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Abstract: This research paper investigates the unprecedented optical closed form of solutions for the generalized higher-order

nonlinear Schrödinger (NLS) equation, which is considered as a fundamental model in the optical fiber by the implementation of the

modified Khater method. The suggested equation describes the promulgation of the light-wave in an optical fiber. Some novel

solutions are obtained by using the suggested method, which is considered as one of the recent methods developed in the last decades.

The performance of the used method shows the power and effective of the method and its ability for applying to many different forms

of nonlinear evolution equations. The obtained solutions verified with Maple 16 & Mathematica 12 by placing them back into the

original equations.

Keywords: Light-wave promulgation in an optical fiber; Generalized higher-order nonlinear Schrödinger equation; Generalized
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1 Introduction

An ultra-short pulse phenomenon of the light is one of a basic phenomenon in optics physics [1]. This phenomenon is
an electromagnetic pulse which the period of its equal pico-second (1012 second) or less. These pulses have a wide range
of the optical spectrum and also can establish by mode-locked oscillators. These pulses are typically mentioned to as ultra-
fast juveniles. The padding of ultra-short pulses approximately demands the technical of chirped pulse amplification. It is
distinguished by a high peak intensity. This phenomenon was studied in the nonlinear optics field. The Egyptian scientist,
Ahmed H. Zewail in 1999, was taken Nobel Prize in Chemistry for utilizing ultra-short pulses to notice the chemical
reactions on the timescales. The studying of Ahmed H. Zewail has opened the window for an unprecedented branch of
science which is femtochemistry [2]. Femtochemistry is considered as chemical reactions on extremely short timescales
approximately (1015) seconds or one femtosecond. Now, this branch is considered as one of the basic fields as it has many
vital applications in the different field of science such as freezing atoms in motion, reactive intermediates, Proteomic and
Metabolomic Analysis and so on. Femtochemistry has many areas that utilized such as a gas phase & molecular beam,
condensed phase, mesoscopic phase, control, structures of UED & x-ray and femtobiology [3,4,5].

All these studies have contributed the greatest role in providing an opportunity to study the dynamic each of the
next phenomena: The gas-to-liquid transition region, Small and large molecules in cyclodextrins, molecular (one-atom)
caging, microscopic friction, liquid state and energy flow in polymers. The examples of the femto-second pulse are
collinear programmable, transverse static, transverse programmable, and collinear static. According to these examples,
we able to find the applications of ultra-short pulse in studying advanced material 3D micro-/nano-processing and Micro-
machining.
According to all these studies, it was natural for the world’s mathematicians to take its toll in this branch of modern
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science for the great benefit of the world. The great scientist Erwin Schrödinger derived Schrödinger equation [6] in the
next formula:

i h̄St − Ĥ S = 0, (1)

where S = S(x, t) is the wave function of the quantum system, h̄ represents Planck constant, Ĥ represents Hamiltonian
operator and (x, t) represent the position vector and time respectively. This equation describes the dynamics of the light
pulses and femtosecond pulses. This equation is also considered as one of the basic models in quantum mechanics.

The Schrödinger equation has taken a lot of forms and formulas from the first day of its appearance and that because
of its properties and possibilities. Many scientists have tried to adapt this equation to decipher, dissolve, and characterize
some mathematical and physical models. More than one equation has emerged to characterize the Schrödinger equation,
and many sporting methods have been utilized to find the exact solutions to such an important model of equations and so
to discover the physical properties that have not yet been revealed from these studies on the Schrödinger equation [6,7,8,
9,10,11,12,13,14,15,16,17,18,19,20].

The remainder of this paper is governed as follows: In section 2, we utilize the modified Khater method [21,22,23,
24,25] to get the exact and solitary traveling wave solutions of a light-wave promulgation in an optical fiber (generalized
higher-order NLS equation) [26,27,28,29,30] , In section 3, conclusion is given.

2 Applications

This section applies the modified Khater method to the generalized higher-order NLS equation that is given as:

iut + c1 uxx +
(

c2 |u|2m + c3 |u|4m
)

u+ c4

(
(|u|)xx

|u|

)
u = 0, (2)

Using the wave transformation u = u(x, t) = φ(ξ )ei µ , ξ = (k x−ω t), µ = (ρ x+ δ t) on Eq. (2), leads to find a real and
imaginary parts of a generalized higher-order NLS equation. Separating these parts, leads to





ω = 2c1 ρ k,

aφ ′′− bφ + cφ2m+1 + d φ4m+1 = 0,
(3)

where a = k (c1 + c4), b = (δ + c1 p2), c = c3,d = c4. Balancing the highest order derivative and nonlinear terms in Eq.

