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Abstract: In this paper, we describe how to design and analyze the accelerated life testing (ALTg) plans for the improvement of the

quality and the reliability of the product. We also focus on finding the expected cost rate and the expected total cost for age-replacement

under warranty policy. The problem is studied using constant stress, under the assumption that the lifetimes of the units follow Burr

Type-X distribution for predicting the cost of age replacement under warranty policy. Asymptotic variance and covariance matrix of

the estimators are obtained by using the Fisher Information Matrix. Confidence intervals for parameters and respective errors are also

obtained. A simulation study is performed to illustrate the statistical properties of the parameters and confidence bound. In the last,

numerical examples are also carried out to illustrate the theoretical results.

Keywords: Accelerated Life Testing, Type-II Censoring, Age-Replacement Policy, Burr Type-X distribution, Expected Cost Rate,

Expected Total Cost, a Simulation study.

1 Introduction

Accelerated life test (ALT) is the most commonly used method of finding the reliability of the products/items. This
method is used for the prediction of products/items reliabilities at normal operating conditions and using data obtained
at accelerated conditions. In accelerated life testing, the product/item is put at higher stress to quickly get information
about the life distribution of the material, component, or product. This testing involves the acceleration of failures with
the only purpose of quantifying the life characteristics of the product/item at normal use conditions. There are two types
of accelerated life testing; (i) Qualitative accelerated life testing and (ii) Quantitative accelerated life testing. Qualitative
accelerated life testing is used to identify the failures and failures modes. Qualitative testing is used without attempting to
make any predictions about the item’s life with normal use conditions. While quantitative accelerated life testing uses to
predict the life of any item at normal use conditions.

Now, we present brief literature on accelerated life testing [ALTg] and Warranty models that are related to our study
in this paper. Eman A. [1] described accelerated life testing and age-replacement policy under warranty with the
Exponentiated Pareto distribution. Eman A. [2] also described maintenance service policy using step stress partially
accelerated life testing for the extension of the Exponential distribution using Type-II censored samples. Xiujie et al. [3]
provided a framework to predict the warranty cost and risk under one-dimensional. In the present time, the
two-dimensional [4–6] and extended warranty [7, 8] have taken an important place in warranty policy analysis. However,
it is very tough and challenging to design warranty policies and predict warranty cost for new products that have not been
in the market, because the failure rate of such types of products is not available. A literature review is presented by
Murthy and Djamaludin [9] on new product warranty by considering marketing, logistics, etc. and a joint optimization
model that involved reliability, warranty, and price for new products, is presented by Huang et al. [10]. Xie, and Ye. [11]
proposed an aggregate discounted warranty cost forecast under the new item.

Accelerated life tests could be conducted to adumbrate the reliability of new products. In an ALT, the ecology stresses
animated to advance the occurrences of failures. By celebratory abortion times (either exact or censored) from an ALT,
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the accelerated life (AL) model ambit estimated and analysis planners can use these estimators to accomplish statistical
inferences of the lifetime administration of analysis products, which helps to adumbrate the number of warranty claims.
In Yang [12], optimal 3-level accommodation ALT affairs were discussed to minimize the asymptotic about-face of best
likelihood appraisal of the assurance cost. For an overview of accelerated believability tests, one can refer to as Meeker
and Escobar [13]. Orlando et al. [14] presented a case study for the household’s gadgets; he proposed accelerated life tests
for new product qualification. Guangbin Yan [10] proposed a technique for item population for predicting the warranty
cost and its confidence interval. It will experience varying stress levels using the accelerated life tests conducted in the
early stages of the item life cycle.

The main purpose of this paper is finding the expected total cost and expected cost rate under warranty policy for age
replacement. We assume that constant stress is independently distributed, and lifetimes are also independently distributed.
This problem is studied when the constant stress of the components is independent identicaly distributed. Maximum
Likelihood Estimator (MLE) obtained for the Burr Type-X failure model. While, also, estimating the expected total cost
and expected cost rate for age replacement under the pro-rate rebate warranty policy.

The rest of the paper is organized as follows. In section 2, the ALT plan on Burr Type-X distribution is presented.
In section 3, the MLE and Fisher Information matrix is derived. Simulations results are presented in section 4. The age-
replacement warranty under pro-rate rebate warranty policy is presented in section 5. At last, conclusions are made in
section 6.

