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Abstract: In this paper, a new four-parameter (i.e. called the transmuted Topp-Leone power function (TTLPF) distribution) is proposed

based on the transmuted Topp-Leone-G family. We derive moments, incomplete moments, probability weighted moments, quantile

function, Bonferroni and Lorenz curves, and order statistics. The maximum likelihood and percentiles procedures are used to estimate

the model parameters. A simulation study is carried out to evaluate and compare the performance of estimates in terms of their biases,

standard errors and mean square errors. Eventually, we empirically prove the importance and flexibility of the new model in modeling

two types of lifetime data.
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1 Introduction

Literature of lifetime distributions is rich with several continuous univariate distributions and develops rapidly. These
distributions arise from different fields of practical studies, such as reliability experiments, clinical trials, infant mortality
rate, medicine, finance and engineering applications, ... etc. Several researchers have helped expand known distributions
to some new structural forms and develop corresponding probabilistic and statistical properties. In recent times,
generated families of probability distributions have attracted the attention of several researchers. These families provide
great flexibility in modeling various real data. Some of the generated families are: beta-G [1], Kumaraswamy-G [2],
transformed-transformer [3], Weibull-G [4], Kumaraswamy Weibull-G [5], Elgarhy-G [6], exponentiated Weibull-G [7],
additive Weibull-G [8], Topp- Leone-G (TL-G) [9], Type II half logistic-G [10], generalized additive Weibull-G [11],
transmuted Topp-Leone-G (TTL-G) [12], inverse Weibull-G [13], power Lindley-G [14] and Type II generalized
Topp-Leone-G [15].
The TL-G family proposed by [9] has cumulative distribution function (cdf) written by

FTL−G(x;α) = (G(x))α (2−G(x))α α > 0, (1)

where α is the shape parameter. The probability density function (pdf) corresponding to (1) is given by

fT L−G(x) = 2αg(x)(1−G(x))(G(x))α−1(2−G(x))α−1,

where G(x) is the baseline distribution function, g(x) = Ǵ(x) is the baseline density function. The transmuted class
defined by [16] with cdf and pdf is given by

FTC−G(x;λ ) = G(x)[1+λ −λ G(x)], |λ | ≤ 1, x ∈ R, (2)
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and

fTC−G(x;λ ) = g(x)[1+λ − 2λ G(x)],

respectively. Recently, [12] proposed the TTL-G family which is flexible because its hazard rate shapes can be
increasing, decreasing, J, reversed-J, bathtub and upside-down bathtub. They defined the cdf of the TTL-G by inserting
cdf (1) in cdf (2), as follows:

FTT L−G(x;α,λ ) = (1+λ )
{

1− [1−G(x)]2
}α

−λ
{

1− [1−G(x)]2
}2α

. (3)

The pdf corresponding to (3) is

fT T L−G(x;α,λ ) = 2αg(x)(1−G(x))
{

1− [1−G(x)]2
}α−1

{

1+λ − 2λ
{

1− [1−G(x)]2
}α
}

. (4)

One of the most useful models is the power function (PF) distribution. The PF distribution has the ability to model
various types of data. It is the inverse form of Pareto distribution and it is a special case from beta distribution. The pdf
and cdf of the PF distribution with scale parameter γ and shape parameter β are given, respectively, by

g(x;γ,β ) = β γ−β xβ−1; 0 < x < γ, β > 0, (5)

and

G(x;γ,β ) = γ−β xβ . (6)

Several authors have addressed many extensions of the PF to increase the flexibility of the baseline model for
example, the beta PF distribution [17], Kumaraswamy PF distribution [18], the Weibull PF distribution [19],
exponentiated Weibull PF distribution [20], the exponentiated Kumaraswamy PF distribution [21], McDonald PF
distribution [22] odd generalized exponential PF distribution [23] and exponentiatd generalized PF [24].

