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Abstract: In this paper, we introduce the composed- inverted generalized exponential- exponential (C-IGEE) distribution. 
The point and interval estimations based on maximum likelihood are proposed. We also obtain the Bayes estimates of the 
unknown parameters under the assumption of independent gamma priors. The Bayes estimates of the unknown parameters 
cannot be obtained in a closed form. So, Markov Chain Monte Carlo (MCMC) method has been used to compute the 
approximate Bayes estimates under the squared error loss function and also construct the highest posterior density (HPD) 
intervals. Further, a simulation study has been conducted to compare the performances of Bayes estimators with 
corresponding maximum likelihood estimators. 
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1 Introduction 

In the last few years, several ways of generating new probability distributions from classic ones were developed and 
discussed. Some well-known generalized classes (or generators) are the beta generalized family of distributions introduced 
by Eugene et al. (2002), the general rank transmutation (GRT) defined by Shaw and Buckley (2007), Kumaraswamy-G 
family of distributions introduced by Cordeiro and de Castro (2011), transformed-transformer (T-X) by Alzaatreh et al. 
(2013), odd exponentiated half-logistic-G family of distributions by Afify et al. (2017) and Fattah and Ahmed (2018) 
introduced a new method for generating a wide number of classes with known characteristics in the reliability theory based 
on the star shaped property, and they refer to the new class as the composed−𝐺 𝑄 family, shortly, (𝐶 − 𝐺 𝑄) family and odd 
Lomax-G by Cordeiro et al. (2019). 

Muhammed et al. (2019) introduced a new family using the new approach that was introduced by Fattah and Ahmed 
(2018). This new family is the composed inverted generalized exponential family (C- IGEQ) and it enjoys the star-shaped 
property. They illustrated a set of important results in the theoretical reliability hold for a new family. These results make 
the family more important in applications. 

 Definition: Composed – G Q family  

  Let 𝐺 and 𝑄 be two arbitrary continuous cumulative distribution functions of non-negative absolutely continuous random 
variables, 𝐺 be strictly increasing on its support, and	𝐺(0) = 𝑄(0). Now define a cumulative distribution function (cdf), F, 
out of G and Q (called the composed- G Q family shortly (C- G Q)) as follows [see Fattah and Ahmed (2018)]: 

𝐹(𝑥) = 𝐺+𝑥. 𝑄(𝑥)-,							∀𝑥.  
 

The corresponding probability density function (pdf) is given by 
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𝑓(𝑥) = 𝑔+𝑥. 𝑄(𝑥)-. {𝑥. 𝑞(𝑥) + 𝑄(𝑥)}. 
Where 𝑔 and 𝑞 are the corresponding densities of 𝐺 and 𝑄,  respectively. 

 

 
 
   

These results are extracted from Barlow and Proschan (1981) and mentioned as below. 

Let 𝐹 and 𝐺 be continuous distributions, 𝐺 be strictly increasing on its support, and			𝐹(0) = 𝐺(0) = 0. Then, 	𝐹		is star-
shaped with respect to 𝐺 (written 	 		𝐺∗

7  ) if 𝐺89(𝐹(𝑥)) is star-shaped [that is, :9
;
< 𝐺89(𝐹(𝑥)) is increasing for  𝑥 ≥ 0 ]. 

Then: 

a. 𝐹	 		𝐺>
7 		implies 	𝐹	 		𝐺∗

7  (where 		>7  implies the convex ordering). 
b. The relationship 𝐹	 		𝐺>

7 is unaffected by a translation transformation of either 𝐹	and			𝐺, assuming the random 
variables remain non-negative. 

c. The relationship 𝐹	 		𝐺∗
7   may be destroyed by a translation transformation of either 𝐹	and			𝐺, assuming the random 

variables remain non-negative. 
d. Let		𝐺(𝑥) = 1 − 𝑒8B;, 𝐹 be a continuous distribution function, with	𝐹(0) = 0. Then 𝐹	 		𝐺>

7   is equivalent to 𝐹 
increasing failure rate (IFR). 

e. Let		𝐺(𝑥) = 1 − 𝑒8B;, 𝐹 be a continuous distribution function, with	𝐹(0) = 0. Then 𝐹	 		𝐺∗
7 	is equivalent to 𝐹 

increasing failure rate average (IFRA). 
 

The Single Crossing Property. Let		𝐹	 		𝐺∗
7 , then  

a. 𝐹C(𝑥) crosses �̅�(𝜃𝑥) by one, at most, and from above, as 𝑥 increases from 0	to ∞,  for each 𝜃 > 0. 
b. If, in addition, 𝐹		and		𝐺 have the same mean, then a single crossing does occur, and 𝐹		has smaller variance 

than		𝐺 . 
c. If we take	𝐺 to be the exponential distribution, then		𝐹	 must be IFRA by the previous results. 

