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Abstract: Difference equations with a special type of impulses is studied. This type of impulses are called non-instantaneous and they

start their action abruptly at initially given points and then continue to act on given finite intervals. Since the studied type of equation

could not be solved recursively it requires to be proved and applied approximate methods. One of the approximate methods providing

a constructive approach to find solutions for the nonlinear problem via linear iterates is the monotone iterative technique. It uses the

method of upper and lower solutions which generates the existence of solutions in a closed sector. In this paper the approximate solution

of the studied problem is obtained as a limit of successive approximations which are solutions of linear difference equation with constant

coefficients and their explicit formula is given. Each term of the sequences is a lower/upper solution of the studied nonlinear problem.

Keywords: Difference equations, non-instantaneous impulses, lower and upper solutions, monotone-iterative technique.

1. Introduction

In modeling one of the main problems is connected with time. Some researchers see the real systems as continuous-
time systems and therefore use differential equation-based tools to simulate a system. In the contrary, other researchers
consider the real systems as discrete time systems. Therefore, they select discrete-time simulation tools. In [17] the author
emphasizes that instead of first order systems in continuous time modeling which can not generate oscillated behavior,
first order systems in discrete-time approach can oscillate or even generate chaotic behavior. In [3] a discrete-time version
of epidemic model is developed. In [13] the authors study pattern formation of the discrete-time predator prey model.
Recently, the study of difference equations has caused a greater interest, for example, see [11], [8].

In the real world life there are many processes and phenomena that are characterized by rapid changes in their state. In
the literature these pro- cesses are modeled by two types of impulses: instantaneous impulses (whose duration is changing
relatively short compared to the overall duration of the whole process, see, for example, [6], [9], [16], [7], [10])) and
non-instantaneous im- pulses (which starts at a point and remains active on a finite time interval) ([5]).

Often, the solving of difference equations in a closed form is difficult ([1],[4]). Specially in the case when the unknown
function in the present time is involved on both parts of the equation non-linearly. One of the approximate method is based
on the method of upper and lower solutions, combined by a monotone-iterative technique. It is used to construct two
monotonous sequences of upper and lower solutions of the nonlinear non-instantaneous impulsive difference equation.
This method is applied for difference equations in [14], [15] and for impulsive difference equations in [2].

The main purpose of this paper is the application of monotone iterative technique to the initial value problem for
difference equations with non-instantaneous impulses and providing an applicable algorithm for obtaining successive
approximations to the solution.
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2. Statement of the problem

We will introduce basic notation used in this paper. Most of them are well known and used in the literature. Let Z+ denote

the set of all nonegative integers. Let the increasing sequence {ni}
p+1
i=0 : ni ∈ Z+, ni ≥ ni−1 + 3, i = 1,2, . . . , p and the

sequence {di}
p
i=1 : di ∈Z+, 1≤ di ≤ ni+1−ni−2, i= 1,2, . . . , p be given. We denoteZ[a,b] = {z∈Z+ : a≤ z≤ b}, a,b∈

Z+, a < b and Ik = Z[nk +dk,nk+1 −2], k ∈ Z[0, p−1], Ip = Z[np +dp,np+1−1] and Jk =Z[nk +1,nk +dk], k ∈ Z[1, p]
where d0 = 0.

Consider the initial value problem (IVP) for the nonlinear difference equation with non-instantaneous impulses (NIDE)

x(n+ 1) = f (n,x(n),x(n+ 1)) for n ∈
p
⋃

k=0

Ik,

x(nk) = F(k,x(nk − 1)), k ∈ Z[1, p]

x(n) = g(n,x(n),x(nk)) for n ∈
p
⋃

k=1

Jk,

x(n0) = x0,

(1)

where x,x0 ∈ R, f :
⋃p

k=0 Ik ×R×R→R, F : Z[1, p]×R→R, and g :
⋃p

k=1 Jk ×R×R→R.