The present paper aims to introduce the TTLPF distribution, discuss its primary properties, estimate the model
parameters and provide its applications to real data. The rest of the paper is outlined as follows: In Section 2, we define
the TTLPF distribution and provide some plots of its pdf and hazard rate function (hrf). Mixture representations of the
pdf and cdf as well as reliability analysis are derived in the same section. We derive some basic properties, including
quantile function, probability weighted moments, order statistics, as well as ordinary and incomplete moments in Section
3. Maximum likelihood and percentiles estimation procedures of the model parameters are addressed in Section 4. In
Section 5, simulation results to assess the performance of the proposed estimates are discussed. In Section 6, we provide
the applications to real data to illustrate the importance of the proposed distribution. Conclusion is presented in Section
7.

2 TTLPE model

Taking the PF distribution as the baseline distribution function in (3), we obtain the TTLPF model with cdf (for 0< x< γ),
as follows:

F(x;ϖ) = (1+λ )







1−

[

1−

(

x

γ

)β
]2






α

−λ







1−

[

1−

(

x

γ

)β
]2






2α

, (7)

where, γ > 0, α > 0, β > 0, |λ | ≤ 1, and ϖ = (γ,λ ,α,β ) is the set of parameters. The TTLPF density reduces to

f (x;ϖ) =
2αβ xβ−1

γβ

(

1−

(

x

γ

)β
)







1−

[

1−

(

x

γ

)β
]2






α−1





1+λ − 2λ







1−

[

1−

(

x

γ

)β
]2






α




. (8)

Henceforth, we denote by X a random variable having pdf (8). For λ = 0, the pdf (8) provides the Topp-Leone PF
(TLPF) density as a new model. Some plots of the density (8) are displayed in Fig 1.They reveal that the pdf of X is quite
flexible and can take symmetric, asymmetric and reversed J forms, ... etc. In summary, they reinforce the importance of
the proposed model.
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Fig. 1: Plots of density function of the TTLPF distribution for different values of parameter

2.1 Expansion for Density of the TTLPF Model

Here, useful expansions of the pdf and cdf of the TTLPF distribution are derived. Since, the pdf (8) can be rewritten, as
follows:

f (x;ϖ)=(1+λ )
2αβ xβ−1

γβ

[

1−

(

x

γ

)β
]







1−

[

1−

(

x

γ

)β
]2






α−1

−
4αβ λ xβ−1

γβ

[

1−

(

x

γ

)β
]







1−

[

1−

(

x

γ

)β
]2






2α−1

. (9)

Using the binomial expansion in (9), pdf can be expressed as follows:

f (x;ϖ)=Σ∞
j=0Σ

2 j+1
k=0 (−1) j+k 2(1+λ )Γ (α + 1)

j!Γ (α − j)(k+ 1)

(

2 j+ 1
k

)

β (k+ 1)

γ

(

x

γ

)β (k+1)−1

− Σ∞
j=0Σ

2 j+1
k=0 (−1) j+k 4λΓ (2α + 1)

j!Γ (2α − j)(k+ 1)

(

2 j+ 1
k

)

β (k+ 1)

γ

(

x

γ

)β (k+1)−1

. (10)

Then, the pdf (10) can be written, as follows:

f (x;ϖ) = Σ∞
j=0Σ

2 j+1
k=0 η j,k wβ (k+1)(x), (11)

η j,k = (−1) j+k

[

2(1+λ )Γ (α + 1)

j!Γ (α − j)(k+ 1)
−

4λΓ (2α + 1)

j!Γ (2α − j)(k+ 1)

](

2 j+ 1
k

)

,
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where, wβ (k+1)(x) denotes the pdf of the PF distribution with parameters β (k+ 1) and γ . Furthermore, the associated cdf

F s(x;ϖ), where s is an integer, using binomial expansion, can be expressed, as follows:

F s(x;ϖ) = Σ s
l=0(−1)l

(

s

l

)

λ l(1+λ )s−l







1−

[

1−

(

x

γ

)β
]2






α(l+s)

. (12)

Adopting the binomial expansion more than one time, (12) will be

F s(x;ϖ) = Σ s
l=0Σ∞

m=0Σ2m
q=0 (−1)l+m+q

(

s

l

)(

α(l + s)
m

)(

2m

q

)

λ l(1+λ )s−l

(

x

γ

)β q

.