2 Model description and test procedure

ALT is usually conducted by one of the two approaches, (a) accelerated failure time, which means ALT is conducted for
the item or component by experiencing at normal conditions but more intensively than normal. This is good for items or
components that are used on a continuous time basis. (b) Accelerated stress means ALT is conducted by using item or
component at higher stress than normal. For designing of ALT plans, the following are needed to determine

(i) The stress application testing method.
(ii) The stress levels for each stress type selected.
(iii) The stress type to be used in the testing.
(iv) Relationship between life and stress (life-stress relationship) described by the mathematical model.
(v) At last, the proportion of test units to be allocated to each level of stress.

Several authors dealt with constant stress, such as Abdel-Ghaly [15], presented a study on Pareto distribution and
estimate reliability function and parameters of the distribution with the use of accelerated life testing. Attia et al. [16]
presented a study on Accelerated life testing for Birnbaum-saunders distribution using censored data with constant
stress. Attia et al. [17] also presented a study on Accelerated life testing for Generalized Logistic distribution using
Type-I censored data with constant stress. In the following section:

(i) Stress V j has k-levels.
(ii) Assuming that is normal use condition and satisfying Vu <V1 <V2 . . .Vk.
(iii) There are n j units puts on testing at each stress level.
(iv) The experiment ended when r j units reached among these n j units.
(v) This current study is dealt with Type-II censoring (item censoring) and constant stress with the assumption that the
lifetime of the units follows the Burr Type-X failure model.
The Burr Type-X distribution is proposed by Burr [18] in 1942. He proposed twelve different forms of cumulative
distribution functions for modeling data. But in these distribution functions, Burr Type- X and Burr Type-XII received
the most important attention.
Here, we consider the two-parameter Burr Type-X distribution. The two-parameter Burr Type-X distribution has the
following probability density function (pdf)

f (ti j ,θ ,λ ) = 2θλ ti je
−λ t2

i j

[

1− e
−λ t2

i j

]θ−1

ti j,θ ,λ > 0 (1)

where θ , λ are shape and scale parameters, respectively.
The cumulative distribution function (cdf) of two-parameter Burr Type-X is given as

F(ti j,θ ,λ ) =
[

1− e
−λ t2

i j

]θ

ti j,θ ,λ > 0 (2)
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The reliability function of Burr Type-X distribution is given as

S(ti j,θ ,λ ) = 1−
[

1− e
−λ t2

i j

]θ

(3)

The failure rate or hazard rate of Burr Type-X distribution is given as

H(ti j,θ ,λ ) =
2θλ ti je

−λ t2
i j

[

1− e
−λ t2

i j

]θ−1

1−
[

1− e
−λ t2

i j

]θ
(4)

The hazard rate of a Burr Type-X distribution can be either bathtub type or an increasing function, depending on the
shape parameter θ .

For θ ≤ 1/2, the hazard rate is bathtub type, and for θ > 1/2, it has an increasing hazard function. The two-parameter
Burr Type-X distribution can be used quite effectively in general lifetime data and also modeling strength data.

The two-parameter Burr Type-X distribution has several types of distributions like Rayleigh distribution when shape
parameter, θ = 1 and Burr Type-X distribution when one parameter, and when the value of scale parameter, λ = 1.

Some authors have studied Burr-Type X distribution with one parameter, for example, Ahmad Sartawi and
Abu-Salih [19, 20], Jaheen [21], Ahmad et al. [22], Raqab [23] and Surles and Padgett [24].

(vi) The stress only affects the shape parameter of the Burr Type-X model, θ through a certain acceleration function
considered to be power rule model and takes the following form

θ j =CV
−p
j C > 0, p > 0, j = 1,2, . . . ,k (5)

Where C is proportionality constant and p is the power of the applied stress. Both are the parameters of the model.

3 Estimation procedure

Many methods are available for the estimation of parameters, but we use the maximum likelihood (ML) estimation
method. We use this method because it is very powerful and gives estimates of parameters with very good statistical
properties. However, the ML estimation method is very easy for distributions that have one parameter, but its application
in ALT is mathematically more powerful, and mainly, estimates of parameters do not exist in closed form. So, numerical
methods like the Newton-Raphson method and many other computer programs are used to find them.

There are n j units put on the test at each stress level V j. So, the total number of units in the test is N = ∑
k
i=1 n j. If

Type-II censoring is used at each stress level, the test ends once the number of failures r j from the total number of units
n j is reached. So the likelihood function under Type-II censoring takes the following form

L(θ ,C, p) =
k

∏
j=1

n j

(n j − r j)!

