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Abstract: In this paper, we consider generalized inverted exponential (GIE) model. Three issues represent the purpose of this paper.

First, based on adaptive progressively Type-II censored data, we derive the maximum likelihood estimators (MLE) of the model

parameters as well as the reliability and hazard rate functions. Next, the Bayes estimates are evaluated by applying Markov chain

Monte Carlo method under the balanced squared error (BSEL) loss function and balanced linear exponential (BLINEX) loss function.

Based on the asymptotic distributions of the MLEs and MCMC samples, we compute asymptotic confidence interval and symmetric

credible interval along with the coverage probability. We analyze a real data set to illustrate the results derived. Simulation studies are

conducted to compare the performances of the Bayes estimators with the maximum likelihood estimators. Finally, a numerical

example is presented to illustrate the methods developed.

Keywords: Generalized inverted exponential distribution; Adaptive type-II progressive censoring data ; Maximum likelihood

estimation, Bayesian estimations; Markov chain Monte Carlo.

1 Introduction

In some life testing, it is common that not all the items under test will be observed until failure. That is, some of the items
will be withdrawn or removed from the life test. When this happens, the samples resulting from such life test considered
a censored samples. Censoring is a technique that truncates the experiment in a well-planned manner before the failure
of all the items is put on the test. Censoring can be done with respect to a pre-specified time, pre-specified number of
failures or a combination of both. The main motivation of using different censoring in reliability and life testing analysis,
specially in industrial life testing, is to save on test time or the number of items that are tested until failure. Among the
different censoring schemes, Type I and Type II censoring schemes are the most used ones in reliability and life testing
experiments, see for example Dey and Kundu [1]. Under Type-I censoring scheme, the life testing experiment will be
stopped at a pre-fixed time T , while under Type-II censoring scheme, the life testing experiment will be terminated at
the time when the rth failure is observed. Progressive Type-II censoring scheme has been discussed by Nelson [2] as
a generalization of Type-II censoring scheme. The review article by Balakrishnan [3] addressed progressive censoring
scheme and its different applications. In progressively censored life tests, some units are removed during the conduction
of the experiment indicating that we do not observe the failure time of any unit. Under this censoring scheme, n units are
placed on a life-testing experiment and when the first failure occurs, R1 of the n− 1 surviving units are withdrawn from
the experiment. When the next failure occurs, R2 of the n− 2−R1 surviving units are withdrawn from the experiment,

and so on. Finally, at the time of the m-th failure, all the remaining Rm = n−m−
m−1

∑
i=1

Ri surviving units are withdrawn

from the experiment. Prior to the experiment, a number m(< n) is fixed and the censoring scheme Ri, i = 1,2, ..,m with
Ri ≥ 0 is specified. The set of observed lifetimes x1:m:n < x2:m:n < ... < xm:m:n is a progressively Type-II right censored
sample. We obtain the usual Type-II censored sample if one set Ri = 0, i = 1,2, ..,m−1 and Rm = n−m, and the complete
sample case ( no censoring ), if we set m = n and Ri = 0, for i = 1,2, ..,m− 1. For extensive reviews of the literature on
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progressive censoring see Balakrishnan and Aggarwala [4], Balakrishnan [3], Balakrishnan and Cramer [5] and Soliman
et al. [6].
The progressive censoring scheme still has disadvantages, including that the running time T of the experiment is still
unknown and it may take long time for m units to fail. Thus, Ng et al. [7] proposed a mixture of Type-I censoring and
Type-II progressive censoring scheme, called the adaptive Type-II progressively censoring scheme. In their procedure the
effective number of failures m is fixed in advance and the experimental time is allowed to run over time T which is an
ideal total time test. According to this model, the progressive censoring scheme R1,R2, ...,Rm is available, but the values of
some of the Ri may change accordingly during the experiment. If the mth progressively censored observed failures occur
before time T (Xm:m:n < T ), the experiment stops at this time Xm:m:n, and we will have a usual type-II progressive censoring
scheme with the pre-fixed progressive censoring scheme R1,R2, ...,Rm. Otherwise, if XJ:m:n < T < XJ+1:m:n where J+1 <
m and XJ:m:n is the Jth failure time occurs before time T , then we will not withdraw any items from the experiment by

setting RJ+1,RJ+2, ...,Rm−1 = 0 and at the time of the mth failure all remaining surviving items Rm = n−m−
J

∑
i=1

Ri are

removed from the experiment. Thus, the effectively applied scheme is (R1,R2, ...,RJ,0,0, ...,0,n−m−
J

∑
i=1

Ri).