Hence, F s(x;ϖ) can be written, as follows:

F s(x;ϖ) = Σ s
l=0Σ∞

m=0Σ2m
q=0 ωl,m,q Gβ q(x) (13)

ωl,m,q = (−1)l+m+q

(

s

l

)(

α(l + s)
m

)(

2m

q

)

λ l(1+λ )s−l,

where, Gβ q(x) is the cdf of PF with parameters β q and γ .

2.2 Reliability Analysis

The expressions for the survival function and hrf are all established in this sub-section. These are particularly important
to analyze survival data that involve the time associated to an event of interest such as the time until failure of a certain
component and death of a patient or a disease relapse. The survival function of X is given by

S(x;ϖ) = 1−











(1+λ )







1−

[

1−

(

x

γ

)β
]2






α

−λ







1−

[

1−

(

x

γ

)β
]2






2α










.

The hrf of X is given by

h(x;ϖ) =
2αβ xβ−1

γβ

(

1−
(

x
γ

)β
)

{

1−

[

1−
(

x
γ

)β
]2
}α−1{

1+λ − 2λ

{

1−

[

1−
(

x
γ

)β
]2
}α}







1− (1+λ )

{

1−

[

1−
(

x
γ

)β
]2
}α

+λ

{

1−

[

1−
(

x
γ

)β
]2
}2α







.

Some plots of the hrf are displayed in Fig 2. The hrf forms of X can be J and reversed-J, and bathtub shape. This
non-monotone form is particularly important because of its great practical applicability.

3 Statistical Properties

Some important statistical properties of the TTLPF distribution, such as quantile, ordinary and incomplete moments,
probability weighted moments, moment generating function, and order statistics are given.
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Fig. 2: Plots of the hrf of the TTLPF distribution for different values of parameter

3.1 Quantile function

The TTLPF distribution can be easily simulated by inverting (7), as follows: if 0 < p < 1 follows uniform distribution,
then

Q(p) = γ







1−

{

1− (2λ )−1/α

[

(1+λ )−
√

(1+λ )2 − 4λ p

]1/α
}0.5







1/β

. (14)

This scheme is useful to generate the TTLPF random variates. Also, the median (m) of X is m = Q(0.5).

3.2 Moments

Moments are necessary for any statistical analysis especially in applications. They can be used to study the most important
characteristics distribution (e.g. dispersion, skewness, kurtosis and tendency). The rth moment of the TTLPF is derived
using pdf (11), as follows:

µ́r = Σ∞
j=0Σ

2 j+1
k=0 η j,k

∫ γ

0
xr wβ (k+1)(x) dx = Σ∞

j=0Σ
2 j+1
k=0 η j,k

∫ γ

0
xr β (k+ 1)

γ

(

x

γ

)β (k+1)−1

dx.

After simplification, the rth moment of the TTLPF is obtained, as follows:

µ́r = Σ∞
j=0Σ

2 j+1
k=0 η j,k

γrβ (k+ 1)

r+β (k+ 1)
, r = 1,2,3, ...

In particular, the mean and variance of the TTLPF distribution are given by
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E(X) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

γβ (k+ 1)

β (k+ 1)+ 1
,

and

Var(X) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

γ2β (k+ 1)

β (k+ 1)+ 2
−

[

Σ∞
j=0Σ

2 j+1
k=0 η j,k

γβ (k+ 1)

β (k+ 1)+ 1

]2

.

Furthermore, the moment generating function of the TTLPF distribution is obtained, as follows:

Mx(t) = Σ∞
r=0

tr

r!
E(X r) = Σ∞

r, j=0Σ
2 j+1
k=0 η j,k

(tγ)rβ (k+ 1)

r!(r+β (k+ 1))
.

Table 1 presents the numerical values of some moments (order 1, 2, 3 and 4), the skewness (SK) and the kurtosis (KU)
of X for selected values of the parameters (i) (γ = 2,λ = 0.5,α = 0.5,β = 0.5), (ii) (γ = 5,λ =−0.5,α = 1.5,β = 0.5),
(iii) (γ = 5,λ = 0.8,α = 3,β = 1.5), (iv) (γ = 0.5,λ =−0.8,α = 2,β = 2), and (v) (γ = 4,λ = 0.2,α = 4,β = 2.5).