 

The rest of the paper is organized as follows. In Section 2, the composed inverted generalized exponential family and the 
composed- inverted generalized exponential- exponential (C-IGEE) distribution are proposed, and there is a demonstration 
of the graphs of  the probability density function (pdf) and cumulative distribution function (cdf) of C-IGEE. In Section 3, 
the MLEs are obtained for the unknown parameters. In section 4, the Bayes estimators of the unknown parameters using 
MCMC are introduced. In Section 5, we compare the performance of MLE and Bayesian estimates based on simulation 
studies. Finally, in Section 6, we conclude the paper. 

  

2 The Composed Inverted Generalized Exponential-Exponential Distribution 

The cdf and pdf of the C- IGEQ family are given, respectively, by [Muhammed et al. (2019)] as follows 

𝐹(𝑥) = 1 − (1 − 𝑒
HI

J.K(J))L,				𝑥, 𝛼, 𝛽 > 0																																																												(1)    

                        𝑓(𝑥) = LO
(;.P(;))Q

. 𝑒8
I

J.K(J). (1 − 𝑒8
I

J.K(J))L89. {𝑥. 𝑞(𝑥) + 𝑄(𝑥)} 
     (2) 

     
     

 
 
 
 
  

 

Substituting  𝑞(𝑥) = 𝜃		𝑒8R; , and accordingly, 𝑄(𝑥) = 	1 − 𝑒8R; (where 𝑥, 𝜃 > 0) into (1) and (2), one gets the 
composed- inverted generalized exponential- exponential (C-IGEE) distribution with cdf 

  𝑓(𝑥, 𝛼, 𝛽, 𝜃) = LO

:;.+98SHTJ-<
Q . 𝑒

HI
J.:UHVHTJ<. W1 − 𝑒

HI
J.:UHVHTJ<X

L89

 

                                    	. Y𝑥. 𝜃		𝑒8R; + 1 − 𝑒8R;Z,																										𝛼, 𝛽, 𝜃, 𝑥 > 0 

 
 
    

(3) 
  

 

and its corresponding cdf is 
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𝐹(𝑥, 𝛼, 𝛽, 𝜃) = 1 − W1 − 𝑒
8O

;.+98SHTJ-X
L

 
 

(4)  

 

Figure (1) illustrates plots of the pdf and cdf of C-IGEE distribution for selected values of the parameters. 

 
 Fig. 1: Plots of pdf and cdf of C-IGEE model for some parameter values 

3 Maximum Likelihood Estimation 

In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of the C-IGEE distribution from 
complete samples only. 

 Let 𝑋9, 𝑋\, … , 𝑋^ be a random sample of size 𝑛 from C-IGEE(𝑥;𝝓),𝝓 ≡ (𝛼, 𝛽, 𝜃)	. The log likelihood function for the 
vector of parameters 𝝓 ≡ (𝛼, 𝛽, 𝜃) can be written as 

ln 𝐿 = 𝑛 ln𝛼 + 𝑛 ln𝛽 − 2.gln :𝑥h. +1 − 𝑒8R;i-<−g
𝛽

𝑥h. (1 − 𝑒8R;i)

^

hj9

^

hj9

 

          +(𝛼 − 1)∑ ln l1 − 𝑒
HI

Ji.+UHJi-m + ∑ lnY𝑥h. 𝜃		𝑒8R;i + 1 − 𝑒8R;iZ^
hj9

^
hj9 . 

 
 
    

(5) 

By taking the partial derivatives of the log-likelihood function with respect to 𝛼, 𝛽 and 𝜃, we obtain the components of the 
score vector then equate them to zero, we get 

𝜕 ln 𝐿
𝜕𝛼 =

𝑛
𝛼 +gln+𝑤(𝑥h; 𝛽, 𝜃)-

^

hj9

. 
 

 
 
 
 
  

 

 
𝜕 ln 𝐿
𝜕𝛽 =

𝑛
𝛽 −g

1
𝑢(𝑥h; 𝜃)

^

hj9

+ (𝛼 − 1)g
𝑣(𝑥h; 𝛽, 𝜃)

𝑢(𝑥h; 𝜃)𝑤(𝑥h; 𝛽, 𝜃)

^

hj9

, 

														
𝜕 ln 𝐿
𝜕𝜃 = −2g

𝑥h\𝑒8R;i
𝑢(𝑥h; 𝜃)

+g
𝛽𝑒8R;i
𝑑\(𝑥h; 𝜃)

^

hj9

− (𝛼 − 1)
^

hj9

g𝛽𝑒8R;i𝜓(𝑥h; 𝛽, 𝜃)
^

hj9

+g
2𝑥h𝑒8R;i − 𝜃𝑥h\𝑒8R;i

𝑐(𝑥h; 𝜃)

^

hj9

. 
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The MLEs can be determined numerically from the solution of nonlinear system of equations; subsequently, these solutions 
will yield the MLE estimators 𝛼u, 𝛽v  and	𝜃w .  