Here, the value of T , the experimenter is free to change the value of T to adjust the optimum of shorter experimental time
and a higher chance of observing many failures. According to Lin et al. [8], it guarantees not only acquiring m observed
failure times for efficiency of statistical inference but also controlling the total time on the test to be not too far away from
the ideal time T . The extreme case when T →∞, which means that time is not the main consideration for the experimenter,
we will have a usual progressive Type-II censoring scheme with pre-fixed R

,
is. Furthermore, when T → 0, we will have a

conventional Type-II censoring scheme with R1,R2, ...,Rm−1 = 0 and Rm = n−m.
Several authors, including Hemmati and Khorram [9], Ashour and Nassar [10], Ismail [11], Al Sobhi and Soliman [12],
Hemmati and Khorram [13], Nassar and Abo-Kasem [14], Abd-Elmougod and Mahmoud [15] and a more recently EL-
Sagheer et al. [16]. Although adaptive Type-II progressively censoring scheme was modified by Cramer and Iliopoulos
[17] assuming that T is a random variable. In this study we assume that the lifetimes follow the GIE distribution. The
two-parameter GIE distribution was introduced in the literature by Abouammoh and Alshingiti [18]. The study adopts it
because it has many applications in several areas of life such as accelerated life testing, horse racing, supermarket queues,
sea currents, wind speeds and others, see Nadarajah and Kotz [19]. Also, it has a great ability to synthesize different forms
of failure rates. The probability density function (PDF) and cumulative distribution function (CDF) of GIE are given,
respectively, by

f (x;α,λ ) =
αλ

x2
e−λ/x(1− e−λ/x)α−1,x ≥ 0,α,λ > 0. (1)

F(x;α,λ ) = 1− (1− e−λ/x)α ,x ≥ 0,α,λ > 0, (2)

where α > 0 is the shape parameter and λ > 0 is the scale parameter. The generalized inverted exponential distribution
with parameters α and λ will be denoted by GIE(α,λ ). The corresponding reliability function and the failure rate function
are given by

S(x) = (1− e−λ/x)α ,x ≥ 0,α,λ > 0, (3)

H(x;α,λ ) =
αλ

x2(eλ/x − 1)
(4)

Several studies examined the characteristics and inferences of the GIE distribution using different types of data. First,
based on complete sample, Abouammoh and Alshingiti [18] derived some distributional properties and reliability
characteristics as well as maximum likelihood estimators (MLEs) of GIE distribution. Estimations using both the MLEs
and least squares method for the unknown parameters of the GIE distribution under progressively type-II censored
sample are derived by Krishna and Kumar [20]. Based on the same censoring scheme, the necessary and sufficient
conditions for existence, uniqueness and existentialists of the MLEs of the parameters have been discussed by Dey and
Dey [21]. In Dey and Pradhan [22] as well as Garg et al. [23], the authors discussed some Bayesian inference for the GIE
parameters under hybrid random censoring. Furthermore, Krishna et al. [24] addressed estimation of stress–strength
parameter θ = P(Y < X) using progressively first-failure censoring, when X and Y both follow two-parameter
generalized inverted exponential distribution. Recently, based on progressively first-failure type-II right-censored data,
Ahmed [25] investigated an expectation–maximization (EM) algorithm to obtain maximum likelihood estimates of
unknown parameters and to construct asymptotic confidence intervals. He also obtained the Bayes estimation and
prediction of generalized inverted exponential distribution. He constructed an exact interval and an exact confidence
region for the parameters.
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To our knowledge, inference of the unknown parameters of GIE distribution in the presence of adaptive progressive
censoring has not been explored yet. Hence the main objective of this article is to make inferences on the proposed
model parameters adopting both maximum likelihood as well as Bayesian methods. When the two parameter are
unknown, as expected, the explicit expressions of the Bayes estimates cannot be obtained. We propose Markov chain
Monte Carlo (MCMC) techniques to compute point and interval estimations of the unknown parameters. The simulation
study with the numerical investigations of Bayes estimations are attempted using Metropolis-Hastings algorithm
technique via Gibbs sampling.
The remainder of this paper is organized as follows: The maximum likelihood estimates (MLEs) of unknown parameters
and reliability characteristic are obtained in Section Two. The asymptotic confidence intervals based on the observed
Fisher’s information matrix are revisited in this section, as well. We cover Bayes estimates relative to balanced squared
error loss function and balanced LINEX loss function using the MCMC techniques in Section Three. Simulation study
with numerical comparisons of the estimates and data analysis are presented in Section Four. Section Five involves
conclusion.