Table 1: Some moments, SK and KU of X for the selected parameters values

µ́s (i) (ii) (iii) (iv) (v)

µ́1 0.121 1.394 2.878 0.370 3.153

µ́2 0.080 3.202 8.939 0.142 10.143

µ́3 0.080 9.103 29.448 0.056 33.195

µ́4 0.096 29.216 101.681 0.023 110.262

SK 3.243 0.799 -0.108 -0.742 -0.613

KU 14.863 2.818 2.583 3.401 3.139

3.3 Incomplete Moments

The answers to many important questions in economics require identifying the mean of the distribution and its shape. The
ath incomplete moment, say κa(t), is defined by

κa(t) =

∫ t

−∞
xa f (x;ϖ) dx. (15)

Hence, the ath incomplete moment of TTLPF is derived using pdf (11), as follows:

κa(t) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

∫ t

0
xa β (k+ 1)

γ

(

x

γ

)β (k+1)−1

dx,

which leads to

κa(t) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

tβ (k+1)+a

γβ (k+1)

β (k+ 1)

β (k+ 1)+ a
. (16)

In particular, the first incomplete moment of the TTLPF distribution can be obtained by putting a = 1 in (16), as
follows

κ(t) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

tβ (k+1)+1

γβ (k+1)

β (k+ 1)

β (k+ 1)+ 1
.
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Another application of the first incomplete moment refers to the Bonferroni and Lorenz curves. These curves are very
useful in economics, reliability, demography, insurance and medicine. The Lorenz and Bonferroni curves are obtained,
respectively, as follows:

LO(t) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

tβ (k+1)+1

γβ (k+1)

β (k+ 1)

β (k+ 1)+ 1

[

Σ∞
j=0Σ

2 j+1
k=0 η j,k

γβ (k+ 1)

β (k+ 1)+ 1

]−1

,

and

BO(t) = Σ∞
j=0Σ

2 j+1
k=0 η j,k

tβ (k+1)+1

γβ (k+1)

β (k+ 1)

β (k+ 1)+ 1

[

F(t;ϖ) Σ∞
j=0Σ

2 j+1
k=0 η j,k

γβ (k+ 1)

β (k+ 1)+ 1

]−1

.

3.4 Probability Weighted Moments

The probability weighted moments (PWM) can be used to derive estimators of the parameters and quantiles of generalized
distributions. The PWM of X is defined by

υr,s = E{X r[F(x)]s}=

∫ ∞

−∞
xr[F(x)]s f (x) dx, (17)

where s and r are positive integers. Inserting pdf (11) and cdf (13) in (17), then the PWM of the TTLPF distribution is
obtained, as follows:

υr,s = Σ s
l=0Σ∞

m, j=0Σ2m
q=0Σ

2 j+1
k=0 ωl,m,q η j,k

β (k+ 1)

γ

∫ γ

0
xr

(

x

γ

)β (q+k+1)−1

dx.

Therefore, the PWM of TTLPF distribution is given by

υr,s = Σ s
l=0Σ∞

m, j=0Σ2m
q=0Σ

2 j+1
k=0 ωl,m,q η j,k

γrβ (k+ 1)

(r+β (q+ k+ 1))
.

3.5 Order Statistics

A closed form expression for the pdf of the uth order statistics of the TTLPF distribution is derived. Let X(1) < X(2) < ... <
X(n) be the order statistics of a random sample X1,X2, ...,Xn of size n from TTLPF distribution. It is known that the pdf of

the uth order statistic is defined by

f(u)(x) =
1

B(u,n− u+ 1)
[F(x)]u−1 [1−F(x)]n−u f (x).

Using the binomial series expansion for [1−F(x)]n−u, f(u)(x) can be written as

f(u)(x) =
1

B(u,n− u+ 1)
Σn−u

d=0

(

n− u

d

)

[F(x)]d+u−1 f (x). (18)

Hence, the pdf of the uth order statistic from the TTLPF distribution is obtained by inserting (11) and (12), but with
d+ u− 1 instead of s in (18), so we obtain

f(u)(x) = Σn−r
d=0Σ∞

j,m=0Σ
2 j+1
k=0 Σd+u−1

l=0 Σ2m
q=0 η j,k φu,d,l,q,m

β (k+ 1)

γ

(

x

γ

)β (k+q+1)−1

, (19)

where,
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φu,d,l,q,m =
(−1)l+m+q+d

B(u,n− u+ 1)

(

n− u

d

)(

α(d + u+ l− 1)
m

)(

2m

q

)(

d+ u− 1
l

)

λ l(1+λ )d+u−l−1.

