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Introduction 
 
Analytical solutions have offered important advantages in the development of various fluid flow systems.These solutions 
serve as fundamental basis for the comparison between fluid dynamic nature and system evolution trends. The analytical 
solutions of incompressible flow and constant coefficient of heat conduction have been derived from the bases of fluid 
dynamics and heat transfer[1,2]. The Navier-Stokes and heat equations are one of the most useful sets of equations that is 
used to describe the flow field with functions of space and the time in Eulerian representation. These equations can be used 
to describe many different physical and engineering problems[3-5]. These equations are nonlinear in nature and they have 
solutions for description the velocity of the fluid and temperature distributions at a any point in space and time. Nonlinear 
partial differential equations (NPDEs) are difficult to be solved therefore this motives the researchers to rise their 
interesting with some phenomena such as chaos, Navier-Stokes and heat equations. The exact solutions of these NPDEs are 
an important scope to study of the nonlinear phenomena. In past decades, many methods have been developed to find exact 
solutions for NPDEs such as Kudryashos method(KM) [9-11], new similarity transformation method [21], homogeneous 
balance method [22] and tanh function method [23-25]. The Kudryashov Method is considered as transformation methods: 
due to it has the application of the transform 𝜉 = ∑$%&' 𝑎%𝑥%, the partial differential equations (PDEs) which can be reduced 
to tractable ordinary differential equation, where 𝜉 is an independent variable of ordinary differential equations and it is 
also called a phase of the wave. 𝑥*. . . 𝑥$ are independent variables of the partial differential equations and 𝑎*. . . 𝑎$ are 
arbitrary constants. Some of the problems in this field are solved numerically a little of them are solved analytically . So 
that solving this equations analytically be difficult. To our under standing, Navier â€“stokes equations and heat equation 
are unresolved by the Kudryashov method that is represented as a good way to find exact wave traveling solutions. These 
information with regard to finding exact traveling wave solutions encourage us to solve these equations by kudryashov 
method which deals with the complicated problems by combination of from heat transfer equation and fluid flow 
equation(Naviers-Stokes equations). The scope of this paper is to determined the efficiency of the Kudryashov method for 
finding exact solutions of the fluid flow systems that are specified by Navier -Stokes equations and heat equation. In this 
work, we use the Kudryashov method to find the exact traveling wave solutions for two-dimensional Navier-Stokes and 
heat equations. Two cases were discussed to find exact solutions of the Navier -Stokes equations and each case contains 
three types of exact wave travelling solution, which can be written in terms of the exponential, sech and csch functions. 
The exact travelling wave solutions for Navier-Stokes with heat equations divided into sets, each set contains two cases, 
which can be written in terms of the exponential, sech and csch functions. The layout of this paper is systematized as 
follows: The description of the Kudryashov method in section (2). In section (3) the two-dimensional Navier -Stokes 
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equations, and the two-dimensional Navier -Stokes and heat equations are described. Applications of KM to solve of these 
equations are given insection (4). Finally, conclusions are reported. 

 
1.1 The Kudryashov Method 
  
The method has been extensively used for solving many nonlinear partial differential equations. Consider the nonlinear 
equation in three independent variables 𝑥 , 𝑦 and 𝑡:  

 𝐹(𝑢, 23
24
, 23
25
, 23
26
, 2

73
257

, . . . ) = 0,				𝑥, 𝑦𝜀Ω, 𝑡 > 0, (1) 
 where Ω is a smooth bounded domain with boundary ∂Ω, 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is an unknown function, 𝑥 and 𝑦 are the spatial 
variables, 𝑡 is the time variable, 𝐹 is a polynomial in 𝑢 and its various partial derivatives, which are involved the highest 
order derivatives and nonlinear terms.  
The main steps of the Kudryashov method are written as follows: 
 Step 1: The traveling wave variable 𝜉 = 𝑒𝑥 + 𝑘𝑦 − 𝑐𝑡 transform Equation(1) into an ordinary differential equation of the 
form :  

 𝐺(𝑢,−𝑐 D3
DE
, 𝑒 D3

DE
, 𝑘 D3

DE
, 𝑒F D

73
DE7

, . . . ) = 0, (2) 
 where 𝑒 and 𝑘 are the wave numbers and 𝑐 is a wave speed, Equation(2) may be integrated as many times as 

required. For simplicity, the constants of integration, should be set to zero. 
 Step 2: Suppose that the solution of Equation (2) has the following form:  
 𝑢(𝜉) = ∑G%&' 𝑎%𝑄%, (3) 
 where 𝑎%(𝑖 = 0,1,2, . . . , 𝑁) are constants to be determined afterward such that 𝑎G ≠ 0, 𝑄 = 𝑄(𝜉), the following 

ordinary differential equation becomes :  
 D7N(E)

