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Abstract: In the present paper, we formulate and prove weak and strong maximum principles for non-linear fractional differential

equations with Riemann-Liouville fractional derivative of order 0 < α < 1. Compared to the previous studies, our results are obtained

in a wider space C1−α [0,T ], and are extendable to multi-term fractional differential equations.
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1 Introduction

We consider the following nonlinear fractional boundary value problem

(Dα
0 u)(t) = f (t,u), 0 < t < T, 0 < α < 1, (1)

lim
t→0+

t1−αu(t) = u0, (2)

where (Dα
0 u)(t) is the left Riemann-Liouville fractional derivative of order α ∈ (0,1), defined by

(Dα
0 u)(t) =

1

Γ (1−α)

d

dt

∫ t

0
(t − s)−α u(s)ds.

Theory of Eq. (1) was discussed in [1] in the space C[0,T ] and for the initial condition u(0) = u0. The problem was
transformed to an equivalent Volterra fractional integral equation. We mention here that the space C[0,T ] is restrictive for
the Riemann-Liouville fractional derivative of order α ∈ (0,1), and it is more proper to consider a boundary condition
given in (2). The linear case of the problem (1)-(2) was discussed in [2], in a much wider space C1−α [0,T ], where two
maximum principles were obtained. Maximum principle is commonly used to analyze the solutions of fractional
differential equations. Recently, several maximum principles have been derived to fractional differential equations with
several types of fractional derivatives. The applications of maximum principles in exploring fractional differential
equations were indicated in [1,2,3,4,5,6,7,8,9,10,11,12].
The present paper addresses a weak and a strong maximum principles for the nonlinear fractional boundary value
problem (1)-(2) in the space C1−α [0,T ]. The results extend to nonlinear multi-term fractional differential equations.
For µ ≥ 0, the space Cµ [0,T ] is the space of all functions f such that tµ f (t) ∈ C[0,T ]. It is known that

C[0,T ] =C0[0,T ]⊂Cµ [0,T ]⊂ L1(0,T ).
The organization of the manuscript is given below. Section 2 presents the main results. Conclusions are depicted in

section 3.

2 Maximum principles

We first prove the following comparison principle, which is a crucial result in our analysis. We have
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Lemma 1.Let function h ∈C1−α [0,T ] satisfy the following:

h(t)≥ 0, t ∈ (0, t1], h(t1) = 0, 0 < t1 < T.

Then it holds that

(Dα
0 h)(t1)≤ 0, for all 0 < α < 1.

Proof.Let r(t) =
∫ t

0 k(t − s)h(s)ds; where k(s) = s−α . We have

r(t1 +∆ t)− r(t1) =

∫ t1+∆ t

0
k(t1 +∆ t − s)h(s)ds−

∫ t1

0
k(t1 − s)h(s)ds,

=

∫ t1

0
k(t1 +∆ t − s)h(s)ds+

∫ t1+∆ t

t1

k(t1 +∆ t − s)h(s)−

∫ t1

0
k(t1 − s)h(s)ds,

=

∫ t1

0

(

k(t1 +∆ t − s)− k(t1 − s)

)

h(s)ds+

∫ t1+∆ t

t1

k(t1 +∆ t − s)h(s)ds,

= I1 + I2.

Since (Dα
0 h)(t1) exists, see [13], we prove that

lim
∆ t→0+

r(t1 +∆ t)− r(t1)

∆ t
≤ 0, (3)

and the proof of

lim
∆ t→0−

r(t1 +∆ t)− r(t1)

∆ t
≤ 0, (4)

will follow. Since ∆ t > 0, we have t1 +∆ t − s > t1 − s, which implies k(t1 +∆ t − s) < k(t1 − s), as k(s) is decreasing.
Because h(t)≥ 0, t ∈ (0, t1] we have

I1 =

∫ t1

0

(

k(t1 +∆ t − s)− k(t1 − s)

)

h(s)ds ≤ 0. (5)

Since t1 > 0, h(t) continues on [t1, t1 +∆ t]. Because h(t1) = 0, there exists ∆ t > 0, for every ε > 0, such that

|h(t)| ≤ ε(1−α), for all |t − t1|< ∆ t.

