivative in [12]. In [13],
Mohamed et al. studied nonlocal telegraph model equation in frame omit using the conformable time-derivative. In [14],
Zhao and Li investigated the concepts of conformable delta derivative and conformable delta integral on time scales.
Recently, Ghadle and Magar [10] applied ST to the fractional advection-diffusion equation to determine the pollution
and dissolved oxygen in river water. In [15] it was derived the formulae for the ST and double ST of ordinary and partial
fractional derivatives and applied them to solve Caputo type FDEs. Also they showed the applicability of this new
transform and its efficiency in solving such problems. Moreover, Panchal et al.[8] defined k-Prabhakar fractional
derivative as well as k-Hilfer-Prabhakar fractional derivative and its regularized version and found LT and ST of
k-Prabhakar fractional derivative, k-Hilfer-Prabhakar fractional derivative. The LT of k-Prabhakar fractional derivative
defined in [9] are obtained. Yang [16] introduced new IT method which is different from the LT, ST, and ET operators to
solve the DEs in the steady heat-transfer problem.

The classical ITs are not reduced conformable derivative. In the present paper, we introduce efficacious generalize
Sumudu type IT to reduce conformable derivative and omit obtain basic properties. We find a solution to unveil effective
applications to Sumudu type IT.

In section 2, some useful definitions are presented. In section 3, we prove some basic properties, convolution theorem
by new Sumudu type IT and apply it to conformable derivative, convolution operation and semigroup properties. Also,
we study few applications in section 4.

Abbreviations
FDEs - Fractional Differential Equations
IT - Integral Transform
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ST - Sumudu Transform
LT - Laplace Transform
FT - Fourier Transform
ET - Elzaki Transform
DEs - Differential Equations
BVPs - Boundary Value Problems
IVPs - Initial Value Problems
IE - Integral Equation

2 Preliminary

We begin by introducing some necessary definitions and basic results required for further developments in this paper.

Definition 2.1. [7] ST is defined for function of exponential order and we consider functions in the set A omit
defined by,

A = { f (t)/∃M,τ1,τ2| f (t)| ≤ Me|t|/Tj , i f tε(−1 j)× [0,∞)}
the ST is defined by,

G(u) = S[ f (t)] =

∫ ∞

0
f (ut)e−tdt, uε(−τ1,τ2)

for a given function in the set A. The constant M must be finite number, τ1,τ2 may be finite or infinite.

Definition 2.2. [12] (Conformable integral)
Let α ∈ (0,1] and F : [0,∞)→R.
The conformable integral of f of order α from zero to t is defined by

Iα f (t) =

∫ t

0
F(s)dα s =

∫ t

0
f (s)sα−1ds

= I1(t
α−1)(t), t ≥ 0,

where the above integral is the usual improper Riemann integral.

Definition 2.3. [12] Let f ∈Cn(0,∞), α ∈ (p− 1, p] for all p ∈ N and ⌈α⌉ denote the smallest integer greater than or
equal to α . The conformable derivative of order α denoted by Tα [ f (t)] is defined as,

Tα [ f (t)] = lim
ε→0

f (⌈α⌉−1)(t + εt(⌈α⌉−α))− f (⌈α⌉−1)(t)

ε
,

= t(⌈α⌉−α) f (⌈α⌉)(t).

The relationship between the conformable derivative and first derivative can be represented,

Tα f (t) = t1−α f
′
(t), f ∈C1.

Definition 2.4. ([17]) The conformable exponential function is defined for every t ≥ 0 by

Eα(c, t) = exp(c tα

α ),

where c ∈ R and 0 < α ≤ 1.

Definition 2.5. Let

A = { f ∈ L
p(R+)/‖ f (t)‖p,α =

∫ ∞

0
|tα−p f (t)|dt ≤ M; (1)
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for some, M > 0, ∀ p ∈ N and α ∈ (p− 1, p]}.
The Sumudu type IT of a function f ∈ A of order α ∈ (0,1] is defined as,

Sα [ f (t)](u) = Fα(u) =
∫ ∞

0

1

u
e
−tα

uα tα−1 f (t)dt,

where Sα is Sumudu type IT operator and u ∈ R.

In perspective of these outcomes, we have omit characterized the accompanying Sumudu type IT and studied its
different applications.

3 Main results

In this section, we study Sumudu type IT and basic results.

Theorem 1.Let f ∈ A then Sumudu type IT Sα [ f (t)](u) = Fα(u) is bounded for all u ∈N.

Proof: By Definition 2.5, we have

|Fα(u)|=
∫ ∞

0
|1
u

e
−tα

uα tα−1 f (t)dt| ≤ 1

u

∫ ∞

0
|e−tα

uα ||tα−1 f (t)|dt ≤ 1

u
M1M2 < ∞,

where

M1 = Sup|e− tα

uα | f or t ∈ [0,∞)

= 1

≤ 1

u
M2,

for some, M3 ≥ 0, 1
u
≤ M3, for u 6= 0,

where

M2 =
1

u

∫ ∞

0
|tα−1 f (t)|dt < M,

from the Definition 2.5.