DE7
= 𝑄F(𝜉) − 𝑄(𝜉), (4) 

 The solution of Equation (4) becomes as follows:  
 𝑄(𝜉) = *

*OPQ5R(E)
, (5) 

 where 𝐴 is a constant of integration. 
Step 3: The positive integers 𝑁 appearing in Equation (3) can be found by consideration of the homogenous balance 
between the highest order derivatives and the term 𝑢R(D

T3
DET
)U which obtain in Equation (2), The degree of 𝑢(𝜉) as 

𝐷(𝑢(𝜉)) = 𝑁 which gives rise to the degree of other expression can be defined as follows:  
 𝐷[D

X3)
DEX

] = 𝑁 + 𝑘,				𝑘 = 1,2, . . .          (6)       
 
 𝐷[𝑢R(D

T3
DET
)U] = 𝑁(𝑝 + 1) + 𝑠(𝑁 + 𝑞),				𝑝 = 0,1, . . .				𝑞 = 0,1, . . .				𝑠 = 1,2, . . . (7) 

where 𝑘, 𝑝, 𝑞, 𝑠 are integer numbers. Therefore, the value of N can be found in Equation (3).  
 

1.2 Description of the Equations  
 

• The two-dimensional Navier-Stokes equations 
 In this subsection, the Navier-Stokes equations are described. Let us consider the unsteady state two-dimensional 
incompressible Navier-Stokes equations [12] as follows:  

 23
25
+ 2]

26
= 0, (8) 

 
 23

24
+ 𝑢 23

25
+ 𝑣 23

26
= − *

_
2R
25
+ 𝜇∇F𝑢,				𝑡 > 0, (𝑥, 𝑦)𝜀Ω (9) 

 
 2]

24
+ 𝑢 2]

25
+ 𝑣 2]

26
= − *

_
2R
26
+ 𝜇∇F𝑣,          (10)  

where 𝑢 and 𝑣 are velocity components in 𝑥 − direction and 𝑦 − direction, respectively. 𝑝 is the pressure, 𝑡 is the time,𝑥 
and 𝑦 are the space coordination, 𝜇 is the kinematic viscosity, 𝜌 is the fluid density and ∇F is the Laplacian operator. In 
order to facilitate analysis, the following dimensionless variables become:-  

 𝑢′ = 3
cd
, 𝑣′ = ]

cd
, 𝑥′ = 5

e
, 𝑦′ = 6

e
, 𝑝′ = R

cd7
 (11) 

 where 𝑈' is a reference velocity, and 𝐿 is a reference length. After drop the primes for the new variables 
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definitions, the equations becomes:  
 23

25
+ 2]

26
= 0 (12) 

 
 23

24
+ 𝑢 23

25
+ 𝑣 23

26
= − *

_
2R
25
+ *

hi
∇F𝑢, (13) 

 
 2]

24
+ 𝑢 2]

25
+ 𝑣 2]

26
= − *

_
2R
26
+ *

hi
∇F𝑣, (14) 

where 𝑅𝑒 = cde
k

 is Reynolds number. In Cartesian coordinate system, we can defined the vorticity function 𝜔 and the 
velocity components as follows:  

 𝜔 = 2]
25
− 23

26
. (15) 

 
 𝑢 = 2m

26
, 𝑣 = −2m

25
, (16) 

 
where 𝜓 is the stream function. Differentiating Equations (13) and (14) with respect to 𝑥 and 𝑦 respectively also 
subtraction the results equations from Equations (16) and ( 12) we obtain :  

 − 2om
24 25o

− 2om
24 26o

− 2m
26

2om
25o

− 2m
26

2om
25 267

+ 2m
25

2om
26 257

+ 2m
25

2om
26o

+ 
 
 *

hi
[2
pm
25p

+ 2pm
26p

+ 2pm
257 267

+ 2pm
267 257

] = 0 (17) 
This partial differential equation is called the stream equation. Now, a Poisson equation for 𝜓 can be obtained by 
substitution of the velocity components Equation (16) in the Equation (15) as,  

 𝜔 = −27m
257

− 27m
267

. (18) 
 

• The two-dimensional Navier-Stokes and heat equations 
  
In this subsection, the Banard problem can be considered. The unsteady state two-dimensional Heat Benard [6 ] as follows:  

 23
25
+ 2]

26
= 0, (19) 

 
 23

24
+ 𝑢 23

25
+ 𝑣 23

26
= − *

_
2R
25
+ 𝑝𝑟∇F𝑢, (20) 

 
 2]

24
+ 𝑢 2]

25
+ 𝑣 2]

26
= − *

_
2R
26
+ 𝑝𝑟∇F𝑣 + 𝑝𝑟𝑅𝑎𝑇, (21) 

 
 2s

24
+ 𝑢 2s

25
+ 𝑣 2s

26
= 27s

257
+ 27s

267
, (22) 

The governing equations are the continuity equation, the 𝑥 − is momentum equation, the 𝑦 − is momentum equation, and 
the energy equation can be drawn in accordance to Figure(1).  

