
Applied Mathematics & Information Sciences 5 (2) (2011), 25S-31S  
– An International Journal  
 

 
A Linear Logic Representation for BPEL Process Protocol*

Jian Wu1 and Lu Jin2 

 

 
1Department of Computer Science and Technology, Zhejiang University, Hangzhou, China 
2 Department of Computer Science and Technology, Zhejiang University, Hangzhou, China 

Email Address: jinluzju@gmail.com 
 

Received June 22, 2010; Revised December 21, 2010 
 

Business Process Execution Language (BPEL) is a powerful tool for describing web 
services compositions. The protocol of a BPEL process indicates the order of 
messages, in which it sends or receives messages, as well as the structure of the 
internal logic. Although formal methods have been used to model BPEL, the 
purposes of these researches are to verify BPEL process and eliminate ambiguity. 
Recent research advances in dynamic adaptation and reconfiguration of service 
processes require a new formal method to express BPEL process with the ability of 
problem solving. This paper presents a linear logic based representation for BPEL 
process. Our approach expresses both basic and structured activities in BPEL. With 
the help of proof-searching tools, our approach set up a formal foundation for 
(semi)automatically solving more challenging issues of service computing. 

 
Keywords: Web Service, Service Adaptation, Linear Logic, BPEL. 
 

1  Introduction 

Web services are software entities capable of exchanging XML based data. With 
well-defined interfaces (Web Service Description Language, WSDL) [1], web services 
can be quickly composed as service processes to complete more complex tasks. One of 
the well-received specifications for describing service composition is the Business 
Process Execution Language (BPEL) [2]. BPEL is supported by most major software 
vendors and applied to various fields.  

BPEL is a complex programming language for describing sophisticated business 
processes. A business process performs numerous actions to complete a business 
transaction. The order in which actions are executed is called business protocol. The 
same idea of protocol has been embedded into the BPEL language. With structured 
activities and other intrinsic mechanisms, such as fault and exception handling, a BPEL 
process is capable of describing and executing complex business processes.  

                                                        
* This research is partially supported by National Sci & Tech Research Program of China (No. 2009ZX01043-
003-003), the 863 Program (No. 2008AA01Z141), the National NSF of China (No. 60873224, No. 60873045, 
No.60803004), Zhejiang Provincial NSF (No. Y106598), and Zhejiang Provincial Sci &Tech Program (No. 
2008C03007). 



Jian Wu and Lu Jin                                                                                                                26 
Since BPEL is not equipped with formal semantics, the protocol of a BPEL process is 

very difficult to be formally reasoned. Several formal methods [3] have been used to 
model BPEL processes. R. Lucchi extended pi-calculus to describe activities and 
advanced structures, such as compensation handler, in BPEL [4]. N. Lohmann provided a 
Petri-net based model for BPEL and a corresponding tool, BPEL2oWFN [5]. These 
models are then used to eliminate ambiguity and verify various properties.  

Recent advances in service adaptation [6] require formal methods with ability to 
provide solutions to mismatch problems. Although existing approaches are still used, 
they are more often used as an intermedial model to bridge different process definition 
languages and avoid ambiguity. The adaptation process is usually constructed by an 
algorithm proposed by the authors. Without sufficient test cases to prove their algorithms, 
the methods are less convincing. 

Linear logic (LL) [7] is a branch of logic system. In combination with proof-
searching tools, such as Coq [8] and llprover [9], linear logic is capable of providing 
solutions to particular problems (semi)automatically. In our previous work [10] we 
proposed a linear logic-based automatic method for process adaptation. In this paper we 
propose a formal representation of BPEL process. Both basic activities and structured 
activities are specified using LL sequents. As a result, our approach is capable to capture 
fully the BPEL process behavior and to generating a linear logic-based representation of 
process protocol, in which the message orders and internal structures are defined. 

The rest of this paper is organized as follows: Firstly we introduce some background 
information on linear logic. Then we present the LL representation of BPEL basic 
activities and structured activities. After that an example is given. Finally we summarize 
our work and give an outlook into our future work. 

2  Linear Logic Background 

Linear logic (LL) was introduced by Girard [7] to provide a logical way for coping 
with resources. The fundamental notion in LL states that “A is consumed while producing 
B”. As a result, the number of formulae is aware to the logic, that is to say one copy of A 
is different than two or more copies of A. This unique feature has made LL popular 
among computer scientists. The LL grammar that we use in this paper is presented as 
follows: 

:: | | & | | ! | : |1.= ⊗ ⊕A A A A A A A A A A u A¨  
The simultaneous conjunction Aؤ B , also called multiplicative connective, suggests 

the possession of both A and B at the same time. The disjunction إA B , also called 
external choice, suggests that either A or B is available. The alternative conjunction A&B, 
also called internal choice, represents that either A or B is produced.  The linear 
implication A B¨ states that A is consumed while achieving B. The “of course” 
modality can be applied to resource A if A could replicate itself without any resource. The 



A Linear Logic Representation for BPEL ……………                                                                   27      
label u:A means that A is labeled with u. The trivial goal 1 represents a goal that requires  
no resources to achieve.  