Theorem 2.Let f ,g ∈ A, Sα [ f (t)](u) = Fα(u), Sα [g(t)](u) = Gα(u) and a,b are any scalars then

(a) Sα [a f (t)+ bg(t)](u) = aFα(u)+ bGα(u).

(b) Sα [ f (at)](u) =
1

aα
Fα(

1

uaα
).

(c) Sα [e
iatα

α f (t)](u) = Fα(
1

u
− ia).

(d) Sα

[
f (t)cosh

axα

α

]
(u) =

1

2
[Fα(

1

u
− a)+Fα(

1

u
+ a)].

(e) Sα

[
f (t)sinh

axα

α

]
(u) =

1

2
[Fα(

1

u
− a)−Fα(

1

u
+ a)].

Theorem 3.The Sumudu type IT of conformable derivative of f ∈ L 1(R+) of order α ∈ (0,1] is given by

Sα [Tα( f (t))](u) =
1

u
Fα(u)−

1

u
f (0),

where Tα( f (t)) ∈ A and Sα [ f (t)](u) = Fα(u).
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Proof: Form the Definition 2.5, we have

Sα [Tα f (t)](u) =

∫ ∞

0

1

u
e
−tα

uα tα−1t1−α f
′
(t)dt

=−1

u
f (0)+

1

u

∫ ∞

0

1

u
e
−tα

uα tα−1 f (t)dt

=
1

u
Fα(u)−

1

u
f (0).

Note that,

(i) The Sumudu type IT of e
−atα

α for a ∈R is given by

Sα [e
−atα

α ](u) =

∫ ∞

0

1

u
e
−( 1

u +a)tα

α tα−1dt =

∫ ∞

0

1

u
e
−( 1

u +a)x
α

dx

α
=

1

(1+ au)
. (2)

(ii)The Sumudu type IT of cos( atα

α ) for a ∈ R is given by

Sα

[
f (t)cos

atα

α

]
(u) =

∫ ∞

0

1

u
e
−tα

uα

(
e

iatα

α + e
−iatα

α

2

)
tα−1dt

=
1

2

∫ ∞

0

1

u

[
e
−( 1

u −ia)tα

α + e
−( 1

u +ia)tα

α

]
tα−1dt

=
1

1+ a2u2
. (3)

(iii)The Sumudu type IT of
sin( atα

α )
a

for a ∈R is given by

Sα

[
f (t)

sin( atα

α )

a

]
(u) =

∫ ∞

0

1

u
e
−tα

uα tα−1 sin( atα

α )

a
dt

=
1

a

{∫ ∞

0

1

u
e
−tα

uα

(
e

iatα

α − e
−iatα

α

2i

)
tα−1dt

}

=
u

1+ a2u2
.
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(iv)The Sumudu type IT of

δ (t) =

{
∞, t = 0

0; t 6= 0

Sα [δ (t)] =
1
u
.

Now for f ,g ∈ A, we define the convolution ( f ⊛ g) as

( f ⊛ g)(t) = u

∫ t

0
e
−1
uα (xα−tα ) 1

u
e
−1
uα (t−x)α

(t − x)α−1xα−1t1−α f (x)g(t − x)dx

= ue
1

uα tα
t1−α

∫ t

0
f̂ (x)ĝ(t − x)dx

= ue
1

uα tα
t1−α( f̂ ∗ ĝ)(t)

where

( f̂ ∗ ĝ)(t) =

∫ t

0
f̂ (x)ĝ(t − x)dx

for f̂ (x) = ue
−1
uα xα

xα−1 f (x) and ĝ(t − x) = 1
u
e
−1
uα (t−x)α

(t − x)α−1g(t − x).

Theorem 4.(Convolution Theorem)

Let f ,g ∈ A and Sα [ f (t)](u) = Fα(u), Sα [g(t)](u) = Gα(u) then the Sumudu type IT of convolution ( f ⊛ g) is given by

Sα [( f ⊛ g)(t)](u) = uFα(u)Gα(u).

Proof: Let f ,g ∈ A then from the Definition 2.5 and convolution ( f ⊛ g), we have

Sα [( f ⊛ g)(t)](u) =

∫ ∞

0

1

u
e
−tα

uα tα−1

×
(

u

∫ t

0
e
−1
uα (xα−tα ) 1

u
e
−1
uα (t−x)α

(t − x)α−1xα−1t1−α f (x)g(t − x)dx

)
dt

= u

∫ ∞

0

1

u
e
−xα

uα xα−1 f (x)

∫ ∞

x

1

u
e
−1
uα (t−x)α

(t − x)α−1g(t − x)dtdx

= u

∫ ∞

0

1

u
e
−xα

uα xα−1 f (x)

∫ ∞

0

1

u
e
−1
uα (y)α

(y)α−1g(y)dydx = uFα(u)Gα(u).