[

r j

∏
i=1

f (ti j ,θ ,C, p)

]

[

1−F(tr j j)
]n j−r j (6)

The logarithm of the likelihood function is given as

lnL = K +
k

∑
j=1

r j(lnθ + lnC)− p
k

∑
j=1

r jlnV j −

k

∑
j=1

r j

∑
i=1

CV
−p
j t2

i j +(θ − 1)
k

∑
j=1

r j

∑
i=1

ln
(

1− e
−CV

−p
j t2

i j

)

+
k

∑
j=1

(n j − r j)

[

1− (1− e
−CV

−p
j t2

r j j )θ

]

(7)

Where K is constant and lnL = lnL(θ ,C, p). The Maximum likelihood estimators (MLEs) of parameters θ , C and p

are obtained by getting the partial derivatives of equation (7) with respect to θ , C and p respectively and equating to zero.
The first derivatives of the likelihood function are

∂ lnL

∂θ
=

k

∑
j=1

ri

θ
+

k

∑
j=1

r j

∑
i=1

(

1− e
−CV

−p
j t2

i j

)

+
k

∑
j=1

θ (n j − r j)(1− e
−CV

−p
j t2

r j j )θ−1

1− (1− e
−CV

−p
j t2

r j j )θ

= 0
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∂ lnL

∂C
=

k

∑
j=1

ri

C
+(θ − 1)

k

∑
j=1

r j

∑
i=1

e
−CV

−p
j t2

i jV
−p
j t2

i j

(1− e
−CV

−p
j t2

i j )
+

k

∑
j=1

θ (n j − r j)V
−p
j t2

r j j
e
−CV

−p
j t2

r j j (1− e
−CV

−p
j t2

r j j )θ−1

1− (1− e
−CV

−p
j t2

r j j )θ

−

k

∑
j=1

r j

∑
i=1

V
−p
j t2

i j = 0

∂ lnL

∂ p
=−

k

∑
j=1

r jlnV j +
k

∑
j=1

r j

∑
i=1

pV
−p−1
j t2

i j +(θ − 1)
k

∑
j=1

r j

∑
i=1

e
−CV jt

2
i jV

−p
j lnV j

+
k

∑
j=1

θ (n j − r j)lnV jCV
−p
j t2

r j je
−CV

−p
j t2

r j j (1− e
−CV

−p
j t2

r j j )θ−1

1− (1− e
−CV

−p
j t2

r j j )θ

= 0

The closed-form solution of the above partial equations does not exist, so the Newton-Raphson method will be used
to solve these equations. We use the logarithm of equation (6) defined in equation (7) to estimate the variance-covariance
matrix of parameters. The Fisher Information matrix is given as

F =









−
∂ 2lnL
∂θ 2 −

∂ 2lnL
∂θ∂C

−
∂ 2lnL
∂θ∂ p

− ∂ 2lnL
∂C∂θ

− ∂ 2lnL
∂C2 − ∂ 2lnL

∂C∂ p

−
∂ 2lnL
∂ p∂θ

−
∂ 2lnL
∂ p∂C

−
∂ 2lnL
∂ p2









(8)

The elements of the Fisher Information matrix are

−
∂ 2lnL

∂θ 2
=

k

∑
j=1

r jθ
−2 +

k

∑
j=1

θ (n j − r j)(1− e
−CV

−p
j t2

r j j )θ−1

1− (1− e
−CV

−p
j t2

r j j )θ





1

θ
+ ln(1− e

−CV
−p
j t2

r j j)+
θ (1− e

−CV
−p
j t2

r j j)θ−1

1− (1− e
−CV

−p
j t2

r j j )θ





−
∂ 2lnL

∂θ∂C
=−

k

∑
j=1

r j

∑
i=1

e
−CV

−p
j t2

i jV
−p
j t2

i j

1− e
−CV

−p
j t2

i j

−

k

∑
j=1

θ (n j − r j)(1− e
−CV

−p
j t2

r j j )θ−1

1− (1− e
−CV

−p
j t2

r j j)θ







(θ − 1)e
−CV

−p
j t2

r j jV
−p
j t2

r j j

1− e
−CV

−p
j t2

r j j

+
θe

−CV
−p
j t2

r j jV
−p
j t2

r j j(1− e
−CV

−p
j t2

r j j)θ−1

1− (1− e
−CV

−p
j t2

r j j )θ







−
∂ 2lnL

∂C2
=

k

∑
j=1

r jC
−2 +



(θ − 1)
k

∑
j=1

r j

∑
i=1

(1− e
−CV

−p
j t2

i j )e−CV
−p
j t2

i jV
−p
j t2

i j + e
−2CV

−p
j t2

i jV
−p
j t2

i j

(1− e
−CV

−p
j t2

i j )



V
−p
j t2

i j

−

k

∑
j=1

θ (n j − r j)V
−p
j t2

r j j





(1− (1− e
−CV

−p
j t2

r j j )θ )(e
−CV

−p
j t2

r j j + 2e
−2CV

−p
j t2

r j j )