In this paper we use LL formulae to represent messages exchanged by different 
services and processes. Since LL does not distinguish data types, we use different names 
for formulae to represent different types of messages. In this way we are able to reduce 
the complexity of reasoning process. 

3  Linear Logic Model for BPEL Protocol  

A BPEL process implements its business logic by performing activities. There are two 
major categories of activities in the BPEL specification: basic activity and structured 
activity. Basic activities describe elemental steps of the process behavior, while structured 
activities encode control-flow logic. 

Basic activities in BPEL are capable of exchanging messages, manipulating data, 
controlling internal state etc. They are defined as follows: 
Definition 1. A basic activity is defined as an 8-tuple BA=<N, I, O, P, E, F, CT, ST>. 

In the definition, N represents the name of this activity; I and O represent incoming 
messages/input variable, outgoing message/output variable; P, E and F represent 
precondition, effect and fault respectively; CT is the collection of control tokens, which 
functions as a control mechanism for the execution of each activity; ST, state transition, is 
the collection of LL sequents that describe the basic activity’s behavior. 

There are three notions within this definition that are not originally from the BPEL 
specification: effect, precondition and control token. Precondition P and effect E can be 
used to represent internal states of a BPEL process. Furthermore we use preconditions 
and effects to represent the <source> and <target> elements. They are standard elements 
in basic activity to specify the source and the target of a link, which is a synchronization 
mechanism for parallel processes. Under the same link, the source activity must finish 
before the execution of the target activity. Thus it is possible for activities in different 
processes to synchronize. In our model the source activity generates a formula as the 
effect while the target activity requires that particular formula as the precondition. 

Control tokens are used to control the execution of each activity. There are three kinds 
of control tokens in the definition of activity: CTin, CTnext, and CTf. CTin represent the 
control token that activates the activity. CTnext represents the control token that activates 
the next activity while CTf represents fault. By assigning one activity’s CTnext to the next 
activity’s CTin, we are able to embed sequence structure into the definition of activity. 
Furthermore, since the proof search of linear logic is undetermined, the application of 
control tokens can reduce the cost of proving theorems.  

The logic sequent ST represents the behavior of a basic activity. Due to their different 
functions not every basic activity shares the same composition and LL representation. 
 The invoke activity is capable of calling web services. It is defined as 

( ) &in temp fCT P CT O CT⊗ ⊗¨  and ( ) &temp next fCT I E CT CT⊗ ⊗¨ .  



Jian Wu and Lu Jin                                                                                                                28 
 The receive activity is used to provide services to partners through inbound message 

activities. It is defined as ( ) &in out fCT P I E CT CT⊗ ⊗ ⊗¨ . 

 The reply activity is used to send a response to a previously accepted request. It is 
defined as ( ) & .in out fCT P O E CT CT⊗ ⊗ ⊗¨  

 The assign activity is capable of manipulating variables and data within the business 
process. The ST of the assign activity is defined as ( ) &in fCT P I O E CT⊗ ⊗ ⊗¨ .   

 The throw/rethrow activity is used to signal internal fault explicitly or to propagate 
existing faults. It is represented as &in fCT P E CT⊗ ¨ . 

 The wait activity delays the process for a specific period of time or until a certain 
deadline is reached. It is defined as &in fCT P E CT∆ ⊗ گ¨ . Δ represents the time 

consumed by wait. 
 The empty activity represents activities that do nothing. It is defined 

as &in nextCT P E CT⊗ ¨ . 

 The exit activity is used to terminate the business process instance. It is defined 
as inCT P⊗ ¨ F . 

Structured activities describe the order in which a collection of activities is executed. 
By the composition of activities, structured activities are able to express the control 
patterns, handle faults and external events, and coordinate message exchanges between 
process instances involved in a business protocol. The definition of structured activities is 
described as follows: 

Definition 2. A structured activity is defined as an 8-tuple SA=<N, I, P, E, F, EA, CT, TT 
>, in which 

 N, I, P, E, F represent name, incoming message, precondition, effect and fault 
respectively;  

 EA={EA1,EA2,…,EAn

 CT={CT

} is the collection of embedded activities. If only one activity 
is embedded, EA is used to represent the embedded activity; 

in, CTnext 

 TT, token transition, is the collection of LL sequents that describe the activity’s 
structure. 