To construct asymptotic confidence interval, we need to obtain the observed Fisher information. Therefore, the Fisher 
information matrix is given by 

𝐹x = −

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜕

\ ln 𝐿
𝜕𝛼\

𝜕\ ln 𝐿
𝜕𝛼𝜕𝛽

𝜕\ ln 𝐿
𝜕𝛼𝜕𝜃

𝜕\ ln 𝐿
𝜕𝛼𝜕𝛽

𝜕\ ln 𝐿
𝜕𝛽\

𝜕\ ln 𝐿
𝜕𝛽𝜕𝜃

𝜕\ ln 𝐿
𝜕𝛼𝜕𝜃

𝜕\ ln 𝐿
𝜕𝛽𝜕𝜃

𝜕\ ln 𝐿
𝜕𝜃\ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝝓j𝝓w

, 

 
 
  

(6) 

                  

 

where 

𝜕\ ln 𝐿
𝜕𝛼\ =

−𝑛
𝛼\ , 

 

𝜕\ ln 𝐿
𝜕𝛽\ =

−𝑛
𝛽\ −

(𝛼 − 1)g
𝑣(𝑥h; 𝛽, 𝜃)

𝑢\(𝑥h; 𝜃)𝑤(𝑥h; 𝛽, 𝜃)
�1 +

𝑣(𝑥h; 𝛽, 𝜃)
𝑤(𝑥h; 𝛽, 𝜃)

�
^

hj9

, 

 

𝜕\ ln 𝐿
𝜕𝜃\ = 2g

𝑥h\𝑒8R;i
𝑑(𝑥h; 𝜃)

^

hj9

�1 +
𝑒8R;i
𝑑(𝑥h; 𝜃)

� −
𝛽𝑥h𝑒8R;i
𝑑\(𝑥h; 𝜃)

g�1 +
2𝑒8R;i
𝑑(𝑥h; 𝜃)

�
^

hj9

 

−(𝛼 − 1)g𝛽𝜓(𝑥h; 𝛽, 𝜃) �−𝑥h +
𝛽𝑥h

𝑑\(𝑥h; 𝜃)
−

2𝑥h𝑒8R;i	
𝑑(𝑥h; 𝜃)𝑤(𝑥h; 𝛽, 𝜃)

+ 𝛽	𝜓(𝑥h; 𝛽, 𝜃)�
^

hj9

+g�
𝜃𝑥h�𝑒8R; − 3𝑥h\𝑒8R; − 𝑥h\𝑒8\R;i

𝑐\(𝑥h; 𝜃)
� ,

^

hj9

 

𝜕\ ln 𝐿
𝜕𝛽𝜕𝛼 =g

𝑣(𝑥h; 𝛽, 𝜃)
𝑢(𝑥h; 𝜃)	𝑤(𝑥h; 𝛽, 𝜃)

^

hj9

, 

 

�Q �� �
�R�L

= ∑ −𝛽	𝜓(𝑥h; 𝛽, 𝜃),^
hj9            and 

 
𝜕\ ln 𝐿
𝜕𝜃𝜕𝛽 =g

𝑒8R;i	
𝑑\(𝑥h; 𝜃)

									 .
^

hj9

 

−(𝛼 − 1).g	𝜓(𝑥h; 𝛽, 𝜃) �
−𝛽	

𝑥h	𝑑(𝑥h; 𝜃)
−

𝛽	𝑣(𝑥h; 𝛽, 𝜃)
𝑥h	𝑑(𝑥h; 𝜃)𝑤(𝑥h; 𝛽, 𝜃)

+ 1�
^

hj9

 

Obtaining the inverse of the matrix 𝐹x,  which we dented by 𝑉x  , provides the asymptotic variance co-variances matrix 
for	𝝓 ≡ (𝛼, 𝛽, 𝜃). Assume that the regularity condition is satisfied using (6) to get the 100(1 − 𝛾)% confidence intervals 
for the parameters 𝛽, 𝛼 and 𝜃.  

Where               𝑑(𝑥h; 𝜃) = +1 − 𝑒8R;i-,			𝑢(𝑥h; 𝜃) = 𝑥h	𝑑(𝑥h; 𝜃),						𝑣(𝑥h; 𝛽, 𝜃) = 𝑒
HI

�+Ji;T-				 

																													𝑤(𝑥h; 𝛽, 𝜃) = 1 − 𝑣(𝑥h; 𝛽, 𝜃)		,  𝑐(𝑥h; 𝜃) = 𝑥h. 𝜃		𝑒8R;i + 𝑑(𝑥h; 𝜃)	and 	

																																𝜓(𝑥h; 𝛽, 𝜃) =
𝑒8R;i	𝑣(𝑥h; 𝛽, 𝜃)

𝑑\(𝑥h; 𝜃)	𝑤(𝑥h; 𝛽, 𝜃)
. 
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𝛼u ± 𝑍�
\
�𝑉x99			,										𝛽v ± 𝑍�

\
�𝑉x\\						,				𝜃x ± 𝑍�

\
�𝑉x��				,				 

where 𝑍�
Q
 is the upper 𝛾�� percentile of the standard normal distribution. 