 

 
Fig.1: Schematic of the Benard problem. 
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In these equations, 𝑝𝑟 is the prandtl number which expresses the ratio (viscous diffusion)/(thermal diffusion)and given as 
𝑝𝑟 = k

t
. The characteristic non-dimensional number for this problem is the Rayleigh number as defined below:  

 𝑅𝑎 = uvΔswo

tk
, (23) 

 here, 𝑔 is the gravitational acceleration, 𝛼 is the thermal expansion coefficient, Δ𝑇 is the temperature difference between 
the lower(hot) surface and the upper(cold) surface, 𝐻 is the height of the fluid layer, 𝑘 is the thermal diffusivity and 𝜇 is the 
kinematic viscosity of the fluid. Differential Equation (20) and Equation (21) with respect to 𝑥 and 𝑦 respectively, and 
subtracting the results equations with use Equations (16) and (19) give the following system of equations  

 − 2om
24 25o

− 2om
24 26o

− 2m
26

2om
25o

− 2m
26

2om
25 267

+ 2m
25

2om
26 257

+ 2m
25

2om
26o

+ 
 
 𝑝𝑟[2

pm
25p

+ 2pm
26p

+ 2pm
257 267

+ 2pm
267 257

] − 𝑝𝑟𝑅𝑎 2s
25
= 0, (24) 

 
 
 2s

24
+ 2m

26
2s
25
− 2m

25
2s
26
− 27s

257
− 27s

267
= 0, (25) 

 
2 Applications 
 
 In this section, we apply the Kudryashov method for the two-dimensional Navier -stokes equations and the two -
dimensional Navier -stokes equations with heat equation as the following:  
 

• Two-dimensional Navier -Stokes equations  
 
we will apply the Kudryashov method for the two-dimensional Navier -Stokes equations by use the traveling wave 
transformation as:  

 𝜓(𝑥, 𝑦, 𝑡) = 𝐹(𝜉), 𝜉 = 𝑒𝑥 + 𝑘𝑦 − 𝑐𝑡, (26) 
substituting this traveling wave into Equation (17), 𝐹(𝜉) satisfies 

 
 𝑐(𝑒F + 𝑘F) D

o{(E)
DEo

+ *
hi
(𝑒F + 𝑘F)F D

p{(E)
DEp

= 0, (27) 
 Integrating Equation (27) three times with respect to 𝜉 and choosing the constant of integration as zero to obtain the 
following ordinary differential equation:  

 𝑐𝐹(𝜉) + *
hi
(𝑒F + 𝑘F) D{(E)

DE
= 0, (28) 

 Now, homogeneous balancing the highest order derivative D{(E)
DE

 and the term 𝐹'(𝜉) D
d{(E)
DEd

 with apply Equation (6) and (7) 
satisfies;  

 𝐷(D{(E)
DE

) = 𝑁 + 1, (29) 
 
 𝐷(𝐹'(𝜉) D

d{(E)
DEd

) = 2𝑁, (30) 
 from Equations (29) and(30), we get 𝑁 = 1, therefore Equation (3) reduces to  

 𝐹(𝜉) = 𝑎' + 𝑎*𝑄, (31) 
 
 D{(E)

DE
= 𝑎*𝑄F − 𝑎*𝑄, (32) 

 where 𝑄 is given in Equation (5), substituting Equations (31) and (32) in Equation (28) implies that :  
 𝑐𝑎' + 𝑐𝑎*𝑄 −

*
hi
(𝑒F + 𝑘F)𝑎*𝑄 +

*
hi
(𝑒F + 𝑘F)𝑎*𝑄F = 0. (33) 

 Equating the coefficients of this polynomial of the same powers of 𝑄t(𝑘 = 0,1,2) to zero, we obtain a system of algebraic 
equations:  

 𝑄': 𝑐𝑎' = 0, (34) 
 
 𝑄*: 𝑐𝑎* −

*
hi
(𝑒F + 𝑘F)𝑎* = 0, (35) 