Theorem 5.The space (A,⊛) is commutative semigroup.

Proof: Let f ,g,h ∈ A, ( f ⊛ g) = s and (g⊛ h) = v. We have to show that operation ⊛ is commutative and associative in
A.

(i) Commutative:

( f ⊛ g)(t) = u

∫ t

0
e
−1
uα (xα−tα ) 1

u
e
−1
uα (t−x)α

(t − x)α−1xα−1t1−α f (x)g(t − x)dx

= u

∫ t

0
e
−1
uα (yα−tα ) 1

u
e
−1
uα (t−y)α

(t − y)α−1yα−1t1−α f (t − y)g(y)dy

= (g⊛ f )(t).
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(ii) Associative:

(( f ⊛ g)⊛ h)(t) = (s⊛ h)(t)

= ue
1

uα tα
t1−α

∫ t

0

1

u
e
−1
α xα

e
−1
uα (t−x)α

(t − x)α−1xα−1s(x)h(t − x)dx

= ue
1

uα tα
t1−α(ŝ∗ ĥ)(t) = ue

1
uα tα

t1−α(( f̂ ∗ ĝ)∗ ĥ)(t).

Similarly we have

( f ⊛ (g⊛ h))(t) = ue
1

uα tα
t1−α( f̂ ∗ v̂)(t)

= ue
1

uα tα
t1−α( f̂ ∗ (ĝ∗ ĥ))(t) = ue

1
uα tα

t1−α(( f̂ ∗ ĝ)∗ ĥ)(t).

This implies (( f ⊛ g)⊛ h)(t) = ( f ⊛ (g⊛ h))(t).

4 Applications

In this section, we obtain the solution of IE, diffusion equation and heat-transfer problem involving conformable derivative
using Sumudu type IT and the FT.

Example 1.For s ∈ L 1(R+) and t > 0, the solution of the conformable diffusion equation

Tα s(x, t) = λ sxx(x, t), (4)

s(x,0) = f (x), (5)

is given by

s(x, t) =

√
α

4πλ tα

∫ ∞

−∞
f (ξ )e

−α(x−ξ )2

4λ tα dξ . (6)

Solution: Let s(x,s) and ŝ(l, t) denote the Sumudu type IT and the FT of s(x, t) respectively. f̂ (k) is the FT of f (x). Now,
taking Sumudu type IT and the FT of (6) and using (2) and (7) we get

1

u
ŝ(l,u)− f̂ (l)

u
=−λ l2ŝ,

ŝ(l,s) =
f̂ (l)

1+λ ul2
.

Taking inverse Sumudu type IT and using (3)

ŝ(l, t) = f̂ (l)e
−λ l2tα

α f or t > 0.

Now using inverse FT, we get

s(x, t) =
1√
2π

∫ ∞

−∞
f̂ (l)e

−λ l2tα

α dl.

From the convolution property of FT, we have

s(x, t) =
1√
2π

∫ ∞

−∞
f (ξ )g(x− ξ )dξ ,
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where g(x) = F−1[e
−λ l2tα

α ] =
√

α
2λ tα e

−αx2

4λ tα for t > 0.

The operator F−1 is inverse FT operator.
Finally, we see that the special case involving impulsive initial condition u(x,0) = δ (x) and the property of delta function
given by,∫ ∞
−∞ δ (ξ )y(ξ )dξ = y(0), the solution reduces to (8)

s(x, t) =

√
α

4πλ tα
e
−αx2

4λ tα , t > 0. (7)

Example 2.The solution of the conformable heat-transfer equation

−pNθ (t) = ρUahTα θ (t) (8)

θ (0) = η , f or η ≥ 0, (9)

where ρ- density, U- volume, ah- specific heat of material, p- convection heat-transfer coefficient, N- surface area of the
body and θ ∈ L 1[0,∞), 0 < t < ∞;α ∈ (0,1] is given by,

θ (t) = ηe

(
−pN
ρUah

)
tα

α . (10)

Solution: Let Θα(u) denote the Sumudu type IT of θ (t). Taking Sumudu type IT of (10) and using (2) and (11), we get,

−pNΘα(u) = ρUah

[
1

u
Θα(u)−

η

u

]

Θα(u) =
η

u

(
1
u
+ pN

ρUah

) ,

Θα(u) =
η(

1+ pNu
ρUah

) ,

Taking the inverse Sumudu type IT of the above equation and using (2), we get the required solution.

θ (t) = ηe
−( pN

ρUah
) tα

α . (11)

5 Conclusion

The solutions of DE and FDE play a crucial role in mathematical physics. The classical ITs are not reduced conformable
derivative. In the present paper, we introduced efficacious generalized Sumudu-type IT and obtained basic properties.
This new IT reduced conformable derivative omit. We found a solution to conformable heat transfer equation omit using
generalized Sumudu-type IT. This generalized Sumudu-type IT is useful to find the solutions to DEs, such as diffusion
equations and wave equations involving conformable derivative.
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