Thus,

I2 =
∫ t1+∆ t

t1

k(t1 +∆ t − s)h(s)ds ≤ ε(1−α)
∫ t1+∆ t

t1

k(t1 +∆ t − s)ds

= ε(1−α)
∫ t1+∆ t

t1

(t1 +∆ t − s)−α ds = ε(1−α)
1

1−α
(∆ t)1−α = ε(∆ t)1−α

< ε.

The lase equation yields

I2 ≤ 0. (6)

Combining Eqs. (5) and (6) with ∆ t → 0+ to prove the result in Eq. (3), which completes the proof.

We start with the following weak maximum principle.

Theorem 1.(The weak maximum principle) Let u,v ∈C1−α [0,T ] satisfy the following inequalities,

lim
t→0+

t1−αu(t) = u0 < lim
t→0+

t1−αv(t) = v0, (7)

Dα
0 u− f (t,u) < Dα

0 v− f (t,v), 0 < t < T. (8)

Then u < v on (0,T ) and u ≤ v on (0,T ].
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Proof.We first show that u < v on (0,T ). Assume the result is untrue, then there exists t1 ∈ (0,T ) such that

u(t1) = v(t1), u(t)< v(t), t ∈ (0, t1).

Let h(t) = v(t)− u(t), t ∈ (0, t1], then it holds that

h(t)≥ 0, t ∈ (0, t1], h(t1) = 0.

Thus,
(Dα

0 h)(t1)≤ 0, or (Dα
0 v)(t1)≤ (Dα

0 u)(t1),

based on the result in Lemma 1. So, at t = t1, we have f (t1,u(t1)) = f (t1,v(t1)), which together with (Dα
0 v)(t1) ≤

(Dα
0 u)(t1), contradict (10) and complete the proof of u < v on (0,T ).

Since u,v ∈C1−α [0,T ], then u and v are continuous on (0,T ], which together with u < v on (0,T ), imply u ≤ v on (0,T ].

For the following strong maximum principle, we assume that f (t,u) is k-Lipschitz in C1−α [0,T ]. That is,

| f (t,u)− f (t,v)| ≤ k|u− v|, for some k > 0,and for all, u,v ∈C1−α [0,T ].

Theorem 2.(The strong-maximum principle) Let u,v ∈C1−α [0,T ] satisfy the following inequalities:

lim
t→0+

t1−αu(t) = u0 < lim
t→0+

t1−αv(t) = v0, (9)

Dα
0 u− f (t,u) ≤ Dα

0 v− f (t,v), 0 < t < T, (10)

where f (t,u) is k-Lipschitz in C1−α [0,T ]. Then, u < v on (0,T ), and u ≤ v on (0,T ].

Proof.We define the auxiliary function w = u+ z, t ∈ (0,T ], where z is the solution of
(

Dα
0 z
)

(t) = −2kz, 0 < t < T, 0 < α < 1, (11)

lim
t→0+

t1−αz(t) = z0 =
v0 − u0

2
> 0. (12)

The unique solution of Eqs. (11)-(12) is, see [?]

z(t) = z0Γ (α)tα−1Eα ,α(−2ktα), t ∈ (0,T ].

Since Eα ,α(t)> 0, we have z(t) = w(t)− u(t)> 0, t ∈ (0,T ]. We have

w0 = lim
t→0+

tα−1w(t) = u0 + z0 = u0 +
v0 − u0

2
=

v0 + u0

2
< v0,

and
(

Dα
0 w

)

(t)− f (t,w) =
(

Dα
0 u

)

(t)+
(

Dα
0 z
)

(t)− f (t,w),

=
(

Dα
0 u

)

(t)− 2kz− [ f (t,w)− f (t,u)]− f (t,u),

=
(

Dα
0 u

)

(t)− 2k(w− u)− [ f (t,w)− f (t,u)]− f (t,u),

≤
(

Dα
0 u

)

(t)− f (t,u)− 2k(w− u)+ k(w− u),

≤
(

Dα
0 v

)

(t)− f (t,v)− k(w− u) =
(

Dα
0 v

)

(t)− f (t,v)− kz,

<
(

Dα
0 v

)

(t)− f (t,v).