 
 𝑄F: *

hi
(𝑒F + 𝑘F)𝑎* = 0, (36) 
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 from Equations (34) and (35), we obtain 𝑎* ≠ 0, 𝑐 ≠ 0, 𝑎' = 0, 𝑐 = *
hi
(𝑒F + 𝑘F). Then we get:  

 𝐹(𝜉) = 𝑎*𝑄 =
}~

*OPQ5R(E)
, (37) 

 since 𝜓(𝑥, 𝑦, 𝑡) = 𝐹(𝜉), then  
                                             𝜓(𝑥, 𝑦, 𝑡) =

}~
*OPQ5R(i5Ot6��4)

.                                    (38) 
  

There are several cases for exact traveling wave solutions can be summarized as: 

 case 1 :𝑘 = 𝑒, 𝑐 = Fi7

hi
, 2R
26
= −2R

25
, 

 

 𝑢(𝑥, 𝑦, 𝑡) = −𝑣(𝑥, 𝑦, 𝑡) =
�Pi}~Q5R(i(5O6)�

7�7

�� 4)

(*OPQ5R(i(5O6)�7�
7

�� 4))
7
, 

 

 𝑝(𝑥, 𝑦, 𝑡) = −
F}~�PQ5R(i(5O6)�

7�7

�� 4)

(*OPQ5R(i(5O6)�7�
7

�� 4))�
, 

 

 𝜔(𝑥, 𝑦, 𝑡) =
F}~i7[PQ5R(i(5O6)�

7�7

�� 4)�P
7Q5R(Fi(5O6)�p�

7

�� 4)]

(*OPQ5R(i(5O6)�7�
7

�� 4))
o

, 

 if 𝐴 = 1, the results become:  

𝑢(𝑥, 𝑦, 𝑡) = −𝑣(𝑥, 𝑦, 𝑡) =
−𝑎*𝑒
4

𝑠𝑒𝑐ℎF(
𝑒(𝑥 + 𝑦) − Fi7

hi
𝑡

2
), 

 

𝑝(𝑥, 𝑦, 𝑡) = −
𝑐𝑎*𝑠𝑒𝑐ℎF(

i(5O6)�7�
7�

��
F

)

2(1 + 𝐸𝑥𝑝(𝑒(𝑥 + 𝑦) − Fi7

hi
𝑡))

, 

 

𝜔(𝑥, 𝑦, 𝑡) =
𝑎*𝑒F

2
𝑠𝑒𝑐ℎF(

𝑒(𝑥 + 𝑦) − Fi74
hi

2
)[
1 − 𝐸𝑥𝑝(𝑒(𝑥 + 𝑦) − Fi74

hi
)

1 + 𝐸𝑥𝑝(𝑒(𝑥 + 𝑦) − Fi74
hi
)
], 

 

again, if we take 𝐴 = −1, then we obtain:  

𝑢(𝑥, 𝑦, 𝑡) = −𝑣(𝑥, 𝑦, 𝑡) =
𝑎*𝑒
4
𝑐𝑠𝑐ℎF(

𝑒(𝑥 + 𝑦) − Fi7

hi
𝑡

2
), 

 

𝑝(𝑥, 𝑦, 𝑡) =
𝑐𝑎*𝑐𝑠𝑐ℎF(

i5Ot6�(�
7�X7)
�� )4

F
)

2(1 + 𝐸𝑥𝑝(𝑒(𝑥 + 𝑦) − Fi7

hi
𝑡))

 

 

𝜔(𝑥, 𝑦, 𝑡) =
−𝑎*𝑒F

2
𝑐𝑠𝑐ℎF(

𝑒(𝑥 + 𝑦) − Fi74
hi

2
)[
1 + 𝐸𝑥𝑝(𝑒(𝑥 + 𝑦) − Fi74

hi
)

1 − 𝐸𝑥𝑝(𝑒(𝑥 + 𝑦) − Fi74
hi
)
], 

case 2 :𝑒 = −𝑘, 𝑐 = Ft7

hi
, 2R
26
≠ −2R

25
, 𝜉 → 		−∞, 

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) =
−𝐴𝑘𝑎*𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) −

Ft7

hi
𝑡)

(1 + 𝐴𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft7

hi
𝑡)F
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𝑝(𝑥, 𝑦, 𝑡) = 𝑡 −
𝐴𝑘𝑎*[−4𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) −

Ft7

hi
) + 8𝐴𝐸𝑥𝑝(2𝑘(𝑦 − 𝑥) − �t7

hi
)]𝑥

(1 + 𝐴𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft7

hi
))�

 

 or,  

𝑝(𝑥, 𝑦, 𝑡) = 𝑡 −
𝐴𝑘𝑎*[−4𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) −