The pdf of the first and largest order statistics can be obtained by putting u = 1 and u = n in (19), so at u = 1

f(1)(x) = Σn−1
d=0Σ∞

j,m=0Σ
2 j+1
k=0 Σd

l=0Σ2m
q=0 η j,k φ1,d,l,q,m

β (k+ 1)

γ

(

x

γ

)β (k+q+1)−1

,

where,

φ1,d,l,q,m = (−1)l+m+q+d n

(

n− 1
d

)(

α(d + l)
m

)(

2m

q

)(

d

l

)

λ l(1+λ )d−l.

At u = n

f(n)(x) = Σ∞
j,m=0Σ

2 j+1
k=0 Σd+n−1

l=0 Σ2m
q=0 η j,k φn,d,l,q,m

β (k+ 1)

γ

(

x

γ

)β (k+q+1)−1

,

and,

φn,d,l,q,m = (−1)l+m+q+d n

(

α(d + n+ l− 1)
m

)(

2m

q

)(

d + n− 1
l

)

λ l(1+λ )d+n−l−1.

4 Parameter Estimation

In this section, the maximum likelihood (ML) and percentiles methods of estimation for the population parameters of the
TTLPF distribution are addressed.

4.1 Maximum Likelihood Estimator

We discuss the estimation of the population parameters of the TTLPF distribution using the ML method. Let x1,x2, ...,xn

be the observed values from the TTLPF distribution with set of parameters (ϖ = γ,λ ,α,β )T . The total log-likelihood
function, denoted by lnL, based on complete sample for the vector of parameters ϖ , can be expressed as

lnL=n ln2+ n lnα + n lnβ − nβ lnγ +(β − 1)Σn
i=1 ln(xi)+Σn

i=1 lnbi +(α − 1)Σn
i=1 ln(1− b2

i )

+ Σn
i=1 ln

[

1+λ − 2λ (1− b2
i )

α
]

,

where, bi =

[

1−
(

xi
γ

)β
]

. It is known that the estimator of γ is the sample maxima, i.e. γ̂ = X(n). The partial derivatives

of the log-likelihood function with respect to λ , β and α components of the score vector UL = (Uα ,Uλ ,Uβ )
T can be

obtained, as follows:

Uλ=Σn
i=1

[

1− 2(1− b2
i )

α
]

[

1+λ − 2λ
(

1− b2
i

)α
] ,

Uβ=
n

β
− n lnγ +Σn

i=1 ln(xi)−Σn
i=1

(

1

bi

)(

xi

γ

)β

ln

(

xi

γ

)

− 2(α − 1)Σn
i=1

bi
(

1− b2
i

)

(

xi

γ

)β

ln

(

xi

γ

)

− Σn
i=1

4λ α(bi)
(

1− b2
i

)α−1

[

1+λ − 2λ
(

1− b2
i

)α
]

(

xi

γ

)β

ln

(

xi

γ

)

,

and,

Uα=
n

α
+Σn

i=1 ln(1− b2
i )− 2λ Σn

i=1

(

1− b2
i

)α
ln
(

1− b2
i

)

[

1+λ − 2λ
(

1− b2
i

)α
] .
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The non-linear equations Uα , Uλ and Uβ are solved numerically via iterative technique, to get the ML estimators of
α , λ and β .

4.2 Percentiles Estimator

Here, the percentiles method (PM) will be used to obtain the percentiles estimators (PE) of α , λ and β denoted by ᾱ , λ̄
and β̄ of the TTLPF distribution. Let X1,X2, ...,Xn be a random sample from the TTLPF distribution and X(i) denote the ith

order statistic, i.e. X(1) < X(2) < ... < X(n). Based on the quantile function (14), the PE estimates of population parameters
are obtained by minimizing the following equation

Σn
i=1











x(i)−






γ







1−

{

1− (2λ )−1/α

[

(1+λ )−
√

(1+λ )2− 4λ pi

]1/α
}0.5







1/β
















2

,

with respect to λ , α and β . The formula pi =
[

i
(n+1)

]

is an estimate of F(x(i);α,λ ,β ).