(1− (1− e
−CV

−p
j t2

r j j )θ )2





+
k

∑
j=1

θ (n j − r j)V
−p
j t2

r j j







(e
−CV

−p
j t2

r j j
− 2e

−2CV
−p
j t2

r j jV
−p
j t2

r j j)((e
−CV

−p
j t2

r j jV
−p
j t2

r j j)
θ−1V

−p
j t2

r j j)

(1− (1− e
−CV

−p
j t2

r j j )θ )2







−
∂ 2lnL

∂C∂ p
= (θ − 1)

k

∑
j=1

r j

∑
i=1

e
−CV

−p
j t2

i jCpV
−p−1
j t2

i j

1− e
−CV

−p
j t2

i j



CpV
−p
j t2

i j − lnV j +
e
−CV

−p
j t2

i jCpV
−p−1
j t2

i j

1− e
−CV

−p
j t2

i j





−

k

∑
j=1

θ (n j − r j)t
2
r j j







e
−CV

−p
j t2

r j jCpV
−p−1
j t2

r j j

1− (1− e
−CV

−p
j t2

r j j )

+CpV
−p
j t2

r j j − lnV j −
θ (1− e

−CV
−p
j t2

r j j )e
−CV

−p
j t2

r j jCpV
−p−1
j t2

r j j

1− (1− e
−CV

−p
j t2

r j j)θ






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−
∂ 2lnL

∂ p∂θ
=

k

∑
j=1

r j

∑
i=1

e
−CV

−p
j t2

i j

1− e
−CV

−p
j t2

i j

−

k

∑
j=1

C(n j− r j)t
2
r j j





θ 2(1− e
−CV

−p
j t2

r j j )2(θ−1)

(1− (1− e
−CV

−p
j t2

r j j ))2





−

k

∑
j=1

C(n j − r j)t
2
r j j





(1− (1− e
−CV

−p
j t2

r j j )θ )(1− e
−CV

−p
j t2

r j j )θ−1 +θ (θ − 1)(1− e
−CV

−p
j t2

r j j )θ−2

(1− (1− e
−CV

−p
j t2

r j j )θ )2





−
∂ 2lnL

∂ p2
=

k

∑
j=1

r j

∑
i=1

t2
i j(p(p+ 1)V

−pt2
i j

j )+ (θ − 1)
k

∑
j=1

r j

∑
i=1

e
−CV

−p
j t2

i jV
−p−1
j

1− e
−CV

−p
j t2

i j

×

[

−CV
−p−1
j t2

i j − (p+ 1)V−1
j +

e
−CV

−p
j t2

i j

1− e
−CV

−p
j t2

i j

]

−

k

∑
j=1

(n j − r j)
θ (1− e

−CV
−p
j t2

r j j )θ−1CV
−p
j t2

r j j

1− (1− e
−CV

−p
j t2

r j j)θ

×







e
−CV

−p
j t2

r j jCpV
−p−1
j

1− e
−CV

−p
j t2

r j j

−
t2
r j jCV

−2p−3
j

V
−p
j

−
θ (1− e

−CV
−p
j t2

r j j )θ−1e
−CV

−p
j t2

r j jV
−p−1
j pCt2

r j j

1− (1− e
−CV

−p
j t2

r j j )θ







So the MLE of θ̂ , Ĉ and p̂ have an asymptotic variance-covariance matrix, which is obtained by inverting the Fisher
Information matrix given in equation (8).

v = F−1 (9)

The approximate 100(1−λ )% confidence intervals for θ̂ , Ĉ and p̂ are given as

θ̂ +Zλ/2

√

(varθ̂),Ĉ+Zλ/2

√

(varĈ) and p̂+Zλ/2

√

(varp̂) (10)

Zλ/2 is the 100(1−λ/2)% percentile of a standard normal variate.

4 Simulation results

In this section, we use the Monte-Carlo simulation technique for simulation studies. Numerical studies are performed to
examine the performances of the MLEs through their absolute relative bias (RABs) and mean square error (MSE). Using
the invariance property of MLEs, we can estimate the MLEs of shape Parameter θ j through the following equation.