Ft7

hi
) + 8𝐴𝐸𝑥𝑝(2𝑘(𝑦 − 𝑥) − �t74

hi
)]𝑦

(1 + 𝐴𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
))�

 

 

𝜔 =
2𝑎*𝑘F[𝐴𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) −

Ft74
hi
) − 𝐴F𝐸𝑥𝑝(2𝑘(𝑦 − 𝑥) − �t74

hi
)]

(1 + 𝐴𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − t74
hi
))�

, 

 if 𝐴 = 1, :  

𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = −
𝑎*𝑘
4
𝑠𝑒𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
), 

 

𝑝(𝑥, 𝑦, 𝑡) = 𝑡 + 𝑘𝑎*𝑠𝑒𝑐ℎF(
𝑘(𝑦 − 𝑥) − Ft74

hi
2

)[
1

(1 + 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
))F

−
1
2
𝑠𝑒𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
)]𝑥.

 

 Or, 

𝑝(𝑥, 𝑦, 𝑡) = 𝑡 + 𝑘𝑎*𝑠𝑒𝑐ℎF(
𝑘(𝑦 − 𝑥) − Ft74

hi
2

)[
1

(1 + 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
))F

−
1
2
𝑠𝑒𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
)]𝑦.

 

 

𝜔(𝑥, 𝑦, 𝑡) =
𝑎*𝑘F

2
𝑠𝑒𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
)[
1 − 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74

hi
)

1 + 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
)
], 

 and if 𝐴 = −1, the results can be obtained as follows:  

𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) =
𝑎*𝑘
4
𝑐𝑠𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
), 

 

𝑝(𝑥, 𝑦, 𝑡) = 𝑡 + 𝑘𝑎*𝑐𝑠𝑐ℎF(
𝑘(𝑦 − 𝑥) − Ft74

hi
2

)[
1

(1 − 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
))F

+
1
2
𝑐𝑠𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
)]𝑥.

 

 Or,  

𝑝(𝑥, 𝑦, 𝑡) = 𝑡 + 𝑘𝑎*𝑐𝑠𝑐ℎF(
𝑘(𝑦 − 𝑥) − Ft74

hi
2

)[
1

(1 − 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
))F

+
1
2
𝑐𝑠𝑐ℎF(

𝑘(𝑦 − 𝑥) − Ft74
hi

2
)]𝑦.
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𝜔(𝑥, 𝑦, 𝑡) =
−𝑎*𝑘F

2
𝑐𝑠𝑐ℎF(

𝑘(𝑦 − 𝑥) − Fit74
hi

2
)[
1 + 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Fi74

hi
)

1 − 𝐸𝑥𝑝(𝑘(𝑦 − 𝑥) − Ft74
hi
)
], 

 
• Two -dimensional Navier -Stokes and heat equations 

 The Kudryashov method is applied for the two -dimensional Navier -Stokes and heat equations. The traveling wave 
transformation can be rewritten;  

 𝜓(𝑥, 𝑦, 𝑡) = 𝐻(𝜉), 𝑇(𝑥, 𝑦, 𝑡) = 𝐹(𝜉), (39) 
using these new traveling wave forms into Equations (24) and (25) respectively, 𝐻(𝜉) and 𝐹(𝜉) satisfies;  

 𝑐(𝑒F + 𝑘F) D
ow(E)
DEo

+ (𝑒F + 𝑘F)F𝑝𝑟 D
pw(E)
DEp

= 𝑝𝑟𝑅𝑎𝑒 D{(E)
DE

 (40) 

 
 𝑐 D{(E)

DE
+ (𝑒F + 𝑘F) D

7{(E)
DE7

= 0, (41) 
 from Equation (40) and Equation (41), 

 
 𝑐F(𝑒F + 𝑘F) D

ow(E)
DEo

+ (𝑐(𝑒F + 𝑘F)F + 𝑐(𝑒F + 𝑘F)F𝑝𝑟) D
pw(E)
DEp

+ (𝑒F + 𝑘F)�𝑝𝑟 D
�w(E)
DE�

= 0, (42) 

Integrating Equation (42) three times with respect to 𝜉 and the chosen the constants of integration as zero to obtain the 
following ordinary differential equation:  

 𝑐F(𝑒F + 𝑘F)𝐻(𝜉) + (𝑐(𝑒F + 𝑘F)F + 𝑐(𝑒F + 𝑘F)F𝑝𝑟) Dw(E)
DE

+ (𝑒F + 𝑘F)�𝑝𝑟 D
7w(E)
DE7

= 0, (43) 