4 Bayesian Estimation  
 

In this section, the MCMC algorithm for computing the Bayes estimates of parameters 𝛼, 𝛽 and	𝜃	is used. MCMC is one of 
the best techniques for obtaining the Bayes estimates, For more details about the MCMC methods, see, e.g., Smith and 
Gelfand (1990), Robert and Casella (2005) and Upadhyaya and Gupta (2010). The Metropolis-Hastings algorithm (MH), to 
generate samples from the conditional posterior distributions, is used and then we compute the Bayes estimates.  Assume 
that 𝛼, 𝛽 and	𝜃 are independent and have prior distributions 𝜋9, 𝜋\ and 𝜋� , respectively. Prior for each 𝛼, 𝛽 and	𝜃 is 
assumed to follow a gamma distribution as in (Lee et al., 2017): 
 

𝜋9(𝛼) =
𝑚9

�U𝛼�U89𝑒8�UL

𝛤(𝑏9)
			𝛼 > 0,𝑚9, 𝑏9 > 0, 

𝜋\(𝛽) =
𝑚\

�Q𝛽�Q89𝑒8�QO

𝛤(𝑏\)
		𝛽 > 0,𝑚\, 𝑏\ > 0 

and 

𝜋�(𝜃) =
𝑚�

��𝜃��89𝑒8��R

𝛤(𝑏�)
		𝜃 > 0,𝑚�, 𝑏� > 0. 

Here, hyper-parameters 𝑚9, 𝑏9,𝑚\, 𝑏\,𝑚� and 𝑏� are chosen to reflect the prior knowledge about the unknown parameters.  

Suppose that we have n number of samples available from C-IGEE distribution, and the maximum likelihood estimates of 
(𝛼, 𝛽, 𝜃) are		(𝛼u�, 𝛽v�, 𝜃x�), j=1, 2, …, n. Then equating the mean and variance of	(𝛼u�, 𝛽v�, 𝜃x�) with the mean and variance of 
the suggested priors (gamma priors), we can get  [see Dey et al. (2016)]: 

												
1
	𝑛g𝛼u�

^

�j9

=
𝑏9
𝑚9

								,						
1

𝑛 − 1g�𝛼u� −
1
𝑛g𝛼u�

^

�j9

�

\

=
𝑏9
𝑚9

\

^

�j9

	,																								(7) 

												
1
𝑛g𝛽v�

^

�j9

=
𝑏\
𝑚\

								,						
1

𝑛 − 1g�𝛽v� −
1
𝑛g𝛽v�

^

�j9

�

\

=
𝑏\
𝑚\

\

^

�j9

		𝑎𝑛𝑑																(8) 

													
1
𝑛g𝜃x�

^

�j9

=
𝑏�
𝑚�

								,						
1

𝑛 − 1g�𝜃x� −
1
𝑛g𝜃x�

^

�j9

�

\

=
𝑏�
𝑚�

\

^

�j9

.																										(9) 

 

 

 

 

Solving equations (7), (8) and (9), we get the estimated hyper-parameters as follows: 

 

𝑏9 =
:1𝑛∑ 𝛼u�^

�j9 <
\

1
𝑛 − 1∑ :𝛼u� − 1𝑛∑ 𝛼u�^

�j9 <
\

^
�j9

								 , 			𝑚9 =
1
𝑛∑ 𝛼u�^

�j9

1
𝑛 − 1∑ :𝛼u� − 1𝑛∑ 𝛼u�^

�j9 <
\

^
�j9

, 
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𝑏\ =
:1𝑛∑ 𝛽v�^

�j9 <
\

1
𝑛 − 1∑ :𝛽v� − 1𝑛∑ 𝛽v�^

�j9 <
\

^
�j9

								 , 			𝑚\ =
1
𝑛∑ 𝛽v�^

�j9

1
𝑛 − 1∑ :𝛽v� − 1𝑛∑ 𝛽v�^

�j9 <
\

^
�j9

 

and 

𝑏� =
:1𝑛∑ 𝜃x�^

�j9 <
\

1
𝑛 − 1∑ :𝜃x� − 1𝑛∑ 𝜃x�^

�j9 <
\

^
�j9

								&				𝑚� =
1
𝑛∑ 𝜃x�^

�j9

1
𝑛 − 1∑ :𝜃x� − 1𝑛∑ 𝜃x�^

�j9 <
\

^
�j9

. 