} is the collection of control tokens for this structured activity;  

The definition of structured activities is similar to that of basic activities. Token 
transitions, TT for short, are used to describe the control flow encoded into the structured 
activities. Structured activities include: sequence, if, pick, flow, while, repeat Until, for 
Each. The token transitions for each structured activity are defined as follow: 
 The sequence activity allows activities to be executed in the lexical order in which 

they are defined. With CTout and CTin in every basic activity it is possible to control 
the sequence of activities by assigning one activity’s CTout as another activity’s 
CTin.  



A Linear Logic Representation for BPEL ……………                                                                   29      
 The if activity offers the conditional branch structure that represents internal choice. 

It is defined as CTin♦EA1.CTin&EA2.CTin&…&EAn.CTin

 The pick activity offers the ability to respond to external events. It is represented as 
CT

.  

in♦(I1♦EA1.CTin)⊕(I2♦EA2.CTin)⊕…⊕(In-1♦EAn-1.CTin)⊕EAn.CTin. Each 
sequent Im♦Em.CTin (0<m<n) corresponds to an <onMessage> element and depicts 
that the pick activity consumes an incoming message and execute one activity EAm. 
The last EAn

 The flow activity offers concurrency and synchronization. The TT of the flow 
activity consists of two parts: start and termination. The start is represented as 
CT

 represents the activity in the <onAlarm> branch, if defined. 

in♦E1.CTin⊗E2.CTin⊗…⊗En.CTin. The termination is represented as 
E1.CTnext⊗E2.CTin⊗…⊗En.CTnext♦CTnext

 The while activity provides the ability to execute a contained activity repeatedly. 
The TT of the while activity also contains two sequents: CT

. 

in♦E.CTin&CTnext and 
E.CTnext♦CTin

 The repeatUntil activity also furnishes the function for repeated execution of a 
contained activity.  The TT of the repeatUntil activity is defined as CT

.  

in♦E.CTin and 
E.CTnext♦E.CTin&CTnext

After both basic activities and structured activities are defined, the BPEL process can 
be quickly defined as a union of all activities.  

. 

Definition 3. A BPEL process is defined as a 4-tuple P=<IV, CT, BA, SA>, where 

 IV=<N, I, O, P, E, F> is the interface view of the service process, which consists of 
canonical name, incoming and outgoing messages, preconditions, effects, and faults.  

 CT={CT1, CT2,…, CTn

 BA={A
} is the collection of control tokens; 

1, A2,…, Am

 SA={S
} is the collection of basic activities; 

1, S2,…, Sk

 

} is the collection of structured activities. 

4  Example Walkthrough 

flow1

receive1
+PO

invoke3
-shippingInfo

receive3
+Invoice

flow1
(Start)

invoke1
-shippingRequest
+shippingInfo

receive2
+shippingSchedule

invoke4
-PO

invoke5
-shippingSchedule

CT1

CT4

CT12

CT9

link1

CT3

CT13

flow1
(Terminate)

CT10

link2

reply1
-Invoice

CT2

CT11S

CT6CT5assign1
-PO

+shippingRequest

invoke2
-PO

CT8

CT7

Calculate Price

Select Shipper

Production Schedule
F

 
Fig. 1. Linear Logic Model for Purchase Order Process 

Figure 1 demonstrates the linear logic model for the purchase order process from the 
section 5.1 of BPEL 2.0 specification2. Activities are represented using rectangles. Each 
activity is labeled its message directions, ‘+’ for incoming message and ‘-’ for outgoing 



Jian Wu and Lu Jin                                                                                                                30 
message. After a purchase order from the client is received, the process initiates three 
parallel subprocesses: i) “Calculate Price” calculates the final price of the order and 
receives the invoice produced by a third party service; ii) “Select Shipper” arranges 
transportation and calculates the shipping price; iii) “Production Schedule” schedules the 
production and shipment for the order. Dotted arrows represent control links used for 
synchronization across concurrent activities. Link1 indicates the shipping price is 
required to finalize the price calculation. Link2 shows that the shipping date is required 
for the complete fulfilment schedule. After the three concurrent paths have completed 
their execution, an invoice is returned to the customer. 

The process definition is listed as follows. 
P=<IV, CT, BA, SA> 

 IV=<’Purchase Order Process’, POMesage, InvMessage, Null, Null, 
cannotCompleteOrder> 

 CT=<CT1, CT2,…CT13

 BA=<invoke1, invoke2, invoke3, invoke4, invoke5, receive1, receive2, receive3, 
reply1, assign1,> 

, S, Φ> 

 SA=<flow1> 
The detailed linear logic representation of each activity in the purchase order process is 
listed in Table 1. Note that initials are used for clear representation. IN stands for Invoice. 
SI stands for shippingInfo. SR stands for shippingRequest. SS stands for 
shippingSchedule. 