3. Preliminaries results

Definition 1We will say that the function α : Z[n0,np+1] → R is a minimal(maximal) solution of the IVP for NIDE (1)
in Z[n0,np+1] if it is a solution of (1) and for any solution u(n),n ∈ Z[n0,np+1] of (1) the inequalities α(n) ≤ u(n)
(α(n)≥ u(n)) hold on Z[n0,np+1]

Definition 2The function α : Z[n0,np+1]→ R is called lower (upper) solutions of IVP for NIDE (1), if:

α(n+ 1)≤ (≥) f (n,α(n),α(n+ 1)), for n ∈
p
⋃

k=0

Ik,

α(nk)≤ (≥)F(k,α(nk − 1)), k ∈ Z[1, p]

α(n)≤ (≥)g(n,α(n),α(nk)), for n ∈
p
⋃

k=1

Jk

α(n0)≤ (≥)x0

Consider the IVP for the linear NIDE of the type

u(n+ 1) = Qnu(n)+σn, n ∈
p
⋃

k=0

Ik,

u(nk) = Tku(nk − 1)+ µk, k ∈ Z[1, p]

u(n) = Mnu(n)+Lnu(nk)+ γn, n ∈
p
⋃

k=1

Jk

u(n0) = x0,

(2)

where u,x0 ∈ R, Qn : n ∈
⋃p

k=0 Ik, σn : n ∈
⋃p

k=0 Ik, Ln, Mn 6= 1,γn : n ∈
⋃p

k=1 Jk, and Tk,µk : k ∈ Z[1, p] are given real
constants.

We will give an explicit formula to the solution of the IVP (2).

Lemma 1The IVP for NIDE (2) has an unique solution given by

u(n) = N(n)
n−1

∑
j=n0−1

(
n

∏
i= j+1

R(i))σ j

n−1

∏
i= j+1

Qi +N(n)
n

∑
j=n0

(
n

∏
i= j+1

R(i))ζ ( j)
n−1

∏
i= j

Qi + τ(n)

for n ∈ Z[n0,np+1]

(3)
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where σn0−1 = x0, σn = 0, Qn = 1 for n ∈ Z[n0,np+1]/
⋃p

k=0 Ik,

N(n) =

{

Ln
1−Mn

for n ∈
⋃p

k=1 Jk

1 otherwise
(4)

τ(n) =

{

γn

1−Mn
for n ∈

⋃p
k=1 Jk

0 otherwise
(5)

R(n) =











N(nk + dk) =
Lnk+dk

1−Mnk+dk

for n = nk + dk + 1, k ∈ Z[1, p]

Tk for n = nk, k ∈ Z[1, p]

1 otherwise

(6)

ζ (n) =











τ(nk + dk) =
γnk+dk

1−Mnk+dk

for n = nk + dk + 1, k ∈ Z[1, p]

µk for n = nk, k ∈ Z[1, p]

0 otherwise

(7)

Proof.We will use an induction with respect to the interval.
Let n ∈ Z[n0 + 1,n1 − 1]. Then from the first equation of (2) we obtain u(n) = ∑n−1

j=n0−1 σ j ∏n−1
i= j+1 Qi for n ∈ Z[n0 +

1,n1 − 1].
Let n = n1. Using σn1−1 = 0, Qn1−1 = 1 we get

u(n1) = T1u(n1 − 1)+ µ1 = T1

n1−1

∑
j=n0−1

σ j

n1−1

∏
i= j+1

Qi + µ1 =
n1−1

∑
j=n0−1

(
n1

∏
i= j+1

R(i))σ j

n1−1

∏
i= j+1

Qi + µ1.

Let n ∈ J1 = Z[n1 + 1,n1 + d1]. Then using σ j = 0, Q j = 1, j ∈ Z[n1,n1 + d1] we get

u(n) =
Ln

1−Mn

n−1

∑
j=n0−1

(
n1

∏
i= j+1

R(i))σ j

n−1

∏
i= j+1

Qi +
Ln

1−Mn

µ1 +
γn

1−Mn

.

= N(n)
n−1

∑
j=n0−1

σ j(
n

∏
i= j+1

R(i))
n−1

∏
i= j+1

Qi +N(n)µ1 + τ(n), n ∈ J1.