(3), obtains n = 1
2m

. Utilizing the following transformation φ = S
1

2m on Eq. (3), gives

a(1− 2m)

4m2
S′2 +

a

2m
S S′′− bS2+ cS3 + d S4 = 0. (4)

Balancing the highest order derivative and nonlinear terms in Eq.(4), leads to n = 1. According the general solutions that
suggested by the modified Khater method, the general solution of Eq. (4) is given as

S(ξ ) =
n

∑
i=1

aiK
i f (ξ )+

n

∑
i=1

biK
−i f (ξ )+ a0 = a0 + a1 K f (ξ )+

b1

K f (ξ )
, (5)

where a0,a1,b1 are arbitrary constants and f (ξ ) is the solution of the next auxiliary equation

f ′(ξ ) =
β +αK− f (ξ )+σK f (ξ )

ln(k)
, (6)

where α, β , σ are arbitrary constants. Exchanging Eq.(5) along (6) and its derivatives into Eq.(4). Combination all terms

with the same power of Ki f (ξ ) where (i = 4,3, ...,1,0), leads to a system of algebraic system of equations. Solving this
system by using any computer program (Maple, Mathematica, Matlab,...,etc.) to get the values of parameters that involved
in Eq.(4), obtains:
Family I

a1 →−a0

√
σ

2
√

α
,b1 →−

√
αa0

2
√

σ
,b → 1

4

(
12a

√
αβ

√
σ + 20aασ + aβ 2

)
,c → 2

(
a
√

αβ
√

σ + 4aασ
)

a0

,d →−3aασ

a2
0

.
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Thus, the solitary wave solutions the generalized higher-order NLS equation
When β 2 − 4ασ < 0&σ 6= 0

u1(x, t) = 2
−1
m ei(δ t+ρx)




a0

(
2
√

α
√

σ +β −
√

4ασ −β 2 tan
(

1
2

√
4ασ −β 2(k x− t ω)

))2

√
α
√

σ
(

β −
√

4ασ −β 2 tan
(

1
2

√
4ασ −β 2(k x− t ω)

))




1
2m

, (7)

u2(x, t) = 2
−1
m ei(δ t+ρx)




a0

(
2
√

α
√

σ +β −
√

4ασ −β 2 cot
(

1
2

√
4ασ −β 2(k x− t ω)

))2

√
α
√

σ
(

β −
√

4ασ −β 2 cot
(

1
2

√
4ασ −β 2(k x− t ω)

))




1
2m

. (8)

When β 2 − 4ασ > 0&σ 6= 0

u3(x, t) = 2
−1
m ei(δ t+ρx)




a0

(
2
√

α
√

σ +β +
√

β 2 − 4ασ tanh
(

1
2

√
β 2 − 4ασ(k x− t ω)

))2

√
α
√

σ
(

β +
√

β 2 − 4ασ tanh
(

1
2

√
β 2 − 4ασ(k x− t ω)

))




1
2m

, (9)

u4(x, t) = 2
−1
m ei(δ t+ρx)




a0

(
2
√

α
√

σ +β +
√

β 2 − 4ασ coth
(

1
2

√
β 2 − 4ασ(k x− t ω)

))2

√
α
√

σ
(

β +
√

β 2 − 4ασ coth
(

1
2

√
β 2 − 4ασ(k x− t ω)

))




1
2m

. (10)

When ασ > 0&α 6= 0&σ 6= 0&β = 0

u5(x, t) = ei(δ t+ρx)
(
a0

(
−
(
csc
(
2
√

α
√

σ(k x− t ω)
)
− 1
))) 1

2m , (11)

u6(x, t) = ei(δ t+ρx)
(
a0

(
csc
(
2
√

α
√

σ(k x− t ω)
)
+ 1
)) 1

2m . (12)

When β = 0&α =−σ

u7(x, t) = ei(δ t+ρx)

(
a0

(√
αcsch(2α(k x− t ω))√

−α
+ 1

)) 1
2m

. (13)

When β = 0&α = σ

u8(x, t) = 2
−1
2m ei(δ t+ρx)