 

Therefore, the joint prior distribution of 𝛼, 𝛽 and	𝜃 can be written as 

           𝜋(𝛼, 𝛽, 𝜃) = �U
¡UL¡UHUSH¢U£

¤(�U)
�Q

¡QO¡QHUSH¢QI

¤(�Q)
	��

¡�R¡�HUSH¢�T

¤(��)
				 

                                                                             𝛼, 𝛽, 𝜃 > 0,𝑚h, 𝑏h > 0,                                               (10) 

where 𝑖 = 1, 2, 3. 
 

The joint posterior density function of 𝛼, 𝛽 and	𝜃 can be written as 
 

𝜋(𝛼, 𝛽, 𝜃|𝑥) = 𝑘 �U
¡UL¨©¡UHUSH¢U£

¤(�U)
�Q

¡QO¨©¡QHUSH¢QI

¤(�Q)
	��

¡�R¡�HUSH¢�T

¤(��)
                 		 

																				ª�1 − 𝑒
8O

;i:98SHTJi<�

L89

ªY𝑥h. 𝜃		𝑒8R;i + 1 − 𝑒8R;iZ
^

hj9

^

hj9

							 

                             	∏ :𝑥h+1 − 𝑒8R;i-<
8\

^
hj9 . 𝑒

∑ HI

Ji:UHV
HTJi<

¨
i¬U

,								                             (11)  

where 𝑘		is the normalizing constant which is given as 

𝑘89 = ­ ­ ­ 			
®

¯

®

¯

®

¯

𝑘
𝑚9

�U𝛼^°�U89𝑒8�UL

𝛤(𝑏9)
𝑚\

�Q𝛽^°�Q89𝑒8�QO

𝛤(𝑏\)
	
𝑚�

��𝜃��89𝑒8��R

𝛤(𝑏�)
			 

																									.ª�1 − 𝑒
8O

;i:98SHTJi<�

L89

ªY𝑥h. 𝜃		𝑒8R;i + 1 − 𝑒8R;iZ
^

hj9

^

hj9

	𝑑𝛼	𝑑𝛽	𝑑𝜃 

.ª:𝑥h+1 − 𝑒8R;i-<
8\

^

hj9

. 𝑒
∑ 8O

;i:98SHTJi<
¨
i¬U

		. 

Therefore, the Bayes estimate of any function of 𝛼, 𝛽 and 𝜃, say 𝑔(𝛼, 𝛽, 𝜃),	under the squared error loss function, is given 
by 
 

𝑔±(𝛼, 𝛽, 𝜃) = 𝐸L,O,R|;+𝑔(𝛼, 𝛽, 𝜃)- = ­ ­ ­ 𝑔(𝛼, 𝛽, 𝜃)
®

¯

®

¯

®

¯

𝜋(𝛼, 𝛽, 𝜃|𝑥)𝑑𝛼𝑑𝛽𝑑𝜃. 

It is clear from the equation (11) that there is no closed form for the estimators, and, hence, MCMC procedure is suggested 
to compute the Bayes estimates. We consider the Metropolis-Hastings algorithm with a normal proposal distribution to 
generate samples from the conditional posterior distributions. The following is the used code to generate the required by 
samples M H algorithm: 

(1): Set initial value of 𝝓 as	𝝓 = 𝝓(¯)  , and set	𝑖 = 1, where	𝝓 = (𝛼, 𝛽, 𝜃). 

(2): Set	𝝓 = 𝝓(h89).  
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(3): Generate a proposal,		𝝓∗, following a multivariate normal, 	𝑁(𝝓, 𝑆𝝓), where 𝑆𝝓 is the Standard deviation (we suggest 
𝑆µ= (0.001,0.003,0.002). 

(4): Calculate the acceptance probability, 𝜏 = min ¹1, º+𝝓
∗»𝑥-

º+	𝝓»𝑥-¼. 

(5) Generate 𝑈~𝑈(0,1). 

(6) If ≤ 𝜏 , set 𝝓(h) = 	𝝓∗, otherwise, set 𝝓(h) = 𝝓(h89). 

(7) Set 𝑖 = 𝑖 + 1. 

(8) Repeat steps 2 to 7 by N times and obtain 𝝓(�), 𝑗 = 1,2, … ,𝑁. 

After getting MCMC samples from the posterior distribution, we can find the Bayes estimate for the parameters in the 
following way: 
   

𝛼± =
1

𝑁 − 𝐵 g 𝛼(h)
Â

hjÃ°9

, 

𝛽Ä =
1

𝑁 − 𝐵 g 𝛽(h)
Â

hjÃ°9

	𝑎𝑛𝑑 

𝜃Ä =
1

𝑁 − 𝐵 g 𝜃(h)
Â

hjÃ°9

, 

where 𝐵 is the number of burn-in samples. Then we calculate the highest posterior density (HPD) intervals for the 
unknown parameters of the C-IGEE distribution using the method of Chen and Shao (1999).  