Let n ∈ Z[n1 + d1 + 1,n2 − 1]. Then using the first equation of (2) and the proved above we get

u(n) = N(n1 + d1)
n1+d1−1

∑
j=n0−1

σ j(
n1+d1

∏
i= j+1

R(i))
n1+d1−1

∏
i= j+1

Qi

n−1

∏
i=n1+d1

Qi

+ µ1N(n1 + d1)
n−1

∏
i=n1+d1

Qi + τ(n1 + d1)
n−1

∏
i=n1+d1

Qi +
n−1

∑
j=n1+d1

σ j

n−1

∏
i= j+1

Qi

=
n−1

∑
j=n0−1

(
n

∏
i= j+1

R(i))σ j

n−1

∏
i= j+1

Qi +
n

∑
j=n0

(
n

∏
i= j+1

R(i))ζ ( j)
n−1

∏
i= j

Qi.

Let n = n2. Then we get

u(n2) = T1u(n2 − 1)+ µ2

=
n2−1

∑
j=n0−1

(
n2

∏
i= j+1

R(i))σ j

n2−1

∏
i= j+1

Qi +
n2

∑
j=n0

(
n2

∏
i= j+1

R(i))ζ ( j)
n2−1

∏
i= j

Qi.

Let n ∈ J2 = Z[n2 + 1,n2 + d2]. Then

u(n) = N(n)u(n2)+ τ(n)

= N(n)
n2−1

∑
j=n0−1

(
n2

∏
i= j+1

R(i))σ j

n2−1

∏
i= j+1

Qi +N(n)
n2

∑
j=n0

(
n2

∏
i= j+1

R(i))ζ ( j)
n2−1

∏
i= j

Qi + τ(n)

= N(n)
n−1

∑
j=n0−1

(
n

∏
i= j+1

R(i))σ j

n−1

∏
i= j+1

Qi +N(n)
n

∑
j=n0

(
n

∏
i= j+1

R(i))ζ ( j)
n−1

∏
i= j

Qi + τ(n).
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Continue this process step by step w.r.t. the interval we prove the IVP for NIDE (2) has an unique solution given by (3)
for all n ∈ Z[n0,np+1].

Lemma 2Let m : Z[n0,np+1]→R satisfy the linear difference inequalities

m(n+ 1)≤ Qnm(n), n ∈
p
⋃

k=0

Ik,

m(nk)≤ Tkm(nk − 1), k ∈ Z[1, p]

m(n)≤ Mnm(n)+Lnm(nk), n ∈
p
⋃

k=1

Jk

m(n0)≤ 0,

(8)

where Qn > 0,
(

n ∈
⋃p

k=0 Ik

)

, Tk > 0,
(

k ∈ Z[1, p]
)

and Ln > 0, Mn < 1,
(

n ∈
⋃p

k=0 Jk

)

.

Then m(n)≤ 0 for every n ∈ Z[n0,np+1].

The proof is based on an induction w.r.t. the interval and we omit it.

4. Main results

For any pair of function α,β : Z[n0,np+1]→ R such that α(n)≤ β (n) for n ∈ Z[n0,np+1] we define the sets

S(α,β ) = {u : Z[n0,np+1]→ R : α(n)≤ u(n)≤ β (n), n ∈ Z[n0,np+1]}

Ω1(α,β ) = {u ∈R : min
n∈

⋃p
k=0

Ik

α(n)≤ u ≤ max
n∈

⋃p
k=0

Ik

β (n)}

Ω2(α,β ) = {u ∈R : min
n∈

⋃p−1
k=0

Ik

α(n+ 1)≤ u ≤ max
n∈

⋃p−1
k=0

Ik

β (n+ 1)}

Λ(α,β ) = {u ∈ R : min
n∈

⋃p
k=1

Jk

α(n)≤ u ≤ max
n∈

⋃p
k=1

Jk

β (n)}

Γ (α,β ) = {y ∈R : min
k∈Z[1,p]

α(nk)≤ y ≤ max
k∈Z[1,p]

β (nk)}

ϒ (α,β ) = {z ∈ R : min
k∈Z[1,p]

α(nk − 1)≤ z ≤ max
k∈Z[1,p]

β (nk − 1)}

Theorem 1Let the following conditions be fulfilled:

1.The functions α,β : Z[n0,np+1] → R are lower and upper solutions of the IVP for NIDE (1) and α(n) ≤ β (n) for

n ∈ Z[n0,np+1].
2.The function f :

⋃p
k=0 Ik × Ω1(α,β )× Ω2(α,β ) is continuous in its second and third arguments and there exist

functions K :
⋃p

k=0 Ik → (−∞,1) and P :
⋃p

k=0 Ik → (0,∞) such that for any n ∈
⋃p

k=0 Ik and x1,x2 ∈ Ω1(α,β ), with

x1 ≤ x2, and x3,x4 ∈ Ω2(α,β ), with x3 ≤ x4 the inequality

f (n,x1,x3)− f (n,x2,x4)≤ P(n)(x1 − x2)+K(n)(x3 − x4)

holds.

3.The function F : Z[1, p]×R→R is continuous in its second argument and there exists a function T : Z[1, p]→ (0,∞)
such that for any k ∈ Z[1, p] and z1,z2 ∈ϒ (α,β ) with z1 ≤ z2

F(k,z1)−F(k,z2)≤ T (k)(z1 − z2).

4.The function g :
⋃p

k=1 Jk ×Λ(α,β )×Γ (α,β ) → R is continuous in its second and third arguments and there exist

functions M :
⋃p

k=1 Jk → (−∞,1) and L :
⋃p

k=1 Jk → (0,∞) such that for any n ∈
⋃p

k=1 Jk and y1,y2 ∈ Λ(α,β ), with

y1 ≤ y2, and y3,y4 ∈ Γ (α,β ), with y3 ≤ y4 the inequality

g(n,y1,y3)− g(n,y2,y4)≤ M(n)(y1 − y2)+L(n)(y3 − y4)

holds.
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Then there exist two sequences of discrete functions {α( j)(n)}∞
0 and {β ( j)(n)}∞

0 , n ∈ Z[n0,np+1] with α(0) = α and

β (0) = β such that:

a) The inequalities

α(n)≤ α( j)(n)≤ α( j+1)(n)≤ β ( j+1)(n)≤ β ( j)(n)≤ β (n), for n ∈ Z[n0,np+1], j ∈ Z

hold;

b) The functions α( j)(n) and β ( j)(n), j ∈ Z are lower and upper solutions of the IVP for NIDE (1), respectively;

c) Both sequences are convergent on Z[n0,np+1];

d) The limits lim j→∞ α( j)(n) = A(n), lim j→∞ β ( j)(n) = B(n) are the minimal and maximal solutions of IVP for NIDE

(1) in S(α,β ), respectively;

e) If IVP for NIDE (1) has an unique solution u(n) ∈ S(α,β ), then A(n)≡ u(n)≡ B(n) for n ∈ Z[n0,np+1].

Proof.For any arbitrary fixed function η ∈ S(α,β ), we consider the IVP for the linear NIDE

u(n+ 1) = P(n)u(n)+K(n)u(n+ 1)+ψ(n,η(n),η(n+1)), n ∈
p
⋃

k=0

Ik

u(nk) = T (k)u(nk − 1)+υ(k,η(nk− 1)), k ∈ Z[1, p]

u(n) = M(n)u(n)+L(n)u(nk)+ ξ (n,η(n),η(nk)), n ∈
p
⋃

k=1

Jk

u(n0) = x0,

(9)

where u,x0 ∈ R, and

ψ(n,x,y) = f (n,x,y)−P(n)x−K(n)y, n ∈
p
⋃

k=0

Ik,

υ(k,x) = F(k,x)−T (k)x, k ∈ Z[1, p]

ξ (n,x,y) = g(n,x,y)−M(n)x−L(n)y, n ∈
p
⋃

k=1

Jk.

(10)

According to Lemma 1 the IVP for linear NIDE (9) has an unique solution given by (3) with

σn =
ψ(n,η(n),η(n+1))

1−K(n)
, Qn =

P(n)
1−K(n)

, γn = ξ (n,η(n),η(n j)) , µk = υ(k,η(nk − 1)), Tk = T (k),Mn = M(n),Ln = L(n).