2 The ML estimation

It is assumed that the lifetimes of the units tested have a GIE(α,λ ) distribution and suppose that a random sample of
n units is put on a life test experiment. The joint density function of an adaptive progressive Type-II censoring sample

X= (X1,m,n, ...,Xm,m,n) with censoring scheme R = (R1,R2, ...,RJ,0,0, ...,0,n−m−
J

∑
i=1

Ri) is then given as

f (x1, ...,xm) = dJ

m

∏
i=1

f (xi:m:n;α,λ )
J

∏
i=1

[1−F(xi:m:n;α,λ )]Ri × [1−F(xm:m:n;α,λ )]R
∗
J , (5)

where f (xi:m:n;α,λ ) and F(xi:m:n;α,λ ) are respectively given by (1) and (2),
where

dJ =
m

∏
i=1

(n− i+ 1−
min{i−1,J}

∑
k=1

Rk) and R∗
J = n−m−

J

∑
i=1

Ri. (6)

Substituting from Equations (1) and (2) in (5), we obtain the likelihood function of α and λ as

L(α,λ |x
¯
) = dJαmλ m

m

∏
i=1

e−λ/xi

x2
i

(1− e−λ/xi)(α−1)
J

∏
i=1

(1− e−λ/xi)αRi ]× (1− e−λ/xm)αR∗
J , (7)

Thus, the log-likelihood function may be written in the following form

ℓ(α,λ |x
¯
) = log(dJ)+m log(α)+m log(λ )− 2

m

∑
i=1

logxi −λ
m

∑
i=1

x−1
i

+(α − 1)
m

∑
i=1

log(1− e
− λ

xi
)+α

J

∑
i=1

Ri log(1− e
− λ

xi
)+αR∗

J log(1− e
− λ

xm
). (8)

Calculating the first partial derivatives of Equation (8) with respect to α and λ , and equating to zero, we get the likelihood
equations as

m

α
+

m

∑
i=1

log(1− e
− λ

xi )+
J

∑
i=1

Ri log(1− e
− λ

xi )+R∗
J log(1− e

− λ
xm ) = 0, (9)

and
m

λ
−

m

∑
i=1

x−1
i +(α − 1)

m

∑
i=1

x−1
i (e

λ
xi
− 1)−1 +α

J

∑
i=1

Rix
−1
i (e

λ
xi
− 1)−1 +αR∗

Jx−1
m (e

λ
xm

− 1)−1 = 0. (10)

From Equation (9), we have

α̂
ML

=
−m

m

∑
i=1

log(1− e
−

λ̂ML
xi )+

J

∑
i=1

Ri log(1− e
−

λ̂ML
xi )+R∗

J log(1− e
−

λ̂ML
xm )

, (11)
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and we can obtain λ̂ as the solution of

m

λ̂ML

−
m

∑
i=1

x−1
i +(α̂

ML
− 1)

m

∑
i=1

x−1
i (e

λ̂ML
xi − 1)−1 + α̂

ML

J

∑
i=1

Rix
−1
i (e

λ̂ML
xi − 1)−1

+α̂
ML

R∗
Jx−1

m (e
λ̂ML
xm

− 1)−1 = 0. (12)

It should be noted here that if Xm:m:n < T , the log-likelihood equations presented by Dey and Dey [21] can be obtained
from Equations (9-11). Also, selecting an appropriate value for T is very important, and will be discussed in the numerical
part of this paper.

Substituting from (11) in (12), the resulting equation is a non-linear equation in λ̂ML, which cannot be solved analytically.

One must use a numerical procedure such as a Newton–Raphson type algorithm to obtain λ̂ML. Once we obtaine λ̂ML,
the MLE α̂ML of the parameter α can be obtained from (11). Furthermore, the initial value for the parameter λ can be
obtained by using the graphical method, see Balakrishnan and Kateri [26].
Using invariance property of maximum likelihood estimation, the MLEs of the reliability and hazard rate functions from
Equations (3) and (4) are obtained as

ŜML(t) = (1− e−λ̂ML/t)α̂ML and ĤML(t) =
α̂MLλ̂ML

t2(eλ/t − 1)
, t > 0. (13)

2.1 Asymptotic confidence intervals for α and λ

The most common method to set confidence bounds for the parameters is to use the asymptotic normal distribution of
the MLEs. It is known that under some regularity conditions, according to Lawless [27], the asymptotic distribution of

the MLE of α and λ is approximately distributed as bivariate normal: (θ̂ML − θ )−→ N2(0, I
−1(θ )), where I−1(θ ) is the

inverse of the observed information matrix of the unknown parameters θ = (α,λ ), given as