 Now, homogeneous balance of the order derivative D
7w(E)
DE7

 and the term 𝐻'(𝜉) D
dw(E)
DEd

 with apply Equation  (6)  and  (7)  
satisfies;  

 𝐷(D
7w(E)
DE7

) = 𝑁 + 2, (44) 

 
 𝐷(𝐻'(𝜉) D

dw(E)
DEd

) = 2𝑁, (45) 

 from Equations  (44) and (45) , we get 𝑁 = 2, therefore Equation (3) reduces to  
 𝐻(𝜉) = 𝑎' + 𝑎*𝑄 + 𝑎F𝑄F, (46) 
 
 Dw(E)

DE
= −𝑎*𝑄 + 𝑎*𝑄F − 2𝑎F𝑄F + 2𝑎F𝑄�, (47) 

 
 D7w(E)

DE7
= 𝑎*𝑄 − 3𝑎*𝑄F + 4𝑎F𝑄F − 10𝑎F𝑄� + 2𝑎F𝑄� + 6𝑎F𝑄�, (48) 

substitution of Equations (46), (47)and (48) in Equation (43), and equating the coefficients of 𝑄t, 𝑘 = 0,1,2,3,4 to zero, a 
system of algebraic equations can be obtained as follows:  

 𝑄': 𝑐F(𝑒F + 𝑘F)𝑎' = 0, (49) 
 
 𝑄*: 𝑐F(𝑒F + 𝑘F)𝑎* − 𝑐(𝑒F + 𝑘F)F(𝑝𝑟 + 1)𝑎* + 𝑝𝑟(𝑒F + 𝑘F)�𝑎* = 0, (50) 
 
 𝑄F: 𝑐(𝑒F + 𝑘F)F𝑎* + 𝑝𝑟(𝑒F + 𝑘F)F𝑎* − 2𝑐(𝑒F + 𝑘F)F = 0, 
 
 (𝑝𝑟 + 1)𝑎F − 3𝑝𝑟(𝑒F + 𝑘F)�𝑎* + 4𝑝𝑟(𝑒F + 𝑘F)�𝑎F = 0, (51) 
 
 𝑄� = 2𝑐(𝑒F + 𝑘F)F(𝑝𝑟 + 1)𝑎F − 10𝑝𝑟(𝑒F + 𝑘F)�𝑎F + 2𝑝𝑟(𝑒F + 𝑘F)�𝑎* = 0, (52) 
 
 𝑄�: 6𝑝𝑟(𝑒F + 𝑘F)�𝑎F = 0, (53) 

 From Equation (49)𝑐F(𝑒F + 𝑘F) ≠ 0, 𝑎' = 0, if we impose 𝑎* ≠ 0 then the following relations can be obtain from 
Equation(50):  

 𝑐 = 𝑝𝑟(𝑒F + 𝑘F), (54) 
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 𝑐 = (𝑒F + 𝑘F), (55) 

substitution of (45) and  (55) in Equation (51) yield  
 𝑎* = 𝑎F,				𝑎*, 𝑎F ≠ 0, (56) 

other values can be obtain from substitution of Equations (54) and (55) in the Equation(52) respectively as follows  
 𝑎* =

F�R����
�F�

𝑎F, (57) 
 
 𝑎* =

���R�OF�
�F�R�

𝑎F, (58) 
 Now, the solutions can be analyzed in two sets based on the values of the parameter 𝑎*, 𝑎F and 𝑝𝑟.  
 Set 1, when 𝑎' = 0, 𝑎* = 𝑎F, 𝑐 = 𝑝𝑟(𝑒F + 𝑘F):  

 𝐻(𝜉) = 𝑎*𝑄 + 𝑎F𝑄F, (59) 
 
 𝐻(𝜉) = }~(FOPQ5R(E))

(*OPQ5R(E))7
, (60) 

 
 𝜓(𝑥, 𝑦, 𝑡) = }~(FOPQ5R(i5Ot6��4))

(*OPQ5R(i5Ot6��4))7
, (61) 

 
 𝐹(𝜉) = �}~P(i7Ot7)[��Q5R(E)O*�PQ5R(E)]

(*OPQ5R(E))�
, (62) 

 
 𝑇(𝑥, 𝑦, 𝑡) = �}~P(i7Ot7)[��Q5R(i5Ot6��4)O*�PQ5R(Fi5OFt6�F�4)]

(*OPQ5R(i5Ot6��4))�
, (63) 

 Set 2, when 𝑎' = 0, 𝑎* = 3𝑎F, 𝑝𝑟 = 1, 𝑐 = (𝑒F + 𝑘F) :  
 𝐻(𝜉) = }7(�O�PQ5R(E))

(*OPQ5R(E))7
, (64) 