(
a0 tan(C+αkx+αtω)

(
−(cot(C+αkx+αtω)− 1)2

)) 1
2m . (14)

When β 2 − 4ασ = 0

u9(x, t) = ei(δ t+ρx)

(
a0β 2(k x− t ω)

4
√

α
√

σ(β (k x− t ω)+ 2)
+

√
αa0

√
σ(β (k x− t ω)+ 2)

β 2(k x− t ω)
+ a0

)
1

2m . (15)

Family II

a1 →
a0σ

β
,b1 →

αa0

β
,b → 1

4

(
aβ 2 − 4aασ

)
,c → aβ 2

a0

,d →−3aβ 2

4a2
0

.

Thus, the solitary wave solutions the generalized higher-order NLS equation
When β 2 − 4ασ < 0&σ 6= 0

u10(x, t) = 2
−1
2m ei(δ t+ρx)




a0

(
β 2 − 4ασ

)
sec2

(
1
2

√
4ασ −β 2(k x− t ω)

)

β
(

β −
√

4ασ −β 2 tan
(

1
2

√
4ασ −β 2(k x− t ω)

))




1
2m

, (16)

u11(x, t) = 2
−1
2m ei(δ t+ρx)




a0

(
β 2 − 4ασ

)
csc2

(
1
2

√
4ασ −β 2(k x− t ω)

)

β
(

β −
√

4ασ −β 2 cot
(

1
2

√
4ασ −β 2(k x− t ω)

))




1
2m

. (17)
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When β 2 − 4ασ > 0&σ 6= 0

u12(x, t) = 2
−1
2m ei(δ t+ρx)




a0

(
β 2 − 4ασ

)
sech2

(
1
2

√
β 2 − 4ασ(k x− t ω)

)

β
(

β +
√

β 2 − 4ασ tanh
(

1
2

√
β 2 − 4ασ(k x− t ω)

))




1
2m

, (18)

u13(x, t) = 2
−1
2m ei(δ t+ρx)


−

a0

(
β 2 − 4ασ

)
csch2

(
1
2

√
β 2 − 4ασ(k x− t ω)

)

β
(

β +
√

β 2 − 4ασ coth
(

1
2

√
β 2 − 4ασ(k x− t ω)

))




1
2m

. (19)

When β = α
2
= κ &σ = 0

u14(x, t) = ei(δ t+ρx)

(
a0

(
2

eκ(k x−t ω)− 2
+ 1

)) 1
2m

. (20)

When β = σ = κ &α = 0

u15(x, t) = ei(δ t+ρx)

(
a0

1− eκ(k x−t ω)

) 1
2m

. (21)

When α = 0&β 6= 0&σ 6= 0

u16(x, t) = 2
1

2m ei(δ t+ρx)

(
a0

2−σeβ (k x−t ω)

) 1
2m

. (22)

When σ = 0&β 6= 0&α 6= 0

u17(x, t) = ei(δ t+ρx)

(
a0

(
α

β eβ (k x−t ω)−α
+ 1

)) 1
2m

. (23)

When β 2 − 4ασ = 0

u18(x, t) = 2
−1
2m ei(δ t+ρx)

(
a0

(
4ασ

(
−β − 2

k x−t ω

)

β 3
+

2

β kx−β tω + 2
+ 1

)) 1
2m

. (24)

Family III

a1 →

√
a2

0β 2 − 4αa2
0σ + a0β

2α
,b1 → 0,b → 1

4

(
aβ 2 − 4aασ

)
,

c →
aa0

(
β 2 − 4ασ

)
− aβ

√
a2

0 (β
2 − 4ασ)

2a2
0

,d →
3a
(

β
√

a2
0 (β

2 − 4ασ)− a0

(
β 2 − 2ασ

))

8a3
0

.