For any function η ∈ S(α,β ) we define the operator W : S(α,β )→ S(α,β ) by Wη = u, where u is the unique solution
of IVP for the linear NIDE (9) for the function η . The operator W has the following properties:

(P1) α ≤Wα , β ≥Wβ
(P2) W is a monotone nondecreasing operator in S(α,β ).

To prove (P1) set Wα = α(1), where α(1) is the unique solution of (9) with η = α and let m(n) = α(n)−α(1)(n), n ∈
Z[n0,np+1]

For any n ∈
⋃p

k=0 Ik we obtain the inequality

m(n+ 1) = α(n+ 1)−P(n)α(1)(n)−K(n)α(1)(n+ 1)

−ψ(n,α(n),α(n+ 1))

≤ P(n)(α(n)−α(1)(n))+K(n)(α(n+ 1)−α(1)(n+ 1))

= P(n)m(n)+K(n)m(n+ 1).

Hence the inequality m(n+ 1)≤ P(n)
1−K(n)

m(n) holds for n ∈
⋃p

k=0 Ik.

For any n = nk we obtain

m(nk)≤ F(k,α(nk − 1))−T(k)α(1)(nk − 1)−F(k,α(nk − 1))

+T (k)α(nk − 1) = T (k)m(nk − 1).
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For any n ∈
⋃p

k=1 Jk we get

m(n)≤ g(n,α(n),α(nk))−M(n)α(1)(n)−L(n)α(1)(nk)

− g(n,α(n),α(nk))+M(n)α(n)+L(n)α(nk)

= M(n)m(n)+L(n)m(nk)

Therefore, the function m(n) satisfies the inequalities (8) with Qn = P(n)
1−K(n) , Tk = T (k),Mn = M(n),Ln = L(n).

According to Lemma 2 the function m(n) is non-positive in Z[n0,np+1], i.e. α ≤W α. Analogously it can be proved that
the inequality β ≥Wβ holds.

To prove (P2) we consider two arbitrary function η1, η2 ∈ S(α,β ) such that η1(n) ≤ η2(n) for n ∈ Z[n0,np+1]. Let

u(1) =W η1 and u(2) =W η2. Denote m(n) = u(1)(n)− u(2)(n),
n ∈ Z[n0,np+1].

For any n ∈
⋃p

k=0 Ik we obtain the inequality

m(n+ 1) = P(n)u(1)(n)+K(n)u(1)(n+ 1)+ f (n,η1(n),η1(n+ 1))

−P(n)η1(n)−K(n)η1(n+ 1)−P(n)u(2)(n)−K(n)u(2)(n+ 1)

− f (n,η2(n),η2(n+ 1))+P(n)η2(n)+K(n)η2(n+ 1)

≤ P(n)m(n)+K(n)m(n+ 1)

Hence the inequality m(n+ 1)≤ P(n)
1−K(n) m(n) holds for n ∈ Ik, k ∈ Z[0, p].

For any n = nk,k ∈ Z[1, p] we get

m(nk) = T (k,u(1)(nk − 1)− u(2)(nk − 1))−T(k)(η1(nk − 1)−η2(nk − 1))

+F(k,η1(nk − 1))−F(k,η2(nk − 1))≤ T (k)m(nk − 1)

For any n ∈
⋃p

k=1 Jk we obtain

m(n) = M(n)u
(1)(n)+L(n)u(1)(nk)+ g(n,η1(n),η1(nk))

−M(n)η1(n)−L(n)η1(nk)−M(n)u(2)(n)−L(n)u(2)(nk)

− g(n,η2(n),η2(nk))+M(n)η2(n)+L(n)η2(nk)

≤ M(n)m(n)+L(n)m(nk)

According to Lemma 2 with Qn =
P(n)

1−K(n)
, Tk = T (k),Mn = M(n), Ln = L(n) the function m(n)≤ 0, i.e. W η1 ≤Wη2,

for η1(n)≤ η2(n),n ∈ Z[n0,np+1].
Let η ∈ S(α,β ) be a lower solution of (1). We consider the function Wη = m. According to the proved η(n) ≤

m(n),n ∈ Z[n0,np+1].
For any n ∈

⋃p
k=0 Ik we get the inequality

m(n+ 1) = P(n)m(n)+K(n)m(n+ 1)+ f (n,η(n),η(n+ 1))