5 Simulation Study

As mentioned in the previous section, the derived expressions for the estimators are too complicated to be studied
analytically. Thus, a numerical study will be conducted to obtain and compare the proposed estimates via MathCAD 14.
The performances of the different estimates are compared in terms of their mean square errors (MSEs) and standard
errors (SEs). 1000 random samples of sizes 10, 20, 30, 40, 50 and 100 are generated from TTLPF distribution. Assuming
the scale parameter γ is known and four sets of parameters are considered as Case I ≡ (α = 0.5,β = 0.25,λ = 0.25),
Case II ≡ (α = 0.75,β = 0.25,λ = 1.5) Case III ≡ (α = 0.75,β = 0.25,λ = 0.5) and Case IV
≡ (α = 1,β = 0.25,λ = 0.75). ML estimator and PE of the population parameters are obtained. We compute MSEs and
SEs of estimates and the results are listed in Tables 2 and 3. We notice the following concerning the performance of
estimates:

–For both methods of estimation, it is clear that MSEs and SEs decrease as sample size increases for all cases of
parameters (see Tables 2-3).

–The MSEs of ML estimates are smaller than the corresponding for PE in almost all cases. The MSEs of ML and PE
estimates for unknown parameters decrease as the sample size increases for different values of parameters (see Tables
2-3).

–For fixed value of β and as the value of α and λ increases, the MSEs and SEs of estimates based on both methods
increase (see Tables 2-3).

–For fixed value of β and as the value of α and λ decrease, the MSEs and SEs for estimates based on both methods
decrease (see Tables 2-3).

–The SEs for ML estimates for parameters values are smaller than the corresponding of PE in almost all cases (see
Tables 2-3).

–The MSEs of the ML estimates in Case III have the smallest values corresponding to the MSEs for the other cases of
parameters for different sample sizes (see Tables 2-3).

–The MSEs of the PE estimates in Case I have the smallest values corresponding to the MSEs for the other cases of
parameters for different sample sizes (see Tables 2-3).

6 Applications

In this section, the utility of TTLPF distribution is demonstrated with the help of the following two data sets.

Data Set 1: It is discussed in [22]. The first data contain 40 observations and are listed as: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9,
4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3,6.5, 6.5, 6.7, 7.0, 7.1, 7.3, 7.3,7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3,
8.4, 8.4, 8.5, 8.7, 8.8, 9.0
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Table 2: MSEs and SEs of estimates for Case I and Case II of parameters for TTLPF distribution