I−1(θ ) =

(
− ∂ 2ℓ(α ,λ |x

¯
)

∂α2 − ∂ 2ℓ(α ,λ |x
¯
)

∂α∂λ

− ∂ 2ℓ(α ,λ |x
¯
)

∂λ ∂α − ∂ 2ℓ(α ,λ |x
¯
)

∂λ 2

)−1

(α ,λ )=(α̂ML,λ̂ML)

=

(
var (α̂ML) cov(α̂ML, λ̂ML)

cov(α̂ML, λ̂ML) var
(

λ̂ML

)
)
. (14)

The second partial derivatives of log-likelihood function are

∂ 2ℓ(α,λ |x
¯
)

∂α2
=−

m

α2
, (15)

∂ 2ℓ(α,λ |x
¯
)

∂λ ∂α
=

∂ 2ℓ(α,λ |x
¯
)

∂α∂λ
=

m

∑
i=1

x−1
i (e

λ
xi − 1)−1 +

J

∑
i=1

Rix
−1
i (e

λ
xi − 1)−1 +R∗

Jx−1
m (e

λ
xm

− 1)−1, (16)

and

∂ 2ℓ(α,λ |x
¯
)

∂λ 2
=−

m

λ 2
− (α − 1)

m

∑
i=1

x−2
i e

λ
xi (e

λ
xi − 1)−2 −α

J

∑
i=1

Rix
−2
i e

λ
xi (e

λ
xi − 1)−2 −αR∗

Jx−2
m e

λ
xm
(e

λ
xm

− 1)−2. (17)

A 100(1− γ)% two-sided approximate confidence intervals for the parameters α and λ can be given by

α̂ML ∓Zγ/2

√
var(α̂ML) and λ̂ML ∓Zγ/2

√
var(λ̂ML). (18)

where var(α̂ML) and var(λ̂ML) are the estimated variances of α̂ML and λ̂ML, which are given by the first and the second,
diagonal element of I−1(θ ), and Zγ/2 is the percentile of the standard normal distribution with right-tail probability γ/2.
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2.2 Approximate confidence intervals for S(t) and H(t)

To construct the asymptotic confidence interval of the reliability and hazard functions, we need to find their variances.
Thus, we use the delta method, introduced by Greene [28], to calculate the approximate confidence intervals for S(t) and
H(t). Let

G1 =

(
∂S(t)

∂α
,

∂S(t)

∂λ

)
= ((1− e

− λ
t )α log(1− e

− λ
t ),αe

− λ
t

t−1(1− e
−λ

t )α−1), (19)

and

G2 =

(
∂H(t)

∂α
,

∂H(t)

∂λ

)
= (λ (e

λ
t
− 1)−1t−2,α(e

λ
t
− 1)−2t−2[(e

λ
t
− 1)−λ t−1e

λ
t
]. (20)

Then, the approximate estimates of v̂ar(Ŝ(t)) and v̂ar(Ĥ(t)) are given, respectively, by

v̂ar
[
Ŝ(t)

]
≃
[
Gt

1I−1(α,λ )G1

]
(α ,λ )=(α̂ML,λ̂ML)

, v̂ar
[
Ĥ(t)

]
≃
[
Gt

2I−1(α,λ )G2

]
(α ,λ )=(α̂ML,λ̂ML)

, (21)

where Gt is the transpose G. These results indicate the approximate confidence intervals for S(t) and H(t) as

Ŝ(t)∓Zγ/2

√
v̂ar[Ŝ(t)] and Ĥ(t)∓Zγ/2

√
v̂ar[Ĥ(t)]. (22)

3 Bayes Estimation

Based on an adaptive progressive type-II censored sample, we provide the Bayes estimates of the unknown parameters
as well as S(t) and H(t) of GIE(α,λ ) distribution relative to both the balanced squared error loss and balanced LINEX
loss functions. However, any other loss function can be easily incorporated as a special case. Also, we use the MCMC
sampling procedure to calculate the credible intervals.

3.1 Prior and Posterior

When both the parameters α and λ are unknown it is difficult to obtain joint bivariate prior distribution. Hence, we assume
that the parameters α and λ are independent and follow the gamma prior distributions with the following PDFs

π1(α|a,b) =
ba

Γ (a)
αa−1e−bα , α > 0 and π2(λ |c,d) =

bc

Γ (c)
λ c−1e−dλ , λ > 0.