One can also refer to Kundu and Pradhan (2009) and Dey and Dey (2014) for a review on this method. We will use the 
samples drawn using the proposed MH algorithm to construct the interval estimates. Let us assume that 𝜫(𝝓|𝑋) denotes 
the posterior distribution function of	𝝓. Let us further suppose that 𝝓(Æ) is the pth quantile of	𝝓, that is,	𝝓(Æ) =
𝑖𝑛𝑓{𝜆:𝜫(𝝓|𝑋) ≥ 𝑝}, where 0 < 𝑝 < 1. Notice that for a given	𝝓∗, a simulation consistent estimator of 𝜫(𝝓∗|𝑋) can be 
estimated as 

𝜫(𝝓∗|𝑋) =
1

𝑁 − 𝐵 g 𝐼𝝓Ì𝝓∗.
Â

hjÃ°9

 

Here,	𝐼𝝓Ì𝝓∗ is the indicator function. Then the corresponding estimate is obtained as 
 

𝜫w(𝝓∗|𝑋) =

⎩
⎪
⎨

⎪
⎧
0																					𝑖𝑓	𝝓∗ < 𝝓(Ã)																				

g𝑤�

h

�jÃ

											𝑖𝑓	𝝓(h) < 𝝓∗ < 𝝓(h°9)			

1																					𝑖𝑓	𝝓∗ > 𝝓(Â),																					

 

where 𝑤� =
9

Â8Ã
	 and 	𝝓(�) are the ordered values of 𝝓�.  

 

 

 

Now, 𝑖 = 𝐵,… ,𝑁, 𝜙(Æ)	can be approximated by 

𝜙x(Æ) =

⎩
⎨

⎧
𝜙(Ã)																								hÒ	Æj¯																																																																			

𝜙(h)																𝑖𝑓	g𝑤�
h89

�jÃ

< 𝑝 <g𝑤�
h

�jÃ

.												  
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Now, to obtain a 100(1 − 𝑝)% HPD credible interval for	𝜙, let 𝑅� = ¹𝜙x:
Ô
Õ<, 𝜙x:

Ô©(UHÖ)Õ
Õ <¼ for	𝑗 = 𝐵,… , [𝑝𝑁], here [a] 

denotes the largest integer less than or equal to a. Then choose 𝑅�∗ among all the 𝑅Ù�s such that it has the smallest width. 

5  Simulation Study 

In this section, we compare the performances of MLEs and Bayesian estimates using the MCMC method. Sample of size 
	{n = 15, 25,35,45, 75,100} are used to generate observations from a C-IGEE distribution with different values of initial. 
We assume that the number of repetition is 1000, then we calculate their means, means square errors (MSE) and associated 
95% confidence interval (CI) estimates of MLEs of each parameter. For Bayesian estimations, the MCMC method will be 
used according to MH Algorithm.  

The number of iteration for this algorithm is N = 10000 with burn-in period B = 2000. Each prior for 𝛼, 𝛽 and	𝜃 is assumed 
to be gamma distribution with hyper parameters (𝑏9 = 12,𝑚9 = 5.8, 𝑏\ = 14, 	𝑚\ = 5.6, 𝑏� = 1.5, 	𝑚� = 0.41).Then the  
Bayes estimates and HPD interval estimates are obtained using the technique of Chen and Shao (1999). The performances 
of the estimators for both methods using MSE and average interval lengths (AIL) with coverage percentages (CP) are 
reported in Tables (1-6). From Tables (1-6), we notice that; 

§ The MSE of all estimators decreases when the sample size n increases. 
§ The MSE of the Bayes estimators are smaller than their corresponding MSE of MLEs. 

§ The 95% Bayes intervals are much narrower than the asymptotic confidence intervals of MLEs. 

Table 1: Estimate Values and MSEs (With	𝛼 = 2, 𝛽 = 2.5, 𝜃 = 1.5	). 

N Parameters MLE Bayesian 

AE Bias MSE AE Bias MSE 

15 α 2.651 0.651 3.236 1.9999 -0.001 0.00199 

β 2.658 0.158 2.843 2.494 -0.006 0.0177 

θ 2.27 0.77 5.21 1.50042 0.00042 0.00847 

25 α 2.405  0.405 1.627 1.99975 -0.00025 0.00197 

β 2.649 0.149 1.079 2.4967 -0.0033 0.0167 

θ 2.23 0.73 4.96 1.495 -0.005 0.0082 

35 α 2.256 0.256 0.87 2.0061 0.0061 0.00194 

β 2.572 0.072 0.862 2.4965 -0.0035 0.0161 

θ 2.146 0.646 4.737 1.50117 0.00117 0.00789 

45 α 2.168 0.168 0.682 1.99617 -0.00383 0.00191 

β 2.489 -0.011 0.830 2.4955 -0.0045 0.0166 

θ 2.018 0.518 3.755 1.49883 -0.00117 0.00779 

75 

α 2.067 0.067 0.379 2.00049 0.00049 0.00189 

β 2.442 -0.058 0.619 2.498 -0.002 0.015 

θ 1.891 0.391 3.420 1.49542 -0.00458 0.00734 

100 

α 2.051 0.051 0.274 2.00002 0.00002 0.00183 

β 2.445 -0.055 0.512 2.501 0.001 0.016 

θ 1.1817 -0.318 2.698 1.4987 -0.0013 0.0078 
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Table 2:  CI, HPD interval, AILs and CPs (With Initial	𝛼 = 2, 𝛽 = 2.5, 𝜃 = 1.5	). 