−P(n)η(n)−K(n)η(n+ 1)

≤ f (n,m(n),m(n+ 1))

(11)

For any n = nk,k ∈ Z[1, p] we obtain

m(nk) = F(k,m(nk − 1))−F(k,m(nk − 1))+T(k)m(nk − 1)

+F(k,η(nk − 1))−T(k)η(nk − 1)

≤ F(k,m(nk − 1))

(12)

For any n ∈
⋃p

k=1 Jk we obtain

m(n) = g(n,m(n),m(nk))− g(n,m(n),m(nk))+M(n)m(n)

+L(n)m(nk)+ f (n,η(n),η(nk))−M(n)η(n)−L(n)η(nk)

≤ g(n,m(n),m(nk))

(13)
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Inequalities (11),(12) and (13) prove the function m is a lower solution of NIDE (1). Similarly, if η ∈ S(α,β ) is an
upper solution of NIDE (1) then the function m =W η is an upper solution of (1).

We define the sequences of functions {α( j)(n)}∞
0 and {β ( j)(n)}∞

0 by the equalities

α(0) = α, β (0) = β , α( j) = Wα( j−1), β ( j) = Wβ ( j−1). The functions α(s)(n) and β (s)(n) satisfy the initial value

problem (9) with η(n) = α(s−1)(n) and η(n) = β (s−1)(n), n ∈ Z[n0,np+1], respecticely.
According to Lemma 2 the following representations are valid:

α(s)(n) = N(n)
n−1

∑
j=n0−1

(
n

∏
i= j+1

R(i))
ψ( j,α(s−1)( j),α(s=1)( j+ 1))

1−K( j)

×
n−1

∏
i= j+1

P(i)

1−K(i)
+

n

∑
j=n0

(
n

∏
i= j+1

R(i))ζ ( j)
n−1

∏
i= j

P(i)

1−K(i)
+ τ(n),

for n ∈ Z[n0,np+1],

(14)

where τ(n) is given by (5) for γn = ξ (n,α(s−1)(n),α(s−1)(n j)), n ∈
⋃p

k=1 Jk, j ∈ Z[1, p] and ζ (n) is given by (7) for

γnk+dk
= ξ (nk + dk,α

(s−1)(nk + dk),α
(s−1)(nk)), µk = υ(k,α(s−1)(nk − 1)), k ∈ Z[1, p].

β (s)(n) = N(n)
n−1

∑
j=n0−1

(
n

∏
i= j+1

R(i))
ψ( j,β (s−1)( j),β (s−1)( j+ 1))

1−K( j)

×
n−1

∏
i= j+1

P(i)

1−K(i)
+

n

∑
j=n0

(
n

∏
i= j+1

R(i))ζ ( j)
n−1

∏
i= j

P(i)

1−K(i)
+ τ(n),

for n ∈ Z[n0,np+1],

(15)

where τ(n) is given by (5) for γn = ξ (n,β (s−1)(n),β (s−1)(n j)), j ∈ Z[1, p] and ζ (n) is given by (7) for γnk+dk
= ξ (nk +

dk,β
(s−1)(nk + dk),β

(s−1)(nk)), µk = υ(k,β (s−1)(nk − 1)), k ∈ Z[1, p].

According to the above proved, functions α(s)(n) and β (s)(n) are lower and upper solutions of NIDE (1), respectively
and they satisfy for n ∈ Z[n0,np+1] the following inequalities

α(0)(n)≤ α(1)(n)≤ . . .≤ α(s)(n)≤ β (s)(n)≤ . . .≤ β (1)(n)≤ β (0)(n) (16)

Both sequences of discrete functions being monotonic and bounded are convergent on Z[n0,np+1].

Let A(n) = lims→∞ α(s)(n),B(n) = lims→∞ β (s)(n).