The hyper-parameters a, b, c, and d are known and non-negative. In this case, the joint prior distribution of α and λ turns
out to be

g(α,λ )∝ αa−1λ c−1e−dλ e−bα , α > 0,λ > 0,a > 0,b > 0,c > 0,d > 0. (23)

From (5) and (23), the joint posterior distribution of α and λ given the observed data is obtained as

q(α,λ |x
¯
) = Aαm+a−1λ m+c−1e−(bα+dλ )

(
1− e−λ/xm

)αR∗
J

m

∏
i=1

(
1− e−λ/xi

)α−1

x2
i eλ/xi

J

∏
i=1

(
1− e−λ/xi

)αRi

, (24)

where

A−1

=

∞∫

0

∞∫

0

αm+a−1λ m+c−1e−(bα+dλ )
(

1− e−λ/xm

)αR∗
J

m

∏
i=1

(
1− e−λ/xi

)α−1

x2
i eλ/xi

J

∏
i=1

(
1− e−λ/xi

)αRi

dαdλ . (25)
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3.2 Bayes Estimation under Balanced loss Function

In this subsection, we derive the Bayes estimators for the unkown parameters of a GIED under balanced loss functions.
For estimating a scalar parameter θ , Jozani et al. [29] took an extended view of balanced loss in the following form

L
q

ρ ,ω,θ0

(
θ , θ̂

)
= ωρ

(
θ0, θ̂

)
+(1−ω)ρ

(
θ , θ̂

)
, (26)

where ρ is any loss function, the weight ω takes values in [0,1), and θ0 is a chosen a prior target estimate of θ , obtained
for instance using the criterion of maximum likelihood estimator, least-squares, or unbiasedness among others. In the
Bayesian inference, the most commonly used loss function is the squared error loss. This loss function is symmetrical and

gives equal weight to overestimation as well as underestimation. By choosing ρ
(
θ , θ̂

)
=
(
θ − θ̂

)2
, equation (26) reduces

balanced squared error loss function, in the form:

L
q

ρ ,ω,θ0

(
θ , θ̂

)
= ω

(
θ0 − θ̂

)2
+(1−ω)

(
θ − θ̂

)2
, (27)

and the corresponding Bayes estimate of the unknown parameter θ is given by:

θ̂BS = ωθ0 +(1−ω)E (θ |X) . (28)

Using symmetric loss functions may be inappropriate in several circumstances, particularly when positive and negative
errors have different consequences. One of the most commonly used asymmetric loss function is the LINEX (linear
exponential) loss function, see Varian [30]. The balanced LINEX loss function with shape parameter c 6= 0 is obtained

with the choice of ρ
(
θ , θ̂

)
= ec(θ0−θ̂)− c

(
θ − θ̂

)
− 1 in Equation (26) and given by

L
q
ρ ,ω,θ0

(
θ , θ̂

)
= ω

[
ec(θ0−θ̂)− c

(
θ − θ̂

)
− 1
]
+(1−ω)

[
ec(θ0−θ̂)− c

(
θ − θ̂

)
− 1
]
, (29)

and the corresponding Bayes estimate under above-mentioned balanced LINEX loss function can be obtained as

θ̂BL =−
1

c
log
[
ωe−cθ0 +(1−ω)E

(
e−cθ |X

)]
. (30)

The sign of c means the direction of asymmetry and its magnitude indicates the degree of asymmetry. For c < 0, the
positive error is better than the negative error. For c > 0, the negative error is better than the positive error. Furthermore,
the loss parameter of balanced LINEX loss function is chosen such that it does not respectively equal zero (0), if it equals
zero, the loss function turns to be approximately the balanced squared error loss. The original motivation for balanced loss
functions came from a desire to account for both estimation error and goodness of fit (Zellner [31]). Also, it is clear that
the Bayes estimates under balanced loss functions are more general including both MLE and Bayes estimates as special
cases.
Under the BSEL function (see Soliman et al. [32].), the respective Bayes estimates of a function g(α;λ ) = α, λ , S(t) or
H(t), is given by

ĝBS = ω ĝML +(1−ω)

∞∫

0

∞∫

0

g(α;λ )q(α,λ |x
¯
)dαdλ , (31)

where ĝML is the MLE of g(α;λ ). Also, the Bayes estimate of the function g(α;λ ) = α, λ , S(t) or H(t) under the
BLINEX loss function is written as

ĝBL =
−1

c1

log[ωe−c1ĝML +(1−ω)

∞∫

0

∞∫

0

e−c1gq(α,λ |x
¯
)dαdλ ], (32)