n Method Properties Case I Case II

α = 0.5 β = 0.25 λ = 0.25 α = 0.75 β = 0.25 λ=1.5

10 ML MSE 0.2389 1.5354 0.2822 0.5239 3.2985 3.0076

SE 0.0146 0.1585 0.1512 0.0450 0.2271 0.3080

PM MSE 0.2479 1.9546 0.0664 0.5566 4.2992 2.2434

SE 0.1213* 0.1735 0.0227 1.4497* 0.2395 0.0253

20 ML MSE 0.2360 0.8881 0.1121 0.5103 1.9201 2.2547

SE 0.0200 0.0744 0.0628 0.0351 0.1087 0.0560

PM MSE 0.2471 1.1090 0.0641 0.5537 2.5270 2.2392

SE 0.1944* 0.0789 0.0122 0.1408* 0.1075 0.0146

30 ML MSE 0.2266 0.6298 0.0625 0.4953 1.5622 2.2393

SE 0.9115* 0.0480 0.5241* 0.0183 0.0727 0.8525*

PM MSE 0.2478 0.8173 0.0636 0.5535 1.9952 2.2304

SE 0.0787* 0.0513 0.9887* 0.1436* 0.0720 0.0215

40 ML MSE 0.2263 0.5474 0.0630 0.4794 1.2415 2.2201

SE 0.0156 0.0382 0.0183 0.0200 0.0589 0.0136

PM MSE 0.2472 0.6692 0.0628 0.5532 1.6327 2.2282

SE 0.0598* 0.0402 0.2922* 0.0838* 0.0560 0.4050*

50 ML MSE 0.2226 0.5216 0.0624 0.4633 1.1661 2.2143

SE 0.0132 0.0323 0.6506* 0.0184 0.0480 0.9557*

PM MSE 0.2464 0.6152 0.0627 0.5527 1.4968 2.2224

SE 0.0765* 0.0335 0.5105* 0.0542* 0.0457 0.1843*

100 ML MSE 0.2211 0.3274 0.0621 0.4505 0.8098 2.0249

SE 0.8705* 0.0177 0.5091* 0.0125 0.0272 0.6116*

PM MSE 0.2460 0.3812 0.0623 0.5514 1.0392 2.1470

SE 0.0791* 0.0177 0.4796* 0.0542* 0.0246 0.3995*

* Indicate that the value multiply 10−3

Data Set 2: This data set consists of 63 observations of the strengths of 1.5 cm glass fibers, originally obtained by
workers at the UK National Physical Laboratory. The data have been discussed recently by [25],[26] and [27]. The data
are: 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29,1.48, 1.36, 1.39, 1.42, 1.48, 1.51,
1.49, 1.49, 1.50, 1.50,1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,1.61, 1.61, 1.62, 1.62, 1.67, 1.64,
1.66, 1.66, 1.66, 1.70, 1.68,1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82,1.84, 1.84, 2.00, 2.01, 2.24

We obtain the ML estimates of the parameters of TTLPF model for the above-mentioned two data sets. We compare
the fitting of the following models: the TTL exponential (TTLEx), TTL BurrXII (TTLBxii), TTL Lomax (TTLLo), TTL
Rayleigh (TTLR), and generalized exponential (GE). We estimate the unknown parameters of the distributions using
the ML method. We compute certain information, such as Akaike information criterion (AIC), Bayesian information
criterion (BIC), consistent Akaike information criterion (AICc), Hannan-Quinn information criterion (HQIC) and minus
log-likelihood (-LL) in case of each fitted models. The smaller values of these information criterions are, the better the fit
is. The numerical values of the ML estimates of the fitted models are listed in Table 4. In Table 5, we compare the fits of
the TTLPF model with the TTLEx, TTLBxii, TTLLo, TTLR and GE distributions.

Furthermore, for graphical comparison, we obtain the cdf and pdf plots corresponding to each model as given in Fig.
3 and Fig. 4 for the first and second data.

Table 5, Fig. 3 and Fig. 4 indicate that TTLPF model gives relatively better fit to each of the data sets compared to
existing models.

7 Concluding Remarks

In this paper, we investigated a new four-parameter model, i.e. the transmuted Topp-Leone power function distribution.
We presented some statistical properties of the TTLPF distribution, including ordinary moment, moment generating, order
statistics, quantile functions as well as Bonferroni and Lorenz curves. We discuss the parameter estimation by maximum
likelihood and percentiles methods. We provided simulation study to evaluate the maximum likelihood and percentiles
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Table 3: MSEs and SEs of estimates for Case III and Case IV of parameters for TTLPF distribution