 
 𝜓(𝑥, 𝑦, 𝑡) = }7(�O�PQ5R(i5Ot6��4))

(*OPQ5R(i5Ot6��4))7
, (65) 

 
 𝐹(𝜉) = �}7P(i7Ot7)[�*'Q5R(E)O�FPQ5R(FE)O�P7Q5�(�E)]

(*OPQ5R(E))�
, (66) 

 
 𝑇(𝑥, 𝑦, 𝑡) = ��}7P(i7Ot7)Q5R(i5Ot6��4)

R�h}i(*OPQ5R(E))�  
 
 +�}7P(i7Ot7)[�FPQ5R(Fi5OFt6�F�4)O�P7Q5�(�i5O�t6���4)]

R�h}i(*OPQ5R(i5Ot6��4))�
, (67) 

 There are several cases for exact traveling wave solutions which can be summarized as: 
 Case 1:𝑎' = 0, 𝑎* = 𝑎F, 𝑘 = −𝑒, 𝑐 = 2𝑒F𝑝𝑟, 𝜉 → −∞, 
 𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = �}~iPQ5R(i(5�6)�Fi7R�4)O}~iP7Q5R(i(5�6)��i7�4)

(*OPQ5R(i(5�6)�Fi7R�4))o
, 

 
 𝑝(𝑥, 𝑦, 𝑡) = �}~�PQ5R(i(5�6)�Fi7R�4)

(*OPQ5R(i(5�6)�Fi7R�4))p 
 
 𝑇(𝑥, 𝑦, 𝑡) = F}~�iP[��Q5R(i(5�6)�Fi7R�4)O*�PQ5R(Fi(5�6)��i74)]

R�h}(*OPQ5R(i(5�6)�Fi7R�4))�
, 

 
 𝜔 = F}~i7P[�Q5R(i(5�6)�Fi7R�4)��PQ5R(Fi(5�6)��i7R�4)�P7Q5R(�i(5�6))��i74]

(*OPQ5R(i(5�6)�Fi7R�4))p  
 
if 𝐴 = 1, we obtain:  
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 𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = }~i
�
𝑠𝑒𝑐ℎ2(i(5�6)�Fi

7R�4
F

)[�OQ5R(i(5�6)�Fi
7R�4)

*OQ5R(i(5�6)�Fi7R�4)
], 

 

 𝑝(𝑥, 𝑦, 𝑡) = �}~�
F

Ui��7(�(���)�7�
7���

7 )

(*OQ5R(i(5�6)�Fi7R�4))7
, 

 

 𝑇(𝑥, 𝑦, 𝑡) = − F�}~i
R�h}

[
�Ui��7(�(���)�7�

7���
7 )

F(*OQ5R(i(5�6)�Fi7R�4))7
−

�Ui��p(�(���)�7�
7���

7 )

�(*OQ5R(i(5�6)�Fi7R�4))
], 

 

 
𝜔(𝑥, 𝑦, 𝑡) = }~i7

F
𝑠𝑒𝑐ℎF(i(5�6)�Fi

7R�4
F

)[ �
(*OQ5R(i(5�6)�Fi7R�4))7

−𝑠𝑒𝑐ℎF(i(5�6)�Fi
7R�4

F
) − Q5R(i(5�6)�Fi7R�4)

�
],

 

 and if 𝐴 = −1, we get  

 𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = −}~t
�
𝑐𝑠𝑐ℎF(i(5�6)�Fi

7R�4
F

)[��Q5R(i(5�6)�Fi
7R�4)

*�Q5R(i(5�6)�Fi7R�4)
], 

 

 𝑝(𝑥, 𝑦, 𝑡) = − �}~�
F

�U��7(���X��(�
7�X7)

7 )

(*�Q5R(i(5�6)�Fi7R�4))7
, 

 

 𝑇(𝑥, 𝑦, 𝑡) = F�}~i
R�h}

[
�Ui��7(�(���)�7�

7���
7 )

F(*�Q5R(i(5�6)�Fi7R�4))7
+

�Ui��p(�(���)�7�
7���

7 )

�(*�Q5R(i(5�6�Fi7R�4))
], 

 

 
𝜔(𝑥, 𝑦, 𝑡) = �}~i7

F
𝑐𝑠𝑐ℎF(i(5�6)�Fi

7R�4
F

)[ �
(*�Q5R(i(5�6)�Fi7R�4))7

+𝑐𝑠𝑐ℎF(i(5�6)�Fi
7R�4

F
) − Q5R(i(5�6)�Fi7R�4)

�
],

 