N Parameters MLE Bayesian 

AE Bias MSE AE Bias MSE 

15 α 2.651 0.651 3.236 1.9999 -0.001 0.00199 

β 2.658 0.158 2.843 2.494 -0.006 0.0177 

θ 2.27 0.77 5.21 1.50042 0.00042 0.00847 

25 α 2.405  0.405 1.627 1.99975 -0.00025 0.00197 

β 2.649 0.149 1.079 2.4967 -0.0033 0.0167 

θ 2.23 0.73 4.96 1.495 -0.005 0.0082 

35 α 2.256 0.256 0.87 2.0061 0.0061 0.00194 

β 2.572 0.072 0.862 2.4965 -0.0035 0.0161 

θ 2.146 0.646 4.737 1.50117 0.00117 0.00789 

45 α 2.168 0.168 0.682 1.99617 -0.00383 0.00191 

β 2.489 -0.011 0.830 2.4955 -0.0045 0.0166 

θ 2.018 0.518 3.755 1.49883 -0.00117 0.00779 

75 

α 2.067 0.067 0.379 2.00049 0.00049 0.00189 

β 2.442 -0.058 0.619 2.498 -0.002 0.015 

θ 1.891 0.391 3.420 1.49542 -0.00458 0.00734 

100 

α 2.051 0.051 0.274 2.00002 0.00002 0.00183 

β 2.445 -0.055 0.512 2.501 0.001 0.016 

θ 1.1817 -0.318 2.698 1.4987 -0.0013 0.0078 

 

Table 3: Estimate Values and MSEs (With	𝛼 = 2, 𝛽 = 2, 𝜃 = 2). 

N Parameters MLE Bayesian 

AE Bias MSE AE Bias MSE 

15 α 2.651 0.651 3.236 1.9999 -0.001 0.00199 

β 2.658 0.158 2.843 2.494 -0.006 0.0177 

θ 2.27 0.77 5.21 1.50042 0.00042 0.00847 

25 α 2.405  0.405 1.627 1.99975 -0.00025 0.00197 

β 2.649 0.149 1.079 2.4967 -0.0033 0.0167 

θ 2.23 0.73 4.96 1.495 -0.005 0.0082 

35 α 2.256 0.256 0.87 2.0061 0.0061 0.00194 

β 2.572 0.072 0.862 2.4965 -0.0035 0.0161 

θ 2.146 0.646 4.737 1.50117 0.00117 0.00789 

45 α 2.168 0.168 0.682 1.99617 -0.00383 0.00191 

β 2.489 -0.011 0.830 2.4955 -0.0045 0.0166 
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θ 2.018 0.518 3.755 1.49883 -0.00117 0.00779 

75 

α 2.067 0.067 0.379 2.00049 0.00049 0.00189 

β 2.442 -0.058 0.619 2.498 -0.002 0.015 

θ 1.891 0.391 3.420 1.49542 -0.00458 0.00734 

100 

α 2.051 0.051 0.274 2.00002 0.00002 0.00183 

β 2.445 -0.055 0.512 2.501 0.001 0.016 

θ 1.1817 -0.318 2.698 1.4987 -0.0013 0.0078 

 

Table 4:  CI, HPD interval, AILs and CPs (With Initial	𝛼 = 2, 𝛽 = 2, 𝜃 = 2). 

N Parameters MLE Bayesian 

AE Bias MSE AE Bias MSE 

15 α 2.651 0.651 3.236 1.9999 -0.001 0.00199 

β 2.658 0.158 2.843 2.494 -0.006 0.0177 

θ 2.27 0.77 5.21 1.50042 0.00042 0.00847 

25 α 2.405  0.405 1.627 1.99975 -0.00025 0.00197 

β 2.649 0.149 1.079 2.4967 -0.0033 0.0167 

θ 2.23 0.73 4.96 1.495 -0.005 0.0082 

35 α 2.256 0.256 0.87 2.0061 0.0061 0.00194 

β 2.572 0.072 0.862 2.4965 -0.0035 0.0161 

θ 2.146 0.646 4.737 1.50117 0.00117 0.00789 

45 α 2.168 0.168 0.682 1.99617 -0.00383 0.00191 

β 2.489 -0.011 0.830 2.4955 -0.0045 0.0166 

θ 2.018 0.518 3.755 1.49883 -0.00117 0.00779 

75 

α 2.067 0.067 0.379 2.00049 0.00049 0.00189 

β 2.442 -0.058 0.619 2.498 -0.002 0.015 

θ 1.891 0.391 3.420 1.49542 -0.00458 0.00734 

100 

α 2.051 0.051 0.274 2.00002 0.00002 0.00183 

β 2.445 -0.055 0.512 2.501 0.001 0.016 

θ 1.1817 -0.318 2.698 1.4987 -0.0013 0.0078 
 

 

Table 5:  Estimate Values and MSEs (With	𝛼 = 5, 𝛽 = 20, 𝜃 = 5). 