n Method Properties Case III Case IV

α = 0.75 β = 0.25 λ = 0.5 α = 1 β = 0.25 λ=0.75

10 ML MSE 0.5491 2.9624 0.2828 0.9830 4.2074 3.6580

SE 0.0511 0.2029 0.0679 0.0806 0.2208 0.5731

PM MSE 0.5580 3.8189 0.2525 0.9888 5.4018 0.5699

SE 0.1887* 0.2174 0.0315 0.1937 0.2248 0.0285

20 ML MSE 0.5397 1.7289 0.6111 0.9303 2.7190 1.0413

SE 0.0355 0.0954 0.1407 0.0503 0.1216 0.1716

PM MSE 0.5564 2.1807 0.2507 0.9885 3.5610 0.5638

SE 0.0885* 0.0992 0.7077* 0.1443* 0.1140 0.0253

30 ML MSE 0.5196 1.3875 0.2502 0.9106 2.2201 0.5662

SE 0.0193 0.0653 0.0155 0.0307 0.0875 0.0376

PM MSE 0.5552 1.7366 0.2494 0.9880 2.8292 0.5633

SE 0.0873* 0.0655 0.7835* 0.0782* 0.0778 0.0102

40 ML MSE 0.5220 1.1924 0.2474 0.8959 1.9540 0.5610

SE 0.0176 0.0505 0.0146 0.0368 0.0705 0.0678

PM MSE 0.5536 1.4368 0.2490 0.9800 2.4822 0.5611

SE 0.0593* 0.0511 0.1587* 0.1612* 0.0592 0.0202

50 ML MSE 0.5198 1.1200 0.2470 0.8907 1.8121 0.5606

SE 0.0143 0.0426 0.0110 0.0332 0.0594 0.0428

PM MSE 0.5514 1.3143 0.2490 0.9759 2.2677 0.5608

SE 0.1292* 0.0426 0.9042* 0.0758* 0.0481 0.9095*

100 ML MSE 0.5168 0.8369 0.2451 0.8782 1.2915 0.5305

SE 0.0128 0.0248 0.0103 0.0255 0.0365 0.0185

PM MSE 0.5473 0.9537 0.2488 0.9693 1.6043 0.5524

SE 0.0513* 0.0229 0.6490* 0.0958* 0.0269 0.8264*

* Indicate that the value multiply 10−3

Table 4: The ML estimates of models for both data

TTLPF TTLEx TTLLBxii TTLLo TTLR GE

α̂ = 0.15257 α̂ = 9.5146 α̂ = 171.4979 α̂ = 171.4979 α̂ = 2.3847 α̂ = 9.5146

λ̂ = 0.0373 λ̂ = 0.000001 λ̂ = 0.000001 λ̂ = 0.0000001 λ̂ = 0.0000001 θ̂ = 0.4498

Data1 β̂ = 16.461 θ̂ = 0.2249 β̂ = 1.771 β̂ = 1000.756 θ̂ = 0.0188

θ̂ = 9.132 θ̂ = 0.7586 θ̂ = 0.00128

γ̂ = 9

α̂ = 2.0219 α̂ = 31.349 α̂ = 7.5028 α̂ = 30.149 α̂ = 5.486 α̂ = 31.349

λ̂ = 0.9084 λ̂ = 0.00001 λ̂ = 0.000001 λ̂ = 0.000001 λ̂ = 0.000001 θ̂ = 2.646

Data2 β̂ = 2.7178 θ̂ = 1.3057 β̂ = 2.637 β̂ = 400.333 θ̂ = 0.4869

θ̂ = 2.289 θ̂ = 0.9412 θ̂ = 0.0032

γ̂ = 2.24

estimates of the model parameters. Applications to real data indicated that the TTLPF distribution provides a good fit and
can be used as a competitive model to fit real data.

Conflict of Interest

The authors declare that they have no conflict of interest.

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


226 A. S. Hassan et al. : Transmuted Topp-Leone Power Function Distribution ...

Table 5: Information criterion for both data

Distribution -LL AIC AICc BIC HQIC

TTLPF 77.450 162.906 164.049 169.661 165.346

TTLE 90.143 186.285 186.952 191.352 188.173

Data1 TTLBxii 98.745 205.489 206.632 212.245 207.932

TTLLo 90.148 188.297 189.439 195.052 190.739

TTLR 85.796 177.593 178.669 182.425 179.4245

GE 90.143 184.285 184.610 187.663 185.507

TTLPF 16.008 40.016 40.706 48.590 43.389

TTLE 31.383 68.767 69.174 75.196 71.296

Data2 TTLBxii 35.553 79.107 79.796 87.679 82.478

TTLLo 31.431 70.862 71.552 79.435 74.234

TTLR 23.929 53.857 54.264 60.287 56.386

GE 31.383 66.767 66.967 71.053 68.453

Fig. 3: Fitted densities and cdf of fitted models for first data

Fig. 4: Fitted densities and cdf of fitted models for second data
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