Activities I O P E F CT ST 
receive1 PO N/A N/A N/A N/A S,CT1 S⊗PO♦CT1 
flow1 N/A N/A N/A N/A N/A CT1,2,3,6,7,11,13 CT1♦CT3⊗CT7⊗CT11, CT6⊗CT10⊗CT13♦CT2 
reply1 N/A IN N/A N/A N/A CT2, Φ CT2♦IN⊗Φ 
invoke2 N/A PO N/A N/A N/A CT7,8 CT7♦PO⊗CT8 
invoke3 N/A SI link1 N/A N/A CT8,9 CT8⊗ link1♦SI⊗CT9 
receive3 IN N/A N/A N/A N/A CT9,10 CT9⊗IN♦CT10 
assign1 PO SR N/A N/A N/A CT3,4 CT3⊗PO♦SR⊗CT4 
invoke1 SI SR N/A link1 CCO CT4,5, CTinv1 CT4♦(SR⊗CTinv1)&CTCCO, CTinv1⊗SI♦link1⊗CT5 
receive2 SS N/A N/A link2 N/A CT5,6 CT5⊗SS♦link2⊗CT6 
invoke4 N/A PO N/A N/A N/A CT11,12 CT11♦PO⊗CT12 
invoke5 N/A SS link2 N/A N/A CT12,13 CT12⊗link2♦SS⊗CT13 

4  CONCLUSION & FUTURE WORKS 

In this paper a linear logic-based formal model for BPEL process is proposed. The 
contributions of this work include: i) Linear logic is incorporated into our method. With 
the help of proof-searching tool and proper problem setup, more challenging service 
computing problems, such as service adaptation, can be solved (semi)automatically. ii) A 
linear logic-based formal semantic for basic activities is proposed, which is capable of 
expressing message exchanges and the link mechanism. iii) A linear logic-based semantic 
for structured activities is proposed. Structures, such as sequence, choice, parallel and 
loop, can be easily described. In our future work more mechanisms, such as fault 
handling, event handling and compensation, will be included. We are currently working 



A Linear Logic Representation for BPEL ……………                                                                   31      
on an automatic tool that can transform XML based BPEL description into LL sequents. 

References 

[1] Web Service Description Language (WSDL) Version 2.0, W3C Recommendation (2007).  
[2] Web Services Business Process Execution Language (BPEL) Version 2.0, OASIS Standard 

(2007)  
[3] F. v. Breuge and M. Koshkina, Models and Verification of BPEL, 

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf (2006). 
[4] R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL. Journal of Logic 

and Algebraic Programming. 70 (2007) 96-118. 
[5] Niels Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL 2.0, In Web Services 

and Formal Methods, Forth International Workshop, Milan, 2007. 
[6] M. Dumas, B. Benatallah and H.R.M. Nezhad, Web Service Protocols: Compatibility and 

Adaptation, IEEE Data Engineering Bulletin.  31 (2008) 40-44. 
[7] J.-Y. Girard, Linear logic, Theoretical Computer Science, 50 (1987) 1-101. 
[8] Coq, a formal proof management system. http://coq.inria.fr/ 
[9] llprover, A Linear Logic Prover, http://bach.istc.kobe-u.ac.jp/llprover/ 
[10] L. Jin and J. Wu, A Linear Logic Based Approach for Generating Deadlock Adapters, 

Proceedings of 2010 Asia Pacific Service Computing Conference, Hangzhou, China. 
 
 

 
   Jian Wu received his B.Sc and Ph.D degree from Zhejiang University in 
1998 and 2004, respectively. He is now an Associate Professor in the 
Department of Computer Science and Technology. His research interests 
include Service Computing, Data Mining, Grid Computing and Semantic 
Web. 

 
Lu Jin received his B.Sc from Zhejiang University in 2005. He is now a 
Ph.D student in the Department of Computer Science and Technology in 
Zhejiang University. His research interests include Service Computing 
and Semantic Web.  

 
 

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf�


Applied Mathematics & Information Sciences                 5 (2) (2011),  33S-37S   
– An International  
 


	4
	A Linear Logic Representation for BPEL Process Protocol0F*
	Jian Wu1 and Lu Jin2
	1Department of Computer Science and Technology, Zhejiang University, Hangzhou, China
	2 Department of Computer Science and Technology, Zhejiang University, Hangzhou, China
	Email Address: jinluzju@gmail.com
	Received June 22, 2010; Revised December 21, 2010
	Fig. 1. Linear Logic Model for Purchase Order Process
	P=<IV, CT, BA, SA>
	References

	Dr Mohammed 17x24 cm