θ j =CV
−p
j C, p > 0 j = 1,2, . . . ,k

The detailed steps are given below:
1. First, 1000 random samples of sizes 40, 80, 120, and 160 are generated from Burr Type-X distribution. Different

initial values are selected for all sets of parameters.
2. There are only three different levels of stress; the stress values are selected

(V1 = 1,V2 = 1.5,V3 = 2),n j =
n
3

and r j = 60%n j

3. For all sample sizes, the parameters of the model are estimated under Type-II censoring.
4. The Newton-Raphson method is used for solving all equations.
5. The estimates of the shape parameter θ j are calculated from equation (5).
6. The RABs and MSEs are tabulated for all sets of (θ0,C0, p0).
7. Using the invariance property of MLEs, we calculate the MLEs of the scale parameter θu at the usual stress level

Vu = 0.5.
8. The reliability function at the same normal stress for different values θ ,C, p and t0 is calculated.

R̂u(t) = 1− [1− e−λ0t2
]θ0

9. At mission time (t0 = 1.5,1.8,2.2), the MLEs of reliability function are predicted under the same usual conditions
for all sets of parameters.
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Table 1: The Estimates, Relative Bias and MSE of the parameters (λ ,C, p,θ1,θ2,θ3) under Type-II censoring

n Parameters (λ0 = 0.25,C0 = 1.5, p0 = 1) (λ0 = 1,C0 = 1.5, p0 = 1)

Estimator RABs MSEs Estimator RABs MSEs

λ 1.229 0.095 0.088 1.930 0.080 0.086

40 C 2.211 0.070 0.069 2.443 0.062 0.073

p 1.430 0.080 0.072 1.725 0.095 0.081

θ1 2.456 0.065 0.057 2.821 0.061 0.077

θ2 1.943 0.062 0.051 1.765 0.053 0.050

θ3 1.878 0.055 0.062 2.101 0.061 0.069

λ 1.534 0.086 0.076 1.876 0.073 0.076

80 C 2.543 0.067 0.055 2.346 0.052 0.061

p 1.893 0.077 0.061 2.098 0.088 0.097

θ1 2.762 0.054 0.040 2.989 0.064 0.051

θ2 2.688 0.054 0.031 1.760 0.050 0.042

θ3 2.097 0.049 0.055 1.886 0.036 0.057

λ 3.239 0.044 0.042 2.945 0.069 0.061

120 C 2.649 0.054 0.044 2.791 0.050 0.051

p 2.846 0.065 0.054 2.152 0.072 0.086

θ1 1.956 0.046 0.035 2.328 0.042 0.047

θ2 2.090 0.048 0.040 1.904 0.039 0.037

θ3 2.196 0.041 0.022 1.867 0.011 0.050

λ 3.252 0.018 0.029 2.976 0.064 0.050

160 C 2.112 0.023 0.013 2.460 0.042 0.023

p 1.813 0.113 0.010 1.905 0.045 0.031

θ1 1.750 0.027 0.014 1.843 0.062 0.069

θ2 1.922 0.031 0.023 2.011 0.018 0.016

θ3 2.089 0.032 0.023 1.825 0.033 0.025

Table 2: The Estimates, Relative Bias and MSE of the parameters (λ ,C, p,θ1,θ2,θ3) under Type-II censoring

n Parameters (λ0 = 0.25,C0 = 1, p0 = 1) (λ0 = 1,C0 = 1, p0 = 1.5)

Estimator RABs MSEs Estimator RABs MSEs

λ 1.342 0.076 0.089 1.987 0.099 0.087

40 C 2.003 0.223 0.087 2.171 0.210 0.087

p 1.929 0.090 0.088 1.621 0.082 0.071

θ1 2.101 0.093 0.062 2.523 0.081 0.074

θ2 0.970 0.212 0.081 1.210 0.077 0.068

θ3 0.788 0.099 0.077 0.803 0.093 0.096

λ 0.837 0.062 0.077 0.663 0.071 0.075

80 C 2.018 0.092 0.072 2.156 0.144 0.070

p 0.737 0.073 0.070 2.136 0.052 0.095

θ1 2.064 0.081 0.058 2.289 0.074 0.061

θ2 0.980 0.188 0.065 2.170 0.069 0.061

θ3 0.787 0.068 0.065 0.986 0.088 0.079

λ 0.739 0.054 0.045 0.998 0.063 0.062

120 C 1.949 0.089 0.063 2.091 0.081 0.056

p 0.678 0.052 0.050 3.998 0.050 0.066

θ1 2.061 0.086 0.061 1.930 0.066 0.055

θ2 0.998 0.070 0.047 3.132 0.054 0.016

θ3 0.994 0.059 0.076 0.998 0.077 0.098

λ 0.739 0.054 0.045 0.998 0.063 0.062

160 C 1.949 0.089 0.063 2.091 0.081 0.056

p 0.678 0.052 0.050 3.998 0.050 0.066

θ1 2.061 0.086 0.061 1.930 0.066 0.055

θ2 0.998 0.070 0.047 3.132 0.054 0.016

θ3 0.994 0.059 0.076 0.998 0.077 0.098
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4.1 Estimation of the reliability function and shape parameter at normal stress

In the following table, we estimate the reliability function at the normal stress level Vu = 0.5 for different values of
parameters λ ,C, p and t0, also find the shape parameter for the same stress level.