From Equations (31) and (32), it is seen that the Bayes estimators of α , λ , S(t) and H(t) are ratio of two integrals
for which analytical expressions are unavailable. We apply here the approaches of the MCMC method to calculate the
Bayesian estimates of α , λ , S(t) and H(t), and to construct the corresponding credible intervals. In the next section we
discuss Metropolis-Hastings (M-H) within the Gibbs algorithm to generate random numbers from (24).
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3.3 The M-H within Gibbs sampling algorithm

In this section we use the M-H algorithm which is potentially very powerful tool for approximating posterior
expectations. After Metropolis et al. [33] introduced Metropolis algorithm, Hastings [34] provided relevant theory for
this sampling method and discussed potential applications of this algorithm in life testing experiments. Furthermore,
Gibbs sampling method is a special case of the MCMC method. It can be used to generate a sequence of samples from
the full conditional probability distributions of two or more random variables. Gibbs sampling requires decomposing the
joint posterior distribution into full conditional distributions for each parameter and then sampling from them. We can
estimate desired posterior expectations using this method by proceeding in a following manner. From Eq. (24) the joint
posterior density of α and λ can be written as

qα ,λ (α,λ |x
¯
)∝ αm+a−1λ m+c−1e−(bα+dλ )

(
1− e−λ/xm

)αR∗
J

m

∏
i=1

(
1− e−λ/xi

)α−1

x2
i eλ/xi

J

∏
i=1

(
1− e−λ/xi

)αRi

, (33)

From Equation (33), the posterior conditional density function of α given λ can be obtained as

qα(α|λ ,x
¯
)∝ αm+a−1e−bα

(
1− e−λ/xm

)αR∗
J

m

∏
i=1

(
1− e−λ/xi

)α J

∏
i=1

(
1− e−λ/xi

)αRi

,

∝ αm+a−1 exp [−αTm] , (34)

where

Tm = b−

[
R∗

J log
(

1− e−λ/xm

)
+

m

∑
i=1

log
(

1− e−λ/xi

)
+

J

∑
i=1

Ri log
(

1− e−λ/xi

)]
, (35)

where R∗
J given by (6). From (35), for any λ > 0, and xi > 0, i = 1,2, ...,m, one can see that

log
(

1− e−λ/xm

)
< 0,

m

∑
i=1

log
(

1− e−λ/xi

)
< 0,

J

∑
i=1

Ri log
(

1− e−λ/xi

)
< 0.

So Tm > 0 for b > 0.
Similarly, the posterior conditional density function of λ given α can be obtained as

qλ (λ |α,x
¯
)∝ λ m+c−1e−(bα+dλ )

(
1− e−λ/xm

)αR∗
J

m

∏
i=1

(
1− e−λ/xi

)α−1

x2
i eλ/xi

J

∏
i=1

(
1− e−λ/xi

)αRi

. (36)

We observe that the conditional distribution of α given λ and data is a gamma distribution with shape parameter (m+ a)
and scale parameter Tm. However it is quite difficult to derive the conditional posterior distribution of λ given α and
data to some known form. Thus, to generate samples from this distribution we assume that the proposal distributions are
normal. Then, we generate samples using the following steps.

Step 1: Choose an initial guess of (α,λ ), say (α(0),λ (0)) and set i = 1.
Step 2: Generate λ (i) according the following steps:

(i)- Generate λ ∗fromnormal N(λ (i−1); var(λ )) proposal distribution where var(λ ) denotes the variance of λ .

(ii)- Compute r = min

{
1,

qα(λ
∗|α(i−1),x

¯
)

qα(λ (s−1)|α(i−1),x
¯
)

}
,

(iii)- Then generate a sample u from the U(0;1) distribution

(iv)- If u ≤ d , set λ (i) = λ ∗; otherwise λ (i) = λ (i−1);
Step 3: Generate α(i) from Gamma(m+ a,Tm), where Tm is given by (34).

Step 4: Compute S(i)(t) = (1− exp(−λ (i)/t))α(i)
and H(i)(t) = α(i)λ (i)

t2(exp(λ (i)/t)−1)
.