Thus, the solitary wave solutions the generalized higher-order NLS equation
When β 2 − 4ασ < 0&σ 6= 0

u19(x, t) = ei(δ t+ρx)


a0 −

(√
a2

0 (β
2 − 4ασ)+ a0β

)(
β −

√
4ασ −β 2 tan

(
1
2

√
4ασ −β 2(k x− t ω)

))

4ασ




1
2m

, (25)

u20(x, t) = ei(δ t+ρx)


a0 −

(√
a2

0 (β
2 − 4ασ)+ a0β

)(
β −

√
4ασ −β 2 cot

(
1
2

√
4ασ −β 2(k x− t ω)

))

4ασ




1
2m

. (26)

When β 2 − 4ασ > 0&σ 6= 0

u21(x, t) = ei(δ t+ρx)


a0 −

(√
a2

0 (β
2 − 4ασ)+ a0β

)(
β +

√
β 2 − 4ασ tanh

(
1
2

√
β 2 − 4ασ(k x− t ω)

))

4ασ




1
2m

, (27)
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u22(x, t) = ei(δ t+ρx)


a0 −

(√
a2

0 (β
2 − 4ασ)+ a0β

)(
β +

√
β 2 − 4ασ coth

(
1
2

√
β 2 − 4ασ(k x− t ω)

))

4ασ




1
2m

. (28)

When ασ > 0&α 6= 0&σ 6= 0&β = 0

u23(x, t) = ei(δ t+ρx)




√
−αa2

0σ tan
(√

ασ (k x− t ω)
)

√
ασ

+ a0




1
2m

, (29)

u24(x, t) = ei(δ t+ρx)


a0 −

√
−αa2

0σ cot
(√

ασ (k x− t ω)
)

√
ασ




1
2m

. (30)

When ασ > 0&α 6= 0&σ 6= 0&β = 0

u25(x, t) = ei(δ t+ρx)




√
−αa2

0σ tanh
(√−ασ(k x− t ω)

)
√−ασ

+ a0




1
2m

, (31)

u26(x, t) = ei(δ t+ρx)




√
−αa2

0σ coth
(√

−ασ(k x− t ω)
)

√
−ασ

+ a0




1
2m

. (32)

When β = 0&α =−σ

u27(x, t) = ei(δ t+ρx)




√
α2a2

0 coth(α(k x− t ω))

α
+ a0




1
2m

. (33)

When α = σ = 0&β 6= 0

u28(x, t) = ei(δ t+ρx)
(

a1eβ (k x−t ω)
) 1

2m
. (34)

When β = σ = κ &α = 0

u29(x, t) = ei(δ t+ρx)

(
a1

(
1

1− eκ(k x−t ω)
− 1

)) 1
2m

. (35)

When β = 0&α = σ

u30(x, t) = ei(δ t+ρx)




√
−α2a2

0 tan(C+αkx−αtω)

α
+ a0




1
2m

. (36)

When σ = 0&β 6= 0&α 6= 0

u31(x, t) = ei(δ t+ρx)




(√
a2

0β 2 + a0β
)(

eβ (k x−t ω)− α
β

)

2α
+ a0




1
2m

. (37)

When β 2 − 4ασ = 0

u32(x, t) = 2
1

2m ei(δ t+ρx)

(
− a0

β kx−β tω

) 1
2m

. (38)
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Family IV

a1 → 0,b1 →
a0β −

√
a2

0β 2 − 4αa2
0σ

2σ
,b → 1

4

(
aβ 2 − 4aασ

)
,

c →
aβ
√

a2
0 (β

2 − 4ασ)+ aa0

(
β 2 − 4ασ

)

2a2
0

,d →−
3a
(

β
√

a2
0 (β

2 − 4ασ)+ a0

(
β 2 − 2ασ

))

8a3
0

.

Thus, the solitary wave solutions the generalized higher-order NLS equation
When β 2 − 4ασ < 0&σ 6= 0

u33(x, t) = ei(δ t+ρx)




√
a2

0 (β
2 − 4ασ)− a0β

β −
√

4ασ −β 2 tan
(

1
2

√
4ασ −β 2(k x− t ω)

) + a0




1
2m

, (39)

u34(x, t) = ei(δ t+ρx)




√
a2

0 (β
2 − 4ασ)− a0β

β −
√

4ασ −β 2 cot
(

1
2

√
4ασ −β 2(k x− t ω)

) + a0




1
2m

. (40)

When β 2 − 4ασ > 0&σ 6= 0

u35(x, t) = ei(δ t+ρx)




√
a2

0 (β
2 − 4ασ)− a0β

β +
√

β 2 − 4ασ tanh
(

1
2

√
β 2 − 4ασ(k x− t ω)

) + a0




1
2m

, (41)

u36(x, t) = ei(δ t+ρx)




√
a2

0 (β
2 − 4ασ)− a0β

β +
√

β 2 − 4ασ coth
(

1
2

√
β 2 − 4ασ(k x− t ω)