Table 3: Estimated reliability function and shape parameter at normal stress

λ0 C0 p0 θ0 t0 Ru(t0)
0.25 1.5 1 3.1246 (0.3,0.6,0.9) (0.58268,0.52515,0.44820)

1 1.5 1 3.2376 (0.3,0.6,0.9) (0.53164,0.53428,0.49725)

0.25 1 1 2.0332 (0.3,0.6,0.9) (0.36510,0.31170,0.30849)

1 1 1.5 2.8216 (0.3,0.6,0.9) (0.39504,0.28456,0.20757)

5 The Age-Replacement policy under pro-rate rebate warranty for Burr Type-X distribution

Under this warranty policy,
(i) A non-repairable item is replaced at a certain time age τ or upon failure, which occurs first.
(ii) When the item fails at t ≤ τ a failure, replacement is performed with a purchasing cost Cp and downtime cost Cd ,

where Cp,Cd > 0.
(iii) The customer is refunded a proportion of sales price Cp if the item fails over the warranty period (w),

So, the rebate function under the pro-rata warranty is

R(t) =

{

Cp

(

1− t
w

)

0 ≤ t ≤ w

0 t > w
(11)

John Mamer [25] presented a study on cost analysis of pro-rata with a free replacement warranty approaches; he
examines the long-run average and total costs of items with warranty. Timothy et al. [26] proposed a pro-rata study for
combined warranty approaches; he used different repair options in his study. Huang et al. [27] studied the problem of
estimating the expected warranty cost for the case where the product usage is intermittent and of heterogeneous usage
intensity by the product life cycle when sales occur regularly.

Major Assumptions
1. Item is replaced at the time of failure (corrective replacement), or age τ (preventive replacement), which comes

first.
2. Items are sold with a pro-rata rebate warranty approach.
3. There is no salvage value for the preventive replaced product.
4. The warranty period (w) is less than age replacement τ , i.e. (w) < τ .

When the item’s life reaches τ , then the preventive replacement carried out with cost Cp only because it is a planned
preventive maintenance action.
The total cost incurred in a renewal cycle for this policy is

C(d) =







Cp +Cd −R(t) 0 ≤ t ≤ w

0 w > t > τ

Cp t ≥ τ
(12)

The expected total cost [28, 29] under this policy is given by

E(C(t)) =Cd +Cp

∫ w
0 F̄(u)

w
(13)

The expected cost rate is

E(CR(t)) =
E(C(t))
∫ τ

0 F̄(u)
(14)
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Where
∫ τ

0 F̄(u) is the expected cycle time, which is denoted by E(T (τ)).
Under the Burr Type-X distribution

The cdf is

F(u) = [1− e−λ u2
]θ u,λ ,θ > 0

So,

∫ τ

0
F̄(u)du = τ −

∫ τ

0
[1− e−λ u2

]θ du

And,

∫ w

0
F̄(u)du = w−

∫ w

0
[1− e−λ u2

]θ du

By putting the above values in equation (13) and equation (14), we get the expected total cost and expected cost rate for
the non-repairable product.

6 The expected total cost, the expected cycle time and the expected cost rate for

age-replacement under warranty policy on Burr Type-X distribution

In this section, we estimate the expected total cost, expected cycle time, and expected cost rate with a downtime cost and
purchasing cost.

For example, if the failure replacement is performed with a downtime cost Cd = 50 and purchasing cost Cp = 1000,
then we estimate the expected total cost, expected cycle time, and expected cost rate for age-replacement under warranty
policy for different values of warranty periods and the parameters of Burr Type-X and at normal use.

Table 4: The expected total cost, the expected cycle time and the expected cost rate

θ λ w τ Expected Total Cost E(C(τ)) Expected Cycle Time E(T (τ)) Expected Cost Rate CR(τ)
0.3 3 6 8 730.543 5.2341 296.8237

0.3 3 6 6 735.564 3.9876 386.4821

0.6 3 6 8 718.987 5.0987 310.8761

0.6 3 6 6 683.835 3.5673 390.4712

0.9 3 6 8 593.871 4.9453 320.1246

0.9 4 6 8 725.837 5.3451 312.9812

0.9 4 6 6 743.113 3.7532 388.9817

0.9 5 6 8 789.586 5.7987 305.8895

0.9 5 7 7 769.980 5.0981 343.0981

0.9 5 7 8 770.500 5.8712 310.1272

0.9 5 7 9 771.997 6.8712 237.6667

7 Conclusions

From the Table (1) and (2), it is concluded that the absolute value of the difference between the true value of the parameter
and its estimate is very small positive value converges to zero. So, these estimates are said to be consistent estimators.