Thus, by the weak maximum principle we have w < v on (0,T ). Since z > 0, we have w > u on (0,T ) and thereby u < v

on (0,T ). The result u ≤ v on (0,T ] will follow as u,v ∈C(0,T ].

In the following, we extend the weak and strong maximum principles for nonlinear multi-term fractional differential
equations. We have

Theorem 3.(The weak maximum principle) Let u,v ∈C1−α [0,T ] satisfy the following inequalities:

lim
t→0+

t1−αu(t) = u0 < lim
t→0+

t1−αv(t) = v0,

(

D
αm
0 +

m−1

∑
i=1

ciD
αi
0

)

u(t)− f (t,u) <

(

D
αm
0 +

m−1

∑
i=1

ciD
αi
0

)

v(t)− f (t,v), 0 < t < T,

(13)

where 0 < α1 < α2 < · · ·< αm < 1, and ci ≥ 0, i = 1, · · · ,m− 1. Then u < v on (0,T ), and u ≤ v on (0,T ].
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Proof.We follow analogous steps to the proof of Theorem 1. We first show that u < v on (0,T ). Assume the result is
untrue, then there exists t1 ∈ (0,T ] such that

u(t1) = v(t1), u(t)< v(t), t ∈ (0, t1).

Let h(t) = v(t)− u(t), t ∈ (0, t1], then it holds that

h(t)≥ 0, t ∈ (0, t1], h(t1) = 0.

Thus,
(Dαi

0 h)(t1)≤ 0, or (Dαi
0 v)(t1)≤ (Dαi

0 u)(t1), i = 1, · · · ,m,

based on the result in Lemma 1. Since ci ≥ 0, i = 1, · · · ,m− 1, we have

(

D
αm
0 +

m−1

∑
i=1

ciD
αi
0

)

v(t1)≤

(

D
αm
0 +

m−1

∑
i=1

ciD
αi
0

)

u(t1). (14)

So, at t = t1, we have f (t1,u(t1)) = f (t1,v(t1)), which together with the result in Eq. (14) contradict (13) and complete
the proof of u < v on (0,T ).
Since u and v are continuous on (0,T ], and u < v on (0,T ), then u ≤ v on (0,T ].

Theorem 4.(The strong maximum principle) Let u,v ∈C1−α [0,T ] satisfy the following inequalities,

lim
t→0+

t1−αu(t) = u0 < lim
t→0+

t1−αv(t) = v0, (15)

(

D
αm
0 +

m−1

∑
i=1

ciD
αi
0

)

u(t)− f (t,u) ≤

(

D
αm
0 +

m−1

∑
i=1

ciD
αi
0

)

v(t)− f (t,v), 0 < t < T,

where 0 < α1 < α2 < · · ·< αm < 1, ci ≥ 0, i = 1, · · · ,m− 1, and f (t,u) is k-Lipschitz in C1−α [0,T ]. Then u < v on (0,),
and u ≤ v on (0,T ].

Proof.The proof is obtained by applying analogous statements in the proof of Theorem 2, and by considering the minor
changes in the proof of Theorem 3.

3 Conclusion

We have developed maximum principles for nonlinear fractional differential equations involving the Riemann-Liouville
fractional derivative of order 0 < α < 1. The obtained maximum principles can be implemented to investigate various
types of fractional differential equations [3,4,14]. We highlight below the importance of the new results compared with
the previous ones:

1.The space C1−α [0,T ] is wider than C[0,T ], so it is more proper for the Riemann-Liouville fractional derivative of
order 0 < α < 1.

2.The results are extendable to multi-term nonlinear fractional differential equations, but it is not the case with the
previous approaches. Also, it is difficult to transform a multi-term fractional differential equation to an equivalent
integral equation.

3.The type of the boundary conditions is more proper than the Dirichlet boundary conditions in the case of the Riemann-
Liouville fractional derivative.
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