) + a0




1
2m

. (42)

When ασ > 0&α 6= 0&σ 6= 0&β = 0

u37(x, t) = ei(δ t+ρx)


a0 −

√
−αa2

0σ cot
(√

ασ (k x− t ω)
)

√
ασ




1
2m

, (43)

u38(x, t) = ei(δ t+ρx)




√
−αa2

0σ tan
(√

ασ (k x− t ω)
)

√
ασ

+ a0




1
2m

. (44)

When ασ > 0&α 6= 0&σ 6= 0&β = 0

u39(x, t) = ei(δ t+ρx)




√
−αa2

0σ coth
(√

−ασ(k x− t ω)
)

√
−ασ

+ a0




1
2m

, (45)

u40(x, t) = ei(δ t+ρx)




√
−αa2

0σ tanh
(√−ασ(k x− t ω)

)
√−ασ

+ a0




1
2m

. (46)

When β = 0&α =−σ

u41(x, t) = ei(δ t+ρx)




√
α2a2

0 tanh(α(k x− t ω))

α
+ a0




1
2m

. (47)
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When β = σ = κ &α = 0

u42(x, t) = 6
−1
2m ei(δ t+ρx)

(
a1

(
−
(

3coth

(
1

2
κ(k x− t ω)

)
+ 2

))) 1
2m

. (48)

When α = 0&β 6= 0&σ 6= 0

u43(x, t) = ei(δ t+ρx)




(√
a2

0β 2 − a0β
)

e−β (k x−t ω)
(

σeβ (k x−t ω)− 2
)

2β σ
+ a0




1
2m

. (49)

When β = 0&α = σ

u44(x, t) = ei(δ t+ρx)


a0 −

√
−α2a2

0 cot(C+αkx−αtω)

α




1
2m

. (50)

When β 2 − 4ασ = 0

u45(x, t) = ei(δ t+ρx)

(
a0 −

a0β 3(k x− t ω)

4ασ(β kx−β tω + 2)

) 1
2m

. (51)

Fig. 1: Breather wave of the generalized higher-order NLS equation by using Eq. (18) in three-dimensional for absolute, imaginary,

and real valued of the solution, when

[
α = 2, a0 = 4, β = 3, δ = 3, k = 5, m = 1, ρ = 4, σ = 1, ω = 6

]

Fig. 2: Breather wave of the generalized higher-order NLS equation by using Eq. (18) in two-dimensional for absolute, imaginary, and

real valued of the solution, when

[
α = 2, a0 = 4, β = 3, δ = 3, k = 5, m = 1, ρ = 4, σ = 1, ω = 6

]
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Fig. 3: Cuspon wave of the generalized higher-order NLS equation by using Eq. (19) in three-dimensional for absolute, imaginary, and

real valued of the solution, when

[
α = 2, a0 = 4, β = 3, δ = 3, k = 5, m = 1, ρ = 4, σ = 1, ω = 6

]

Fig. 4: Cuspon wave of the generalized higher-order NLS equation by using Eq. (19) in two-dimensional for absolute, imaginary, and

real valued of the solution, when

[
α = 2, a0 = 4, β = 3, δ = 3, k = 5, m = 1, ρ = 4, σ = 1, ω = 6

]

Fig. 5: Singular cuspon wave of the generalized higher-order NLS equation by using Eq. (20) in three-dimensional for absolute,

imaginary, and real valued of the solution, when

[
α = 6, a0 = 4, β = 3, δ = 3, k = 5, m = 1, ρ = 4, σ = 0, ω = 6, κ = 3

]

3 Conclusion

In this research paper, the modified Khater method is applied to the light-wave promulgation in an optical fiber
(Generalized higher-order NLS equation). Some novel solutions are obtained, and some figures are also sketched to show
more physical properties and dynamical behavior of the particles in the light-wave, specially in an optical fiber. These
solutions show the power and effective of this method and also its ability to apply this method on many different formulae
of nonlinear partial differential equations.
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Fig. 6: Singular cuspon wave of the generalized higher-order NLS equation by using Eq. (20) in two-dimensional for absolute,

imaginary, and real valued of the solution, when

[
α = 6, a0 = 4, β = 3, δ = 3, k = 5, m = 1, ρ = 4, σ = 0, ω = 6, κ = 3

]

Acknowledgement

The authors greatly thank the referees for their comments, which improve the paper.