 Case 2 :𝑎' = 0, 𝑎* = 𝑎F, 𝑒 = 𝑘, 𝑐 = 2𝑘F𝑝𝑟, 𝜉 → −∞, 
 𝑢(𝑥, 𝑦, 𝑡) = −𝑣(𝑥, 𝑦, 𝑡) = ��}~PtQ5R(i(5O6)�F4)�}~P7tQ5R(Ft(5O6)�Ft7R�4)

(*OPQ5R(t(5O6)�Ft7R�4))�
, 

 
 𝑝(𝑥, 𝑦, 𝑡) = 𝑡 − �}~P�Q5R(t(5O6)�Ft7R�4)

(*OPQ5R(t(5O6)�t7R�4)))p
, 

 
 𝑇(𝑥, 𝑦, 𝑡) = F�}~Pt[��Q5R(t(5O6)�F�7R�4)O*�PQ5R(Ft(5O6)��t7R�4)]

R�h}(*OPQ5R(t(5O6)�Ft7R�4))p  
 
 𝜔 = F}~Pt7[�Q5R(t(5O6)�Ft7R�4)��PQ5R(Ft(5O6)��t7R�4)��P7Q5R(�t(5O6)��t7R�4)]

(*OPQ5R(t(5O6)�Ft7R�4))p
. 

 
 Case 3:𝑎' = 0, 𝑎* = 3𝑎F, 𝑝𝑟 = 1, 𝑘 = −𝑒, 𝑐 = 2𝑒F, 𝜉 → −∞, 
 𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = �}7iPQ5R(i(5�6)�Fi74)O�}7iP7Q5R(Fi(5�6)��i74)

(*OPQ5R(i(5�6)�Fi74))o
, 

 
 𝑝(𝑥, 𝑦, 𝑡) = }7�[*'PQ5R(i(5�6)�Fi74)O�P7Q5R(Fi(5�6)��i74)]

(*OPQ5R(i(5�6)�Fi74))p
, 

 

 
𝑇(𝑥, 𝑦, 𝑡) = F�}7iP[�*'Q5R(i(5�6)�Fi74)O�FPQ5R(Fi(5�6)��i74)]

R�h}(*OPQ5Ri(i(5�6)�Fi74))�

+ *��}7iPoQ5R(�i(5�6)��i74)
R�h}(*OPQ5R(i(5�6)�Fi74))�

,
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 𝜔 = F}~Pi7[�Q5R(i(5�6)�Fi74)��PQ5R(Fi(5�6)��i74)��P7Q5R(�i(5�6)��i74)]
(*OPQ5R(i(5�6)�Fi74))p

, 
 Case 4:𝑎' = 0, 𝑎* = 3𝑎F, 𝑝𝑟 = 1, 𝑘 = 𝑒, 𝑐 = 2𝑘F, 𝜉 → −∞, 
 𝑢(𝑥, 𝑦, 𝑡) = −𝑣(𝑥, 𝑦, 𝑡) = ��}7PtQ5R(t(5O6)�Ft74)��}7P7tQ5R(Ft(5O6)�Ft74)

(*OPQ5R(t(5O6)�Ft74))o
, 

 
 𝑝(𝑥, 𝑦, 𝑡) = 𝑡 − }7�[*'PQ5R(t(5O6)�Ft74)O�P7Q5R(Ft(5O6)�Ft74)]

(*OPQ5R(t(5O6)�Ft74))p
, 

 

 
𝑇(𝑥, 𝑦, 𝑡) = F�}7tP[�*'Q5R(�(5O6)�Ft74)O�FPQ5R(Ft(5O6)��t74)]

R�h}(*OPQ5R(t(5O6)�Ft74))�

+ *��}7tPoQ5R(�t(5O6)��t74)
R�h}(*OPQ5R(t(5O6)�Ft74))�

,
 

 
 𝜔 = F}~Pt7[�Q5R(t(5O6)�Ft74)��PQ5R(Ft(5O6)��t74)��P7Q5R(�t(5O6)��t74)]

(*OPQ5R(t(5O6)�Ft74))p
. 

 
Remark: Remained solutions in terms of sech and csch functions for the case 2,3 and 4 can be obtained in the same 
procedure that is obtained in case 1, with assume 𝐴 = 1,−1.  
 

3 Conclusions 
 In summary, the Kudryashov method is used for obtaining exact travelling wave solutions of two nonlinear system of 
equations which include two-dimensional Navier-Stokes equations, Navier-Stokes and heat equations. The solutions that 
were obtained in this paper are new and not found elsewhere. In addition we have shown that all solutions satisfy the 
original equations. In results, the Kudryashov method is a reliable and effective for finding exact solutions. 
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