Step 5: Set i = i+ 1.
Step 5: Repeat steps (2− 5) N times to obtain desired number of samples.
We discard the initial N0 number of burn-in samples and obtain estimates using the remaining N −N0 samples. The Bayes
estimates of g = g(α,λ ) under the BSE loss function can now be computed as follows

ĝBS = ω ĝ(α,λ )ML +
(1−ω)

N −N0

N

∑
i=M+1

g(α(i),λ (i)). (37)
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In addition, the approximate Bayes estimate of the g under BLINEX loss function is then given by

ĝBL =
−1

c1

log[ωe−c1ĝ(α ,λ )ML
(1−ω)

N −N0

N

∑
i=M+1

e−c1g(α(i),λ (i)) (38)

Substituting from (37) and (38) by g(α,λ ) = α,λ ,S(t) or H(t), the Bayes estimates of α,λ ,S(t) and H(t) under both
BSEL and BLINEX loss functions can be obtained.

To compute the credible intervals of α,λ ,S(t) and H(t), order α(N0+1), ...,α(N), λ(N0+1), ...,λ(N), S(N0+1)(t), ...,S(N)(t)

and H(N0+1)(t), ...,H(N)(t) as α(1) < ... < α(N−N0), λ(1) < ... < λ(N−N0), S(1)(t) < ... < S(N−N0)(t) and

H(1)(t)< ... < H(N−N0)(t), respectively. Then the 100(1− γ)% symmetric credible intervals of α and λ become

[
α((N−N0)(γ/2)),α((N−N0)(1−γ/2))

]
,
[
λ((N−N0)(γ/2)),λ((N−N0)(1−γ/2))

]
, (39)

Also, the 100(1− γ)% symmetric credible intervals of S(t) and H(t) become

[
S((N−N0)(γ/2))(t),S((N−N0)(1−γ/2))(t)

]
,
[
H((N−N0)(γ/2))(t),H((N−N0)(1−γ/2))(t)

]
. (40)

Table 1: ML, Bayesian estimates and posterior summarize of α, λ , S(t) and H(t).
Method ML Bayes (ω = 0)

Parameter Point LB UB Mean Median Mode S.D Ske. LB UB

α 213.48 38.863 465.823 130.781 116.169 86.945 68.9257 1.9491 45.584 317.424

λ 13.7422 10.590 16.895 12.1337 12.1559 12.2003 1.2102 0.2492 10.6619 16.8431

s(t) 0.8013 0.7062 0.8963 0.2405 0.2387 0.2351 0.0456 0.2587 0.6619 0.8431

H(t) 0.7615 0.4774 1.0458 0.8285 0.8215 0.8075 0.1383 0.3006 0.5804 1.1158

Table 2: Bayesian estimates of α, λ , S(t) and H(t) under balanced loss function.

Parameter ω = 0.3 ω = 0.6 ω = 0.9
BSEL BLINEX BSEL BLINEX BSEL BLINEX

c =−0.1 c = 0.1 c =−0.1 c = 0.1 c =−0.1 c = 0.1
α 155.665 574.589 72.668 180.443 568.993 78.2641 205.221 555.13 92.1271

λ 12.608 12.6885 12.5254 13.0943 13.1537 13.0288 13.5802 13.5983 13.559

s(t) 0.7719 0.7719 0.7718 0.7845 0.7845 0.7844 0.7971 0.7971 0.7971

H(t) 0.8082 0.8089 0.8075 0.7882 0.7887 0.7877 0.76824 0.7683 0.7681

4 Numerical experiments and data analysis

In this section we analyze a real data set for illustration purposes and a Monte Carlo simulation study is performed to
compare the proposed estimation methods.

4.1 Data Analysis

In this subsection, we consider the following real data set as described in Badar and Priest [35].

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997
2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270
2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.880 2.642 2.648 2.684
2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

The previous data set represents the strength measured in GPa (giga-Pascals), for single carbon fibers and impregnated
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1000-carbon fiber tows. Ahmed [25] described that generalized inverted exponential distribution fits the conductor data

set well, and the MLEs of α and λ based on the complete data set are α̂ML = 205.884 and λ̂ML = 13.8827. For analyzing
the data set under adaptive progressively censored scheme, we have generated an artificial adaptive progressively censored
sample from the real data set, with m = 40, T = 2.5 and censoring scheme R1 = 29,R2 = · · ·= R40 = 0. Thus, the adaptive
progressive censored sample is given as

1.312, 1.479, 1.803, 1.861, 1.944, 1.966, 1.997, 2.006, 2.021, 2.027, 2.098, 2.14,
2.179, 2.224, 2.24, 2.253, 2.274, 2.301, 2.359, 2.382, 2.382, 2.434, 2.435, 2.478,
2.511, 2.554, 2.57, 2.629, 2.633, 2.648, 2.684, 2.697, 2.726, 2.773, 2.818, 3.067,
3.09, 3.128, 3.585, 3.585