Conflict of Interests

There is no conflict of interests by authors regarding the publication of this manuscript.

References

[1] Degasperis, A., Holm, D. D., & Hone, A. N. (2002). A new integrable equation with peakon solutions. Theoretical and

Mathematical Physics, 133(2), 1463-1474.

[2] Hone, A. N., & Wang, J. P. (2002). Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Problems,

19(1), 129.

[3] Ivanov, R. (2005). On the integrability of a class of nonlinear dispersive wave equations. Journal of Nonlinear Mathematical

Physics, 12(4), 462-468.

[4] Ivanov, R. I. (2007). Water waves and integrability. Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 365(1858), 2267-2280.

[5] Johnson, R. S. (2003). The classical problem of water waves: a reservoir of integrable and nearly-integrable equations. Journal of

Nonlinear Mathematical Physics, 10(sup1), 72-92.

[6] Mikhailov, A. V., & Novikov, V. S. (2002). Perturbative symmetry approach. Journal of Physics A: Mathematical and General,

35(22), 4775.

[7] Bressan, A., & Constantin, A. (2007). Global conservative solutions of the Camassa-Holm equation. Archive for Rational

Mechanics and Analysis, 183(2), 215-239.

[8] Constantin, A., & Lannes, D. (2009). The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations.

Archive for Rational Mechanics and Analysis, 192(1), 165-186.

[9] Abbasbandy, S., & Shirzadi, A. (2010). The first integral method for modified Benjamin-Bona-Mahony equation. Communications

in Nonlinear Science and Numerical Simulation, 15(7), 1759-1764.

[10] Medeiros, L. A., & Menzala, G. P. (1977). Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony

equation. SIAM Journal on Mathematical Analysis, 8(5), 792-799.

[11] Lundmark, H. (2007). Formation and dynamics of shock waves in the Degasperis-Procesi equation. Journal of Nonlinear Science,

17(3), 169-198.

[12] Tian, L., & Yin, J. (2007). Shock-peakon and shock-compacton solutions for K (p, q) equation by variational iteration method.

Journal of Computational and Applied Mathematics, 207(1), 46-52.

[13] Escher, J., Liu, Y., & Yin, Z. (2007). Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation. Indiana

University Mathematics Journal, 87-117.

[14] Li, Y. A., & Olver, P. J. (1997). Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system: I.

Compactons and peakons. Discrete and Continuous Dynamical Systems, 3, 419-432.

[15] Zou, L., Wang, Z., Zong, Z., Zou, D. Y., & Zhang, S. (2012). Solving shock wave with discontinuity by enhanced differential

transform method (EDTM). Applied Mathematics and Mechanics, 33(12), 1569-1582.

[16] Wazwaz, A. M. (2006). Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Physics

Letters A, 352(6), 500-504.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


110 L. Qian et al,: On Breather and Cuspon waves solutions for the generalized higher-order.....

[17] Matsuno, Y. (2005). Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit. Inverse Problems, 21(5),

1553.

[18] Biswas, A., Konar, S., & Zerrad, E. (2007). Soliton Perturbation Theory for the General Modified Degasperis-Procesi Camassa-

Holm Equation. Int. J. Mod. Math, 2(1), 35-40.

[19] Rodriguez, J. N., & Omel’yanov, G. (2019). General Degasperis-Procesi equation and its solitary wave solutions. Chaos, Solitons

& Fractals, 118, 41-46.

[20] Yang, X. J., Tenreiro Machado, J. A., Baleanu, D., & Cattani, C. (2016). On exact traveling-wave solutions for local fractional

Korteweg-de Vries equation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(8), 084312.

[21] Khater, M. M., Lu, D., & Attia, R. A. (2019). Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified

auxiliary equation method. AIP Advances, 9(2), 025003.

[22] Khater, M., Attia, R. A., & Lu, D. (2019). Explicit Lump Solitary Wave of Certain Interesting (3+ 1)-Dimensional Waves in

Physics via Some Recent Traveling Wave Methods. Entropy, 21(4), 397.

[23] Khater, M., Attia, R., & Lu, D. (2019). Modified Auxiliary Equation Method versus Three Nonlinear Fractional Biological Models

in Present Explicit Wave Solutions. Mathematical and Computational Applications, 24(1), 1.