From the Table (3), we estimate the values of the shape parameter. We can see that if the value of mission time (t0)
increases, then the value of reliability function decreases. So, we can conclude that there is an inverse relationship between
mission time and the reliability function Ru(t0).

The following results are concluded from the Table (4):
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(i) There is an inverse relationship between the shape parameter and expected total cost, with a direct relationship
between the shape parameter and expected cost rate.

(ii) There is a direct relationship between scale parameter and expected total cost and expected cycle time, with an
inverse relationship between shape parameter and expected cost rate.

(iii) There is a direct relationship between the warranty period, expected total cost and expected cost rate. Increasing
the warranty period does not affect on expected cycle time.

(iv) There is a direct relationship between age replacement of time, expected total cost and expected cycle time, while
an inverse relationship between age replacement time and expected cost rate.

Acknowledgement

The authors are grateful to the anonymous referees for a careful checking of the details and for helpful comments that
improved this paper.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article

References

[1] E.A., El-Dessouky, Accelerated life testing and age-replacement policy under warranty on exponentiated pareto distribution, Applied

Mathematical Sciences, 9(36), 1757-1770, 2015.

[2] E.A., El-Dessouky, Estimating costs of maintenance service policy using step stress partially accelerated life testing for the extension

of exponential distribution under type-II Censoring, International Journal of Contemporary Mathematical Sciences,5(36), 225-242,

2017.

[3] X. Zhao, and M. Xie, Using accelerated life tests data to predict warranty cost under imperfect repair, Computers and Industrial

Engineering, 107, 223-234, 2017.

[4] N. Jack, B.P. Iskandar, and D.P. Murthy, A repair replace strategy based on usage rate for items sold with a two-dimensional

warranty, Reliability Engineering and System Safety, 94(2), 611-617, 2009.

[5] S.K. Gupta, S. De, and A. Chatterjee, Warranty forecasting from incomplete two-dimensional warranty data, Reliability Engineering

and System Safety, 126, 1-13, 2014.

[6] Y.S. Huang, C.D. Huang, and J. W. Ho, A customized two-dimensional extended warranty with preventive maintenance, European

Journal of Operational Research, 257(3), 971-978, 2017.

[7] K.M. Jung, M. Park, and D.H. Park, Cost optimization model following extended renewing two-phase warranty, Computers and

Industrial Engineering, 79, 188-194, 2015.

[8] Z.S. Ye, and D.P. Murthy, Warranty menu design for a two-dimensional warranty, Reliability Engineering and System Safety, 155,

21-29, 2016.

[9] D.N.P. Murthy, and I. Djamaludin, New product warranty: a literature review, International Journal of Production Economics, 79(3),

231-260, 2002.

[10] H.Z. Huang, Z.J. Liu, and D.N.P. Murthy, Optimal reliability, warranty, and price for new products, Iie Transactions, 39(8), 819-

827, 2007.

[11] W. Xie, and Z.S. Ye, Aggregate discounted warranty cost forecast for a new product considering stochastic sales, IEEE

Transactions on Reliability, 65(1), 486-497, 2016.

[12] G. Yang, Accelerated life test plans for predicting warranty cost, IEEE Transactions on Reliability, 59(4), 628-634, 2010.

[13] W.Q. Meeker, and L.A. Escobar, A review of recent research and current issues in accelerated testing, International Statistical

Review/Revue Internationale de Statistique, 147-168, 1993.

[14] O. Borgia, F. De Carlo, N. Fanciullacci, and M. Tucci, Accelerated life tests for new product qualification: a case study in the

household appliance, IFAC Proceedings Volumes, 46(7), 269-274, 2013.

[15] A.A. Abdel-Ghaly, A.F. Attia, and H.M. Aly, Estimation of the parameters of pareto distribution and the reliability function using

accelerated life testing with censoring, Communications in Statistics-Simulation and Computation, 27(2), 469-484, 1998.

[16] A.F. Attia, A.S. Shaban, and Abd M.H. El Sattar, Estimation in constant-stress accelerated life testing for birnbaum-saunders

Distribution under Censoring, International Journal of Contemporary Mathematical Sciences, 8(4), 173-188, 2013.