Take a limit in (14) for s → ∞ we obtain (3) with u(n) = A(n), σ j =
ψ( j,A( j),A( j+1))

1−K( j) , Qi =
P(i)

1−K(i) ,

A(n) = N(n)
n−1

∑
j=n0−1

(
n

∏
i= j+1

R(i))
ψ( j,A( j),A( j+ 1))

1−K( j)

n−1

∏
i= j+1

P(i)

1−K(i)

+
n

∑
j=n0

(
n

∏
i= j+1

R(i))ζ ( j)
n−1

∏
i= j

P(i)

1−K(i)
+ τ(n), for n ∈ Z[n0,np+1],

(17)

where τ(n) is given by (5) for γn = ξ (n,A(n),A(n j)), j ∈ Z[1, p] and ζ (n) is given by (7) for γnk+dk
= ξ (nk + dk,A(nk +

dk),A(nk)), µk = υ(k,A(nk − 1)), k ∈ Z[1, p].
From (17) it follows the function A(n) is a solution of NIDE (1).
Similarly, we prove the function B(n) is a solution of NIDE (1).
Let u ∈ S(α,β ) be a solution of IVP for NIDE (1). From inequalities (16) it follows there exists a natural number p

such that p ∈ N :

α(p)(n)≤ u(n)≤ β (p)(n) for n ∈ Z[n0,np+1].

We introduce the notation m(n) = α(p+1)(n)− u(n), n ∈ Z[n0,np+1].
For any n ∈

⋃p
k=0 Ik we get the inequality

m(n+ 1) = P(n)α(p+1)(n)+K(n)α(p+1)(n+ 1)+ f (n,α(p)(n),α(p)(n+ 1))

−P(n)α(p)(n)−K(n)α(p)(n+ 1)− f (n,u(n),u(n+ 1))

≤ P(n)m(n)+K(n)m(n+ 1).

(18)
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Hence the inequality m(n+ 1)≤ P(n)
1−K(n) m(n) holds for n ∈

⋃p
k=0 Ik.

For any n = nk, k ∈ Z[1, p] we obtain

m(nk) = T (k)α(p+1)(nk − 1)+T(k)u(nk − 1)−T(k)u(nk − 1)

+F(k,(α(p)(nk − 1))−T(k)α(p)(nk − 1)−F(k,u(nk − 1))

≤ T (k)m(nk − 1).

(19)

For any n ∈
⋃p

k=1 Jk we obtain

m(n) = M(n)α(p+1)(n)+L(n)α(p+1)(nk)+ g(n,α(p)(n),α(p)(nk))

−M(n)α(p)(n)−K(n)α(p)(nk)− g(n,u(n),u(nk))

≤ M(n)m(n)+L(n)m(nk).

According to Lemma 2 with Qn = P(n)
1−K(n)

, Tk = T (k),Mn = M(n),Ln = L(n) the function m(n) is nonpositive, i.e.

α(p+1)(n)≤ u(n), n ∈ Z[n0,np+1]. Similarly β (p+1)(n)≥ u(n), n ∈ Z[n0,np+1], and hence α( j+1) ≤ u(n)≤ β ( j+1), n ∈

Z[n0,np+1]. Since α(0)(n)≤ u(n)≤ β (0)(n) this proves by induction that α( j)(n)≤ u(n)≤ β ( j)(n), n ∈ Z[n0,np+1], for
every j ∈ Z.

Taking the limit as j → ∞ we conclude A(n)≤ u(n)≤ B(n), n ∈ Z[n0,np+1]. Hence A(n) and B(n) are minimal and
maximal solutions of IVP for NIDE (1), respectively.

Let the IVP for NIDE (1) has an unique solution u(n) ∈ S(α,β ).
Then from above it follows A(n)≡ u(n)≡ B(n), n ∈ Z[n0,np+1].

5. Conclusion

In the paper we study the initial value problem for a nonlinear scalar difference equation with so called non-instantaneous
impulses, i.e. impulses which duration of acting is not negligible. An iterative technique combined with the method
of lower ad upper solution is suggested to solve the studied equation. Two sequences of discrete valued functions are
constructed. Each term of the sequences is s solution of a linear discrete equation with non- instantaneous impulses with
an explicit formula for the solution, obtained in the paper.
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