[24] Khater, M. M., Lu, D., & Attia, R. A. (2019). Lump soliton wave solutions for the (2+ 1)-dimensional Konopelchenko-Dubrovsky

equation and KdV equation. Modern Physics Letters B, 1950199.

[25] Attia, R. A., Lu, D., & Khater, M. M. (2018). Structure of New Solitary Solutions for The Schwarzian Korteweg De Vries Equation

And (2+ 1)-Ablowitz-Kaup-Newell-Segur Equation.

[26] Hosseini, K., Kumar, D., Kaplan, M., & Bejarbaneh, E. Y. (2017). New exact traveling wave solutions of the unstable nonlinear

Schrödinger equations. Commun. Theor. Phys, 68(6), 761-767.

[27] Baleanu, D., Inc, M., Yusuf, A., & Aliyu, A. I. (2018). Traveling wave solutions and conservation laws for nonlinear evolution

equation. Journal of Mathematical Physics, 59(2), 023506.

[28] Osman, M. S., & Wazwaz, A. M. (2018). An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-

dimensional KdV equation with variable coefficients. Applied Mathematics and Computation, 321, 282-289.

[29] Osman, M. S. (2018). On complex wave solutions governed by the 2D Ginzburg-Landau equation with variable coefficients. Optik,

156, 169-174.

[30] Rezazadeh, H., Osman, M. S., Eslami, M., Ekici, M., Sonmezoglu, A., Asma, M., ... & Biswas, A. (2018). Mitigating Internet

bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik, 164, 84-92.

[31] Tchier, F., Yusuf, A., Aliyu, A. I., & Inc, M. (2017). Soliton solutions and conservation laws for lossy nonlinear transmission line

equation. Superlattices and Microstructures, 107, 320-336.

[32] Inc, M., Yusuf, A., Aliyu, A. I., & Baleanu, D. (2018). Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations:

Lie symmetry analysis, explicit solutions and convergence analysis. Physica A: Statistical Mechanics and its Applications, 493,

94-106.

[33] Inc, M., Aliyu, A. I., & Yusuf, A. (2017). Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s

equation with spatio-temporal dispersion. Modern Physics Letters B, 31(14), 1750163.

[34] Uddin, M. H., Akbar, M. A., Khan, M. A., & Haque, M. A. (2017). Close Form Solutions of the Fractional Generalized Reaction

Duffing Model and the Density Dependent Fractional Diffusion Reaction Equation. Appl. Comput. Math, 6(4).

[35] Khan, M. A., Akbar, M. A., & Belgacem, F. B. M. (2016). Solitary wave solutions for the Boussinesq and Fisher equations by the

modified simple equation method. Mathematics Letters, 2(1), 1-18.

[36] Khater, M., Attia, R. A., & Lu, D. (2019). Explicit Lump Solitary Wave of Certain Interesting (3+ 1)-Dimensional Waves in

Physics via Some Recent Traveling Wave Methods. Entropy, 21(4), 397.

[37] Khater, M. M., Lu, D., & Attia, R. A. (2019). Lump soliton wave solutions for the (2+ 1)-dimensional Konopelchenko-Dubrovsky

equation and KdV equation. Modern Physics Letters B, 1950199.

[38] Khater, M., Attia, R., & Lu, D. (2019). Modified Auxiliary Equation Method versus Three Nonlinear Fractional Biological Models

in Present Explicit Wave Solutions. Mathematical and Computational Applications, 24(1), 1.

[39] Kaplan, M., Bekir, A., & Akbulut, A. (2016). A generalized Kudryashov method to some nonlinear evolution equations in

mathematical physics. Nonlinear Dynamics, 85(4), 2843-2850.

[40] Hosseini, K., & Ansari, R. (2017). New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the

modified Kudryashov method. Waves in Random and Complex Media, 27(4), 628-636.

[41] Li, H., Chen, D., Zhang, H., Wu, C., & Wang, X. (2017). Hamiltonian analysis of a hydro-energy generation system in the transient

of sudden load increasing. Applied Energy, 185, 244-253.

[42] Sanz-Serna, J. M., & Calvo, M. P. (2018). Numerical hamiltonian problems. Courier Dover Publications.

[43] Swaters, G. E. (2019). Introduction to Hamiltonian fluid dynamics and stability theory. Routledge.

c© 2019 NSP

Natural Sciences Publishing Cor.


	Introduction
	Applications
	Conclusion