N Parameters MLE Bayesian 

AE Bias MSE AE Bias MSE 

15 α 6.77 1.77 34.24 4.9976 -0.002 0.00199 

β 20.5 0.5 49.7 19.9513 -0.049 0.0209 
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θ 3.7665 -1.2335 17.2991 4.99828 -0.002 0.00784 

25 α 5.78 0.78 8.02 4.99673 -0.003 0.00202 

β 20.3 0.3 19 19.9569 -0.043 0.0207 

θ 3.928 -1.072 13.702 4.99889 -0.001 0.00876 

35 α 5.48 0.48 4.2 4.99653 -0.003 0.00196 

β 20.1 0.1 14.6 19.9559 -0.044 0.0188 

θ 3.841 -1.159 9.951 4.99858 -0.001 0.00816 

45 α 5.29 0.29 2.6 4.99615 -0.004 0.00186 

β 19.95 -0.05 9.65 19.95 -0.050 0.02 

θ 4.01 -0.99 8.489 5.00318 0.003 0.00765 

75 

α 5.22 0.22 1.63 4.99697 -0.003 0.00184 

β 20.11 0.11 6.24 19.9586 -0.041 0.0189 

θ 4.069 -0.931 7.402 4.99778 -0.002 0.00714 

100 

α 5.11 0.11 1.01 5.00162 0.002 0.00109 

β 20.03 0.03 4.11 20.0047 0.005 0.00873 

θ 4.018 -0.982 6.449 5.00139 0.001 0.00392 

 

Table 6:  CI, HPD interval, AILs and CPs (With Initial	𝛼 = 5	, 𝛽 = 20	, 𝜃 = 5). 

 

N Parameters MLE Bayesian 

CI AIL CP HPD interval AIL CP 

15 α (2.48, 20.05) 17.58 97.5 (4.91104, 5.0809) 0.1698 97.6 

β (9.1, 34.8) 25.7 97.5 (19.6762, 20.2037) 0.5274 97.2 

θ (0.0894, 11.5434) 11.454 97.5 (4.83344, 5.1825) 0.3491 98 

25 α (2.69, 12.35) 9.66 97.5 (4.9118, 5.0843) 0.1725 97.4 

β (11.9, 28.9) 16.9 97.5 (19.696, 20.2198) 0.5237 97.8 

θ (0.155, 10.34) 10.184 97.5 (4.81361, 5.17324) 0.3596 97.3 

35 α (2.85, 10.49) 7.63 97.5 (4.9014, 5.08229) 0.1809 97.2 

β (12.1, 27.9) 15.7 97.5 (19.7108, 20.21) 0.4992 97.6 

θ (0.183,9.674) 9.490 97.5 (4.81974,5.17147) 0.3517 97.7 

45 α (3.03, 9.07) 6.04 97.5 (4.91536,5.07816) 0.1628 98 

β (14.1, 25.98) 11.88 97.5 (19.708, 20.223) 0.515 98.1 

θ (0.244,9.461) 9.217 97.5 (4.83204, 5.17255) 0.3405 97.3 

75 α (3.36, 8.41) 5.05 97.5 (4.91814, 5.07905) 0.1609 98.1 

β (15.36, 25.46) 10.1 97.5 (19.6825, 20.2057) 0.5233 97.5 

θ (0.318, 8.593) 8.275 97.5 (4.82826, 5.1593) 0.331 97.4 
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6. Conclusions 

In this paper, we proposed the Bayes estimation of the unknown parameters of C-IGEE distribution. The proposed 
estimators are compared with maximum likelihood estimators using Monte Carlo simulations. Under the assumptions of 
independent gamma priors of all parameters, the Bayes estimates are obtained using MCMC under squared error loss 
function. The methods are compared by computing the MSE and AIL. From Tables (1-6), it can be noticed that the Bayes 
estimates are better than the MLE estimates. 
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α (3.55, 7.51) 3.96 97.5 (4.94.94, 5.06984) 0.1289 97.9 

β (16.41, 24.19) 7.79 97.5 (19.8051, 20.1784) 0.3734 96.2 

θ (0.357, 7.858) 7.501 97.5 (4.87494, 5.11756) 0.2426 97.3 