[17] A.F. Attia, H.M. Aly, and S.O. Bleed, Estimating and planning accelerated life test using constant stress for generalized Logistic

distribution under type-I censoring, ISRN Applied Mathematics, 2011.

[18] I.W. Burr, Cumulative frequency functions, The Annals of mathematical statistics, 13(2), 215-232, 1992.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


524 I. Alam et al.: Accelerated life test plans and...

[19] H. Ahmad Sartawi, and M.S. Abu-Salih, Bayesian prediction bounds for the Burr type X model, Communications in Statistics-

Theory and Methods, 20(7), 2307-2330, 1991.

[20] Z.F. Jaheen, Bayesian approach to prediction with outliers from the Burr type X model, Microelectronics Reliability, 35(4), 703-

705, 1995.

[21] Z.F. Jaheen, Empirical Bayes estimation of the reliability and failure rate functions of the Burr type X failure model, Journal of

Applied Statistical Science, 3(4), 281-288, 1996.

[22] K.E. Ahmad, M.E. Fakhry, and Z.F. Jaheen, Empirical Bayes estimation of P(Y < X) and characterizations of burr-type X model,

Journal of Statistical Planning and Inference, 64(2), 297-308, 1997.

[23] M.Z. Raqab, Order statistics from the burr type X model, Computers and Mathematics with Applications, 36(4), 111-120. 1998.

[24] J.G. Surles, and W.J. Padgett, Inference for P(Y < X) in the Burr type X model, Journal of Applied Statistical Science, 7(4),

111-120, 1998.

[25] J.W. Mamer, Cost analysis of pro rata and free-replacement warranties, Naval Research Logistics Quarterly, 29(2), 345-356, 1982.

[26] T.I. Matis, R. Jayaraman, and A. Rangan, Optimal price and pro rata decisions for combined warranty policies with different repair

options, IIE Transactions, 40(10), 984-991, 2008.

[27] H.Z. Huang, Z.J. Liu, Y. Li, Y. Liu, and L. He, A Warranty Cost model with intermittent and heterogeneous usage, Maintenance

and Reliability, 4, 9-15, 2008.

[28] Y.H. Chien, The effect of a pro-rata rebate warranty on the age replacement policy with salvage value consideration, IEEE

Transactions on Reliability, 59(2), 383-392, 2010.

[29] Y.H. Chien, F.M. Chang, and T.H. Liu, The Effects of salvage Value on the age-replacement policy under renewing warranty, in

Proc. International Conference on Industrial Engineering and Operations Management, 7-9, 2014.

Intekhab Alam is a Research Scholar at the Department of Statistics and Operations
Research, A.M.U. Aligarh. His research interest is in the field of Reliability. He is currently
working on accelerated life testing. He has published several research papers in the reputed
international journals.

Arif Ul Islam was working as a Professor at the Department of Statistics
and Operations Research, A.M.U. Aligarh till March 2018. He did his M.Phil and Ph.D from
A.M.U. Aligarh. His research interests are in the field of Reliability theory and Probability.
He has published several research papers in reputed National and International Journals.
He has served at different Universities in India and abroad, during long teaching career
initiated at A.M.U. Aligarh, as Lecturer. Subsequently also served as Faculty at Department
of Economics and Administration, Basrah University, Basrah, Iraq, P.G. Department
of Mathematics, University of Kashmir, Srinagar, Department of Statistics, A.M.U.
Aligarh, India from and Department of Statistics, Gharyonous University, Benghazi, Libya.

Aquil Ahmed is working as a Professor at the Department of Statistics
and Operations Research, A.M.U. Aligarh. His research interests are in the
field of Mathematical Programming, Bayesian Statistics and Optimization. He has published
several research papers in the reputed National and International journals. He did his M.Phil
from A.M.U. Aligarh and Ph.D. from the University of Roorkee (Presently I.I.T.Roorkee).
He has served the Department of Statistics, the University of Kashmir from 1988 to 2014.
He has also served as a Professor of Statistics at the Qassim University, Saudi Arabia for
two and a half years (Dec.2008 to June 2011). He was at the Asian Institute of Technology
Pathumthani, Bangkok, Thailand under MHRD Programme, during Aug.-Dec.-2016.

c© 2020 NSP

Natural Sciences Publishing Cor.


	Introduction
	Model description and test procedure
	Estimation procedure
	Simulation results
	The Age-Replacement policy under pro-rate rebate warranty for Burr Type-X distribution
	The expected total cost, the expected cycle time and the expected cost rate for age-replacement under warranty policy on Burr Type-X distribution
	Conclusions