We obtain associated MLEs and the corresponding 95% confidence intervals (LB,UB) for α , λ , S(t = 2) and H(t = 2).
Next, we compute the Bayes estimates of α, λ , S(t) and H(t). Because we lack prior information, we prefer to use the
non-informative priors for α and λ , gamma with (a = b = c = d = 0) . The corresponding Bayes estimates relative to
both BSEL and BLINEX loss functions with ( ω = 0.3, .6,0.9) are considered and M-H sampling technique. In particular,
if ω = 0, BSEL means the squared error loss (SEL). Also, under BLINEX loss, values of c such as c1 = −0.1, 0.1 are
considered. We implement the Gibbs with in M-H algorithm to sample from the posterior distribution of α and λ . We run
the chain for 11000 times and discard the first 1000 values as burn in. The number of burn in is needed because the chains
are initialized with values not actually drawn from the posterior distribution. The simulated values of α and λ obtained at
the beginning of a MCMC run are not distributed from the posterior distributions. However, after some iterations have been
performed (the burn-in period), the effect of the initial values wears off and the distribution of the new iterates approaches
the true posterior distribution. All Bayes estimates and the corresponding 95% credible intervals (LB,UB) are computed
based on 10000 MCMC and the results are presented in Tables 1 and 2. Trace plots and corresponding histogram of 10000
iterations relate to the adaptive type II censored sample are listed in Figures. 1 and 2, respectively. They manifest that the
plots syndicate good mixing performance and the Gibbs with in M-H sampling is convergent. Also, the density curves of
α, λ , S(t) and H(t) are almost symmetric. Moreover, the MCMC results of the posterior mean, median, mode, standard
deviation(S.D) and skewness (Ske.) of the parameters, α, λ , S(t) and H(t) are displayed in Table 1. Here, we can take the
posterior mean as the best estimate for symmetric distribution and the posterior mode for a skewed distribution.

Fig. 1: Fig. 1: MCMC output of α, λ , S(t) and H(t)Dashed lines ( ... ) represent the posterior means and soled lines (—) represent lower, and upper bounds 95%

probability interval.

Fig. 2: Histogram and kernel density estimates of al pha,λ ,S(t) and H(t).

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


224 A. A. Soliman and et al: Estimation of generalized inverted...

4.1.1 Simulation Study and Comparisons

This subsection examines and compares the behaviors of the maximum likelihood and Bayes estimators for the two
parameters of the GIE distribution based on adaptive progressive type II censored for different sample sizes. The
simulation study stimulates us to generate the adaptive progressively type II censored sample from the GIE with
arbitrarily true values α = 0.63 and λ = 2. We consider three different effective sample sizes m (m = 20,30,35) from a
sample of size n (n = 40,50,60) and progressive censoring schemes Ri values, taken from the model (1) and T = 0.5.
The samples were generated using the algorithm described in Ng et al. [7]. We will denote the scheme: (n = 40,m = 20,
Ri = (20,0,0,0,0,0,0, ,0,0,0,0,0,0,0,0,0,0,0,0,0)), by (20;190). First we computed the ML estimates and the 95%
approximate confidence intervals for α , λ , S(t) and H(t) at mission time t = 4, using the methods described in Section 2.
The true values of S(t) and H(t) are computed to be S(t) = 0.4444 and H(t) = 0.1214. We compute the the average
estimates (AE) and mean squared errors (MSE) based on 1000 replications.
For Bayesian inference, we use informative priors for both α and λ . The chosen hyper-parameters are
a1 = 0.5,a2 = 0.5,b1 = 1,b2 = 1. Bayes estimators are computed using the BSE and BLINEX loss functions with
ω = 0,0.3,0.6,0.9 and c1 =−0.5,0.5. We use the M–H algorithm, given in Section 3, to compute Bayes estimates based
on the samples from the posterior distributions of α and λ . It is common to disregard a number of the early samples as a
burn-in period to ensure the Markov chain has converged to the proper stationary distribution. In our implementation, we
generate a total of N = 11000 samples with 1000 of them disregarded as a burn-in. Hence, we used the generated
samples to construct both point and interval estimates of α , λ , S(t) and H(t). For different censoring schemes, the
average estimates and mean squared error (MSE) for the MLE and the Bayes estimates under two different loss functions
for α , λ , S(t) and H(t) are obtained and reported in Tables 3-6. Average estimates is listed first and the corresponding
MSE is listed second in all tables. In addition, we computed the 95% Bayesian credible intervals for α , λ , S(t = 4) and
H(t = 4) based on MCMC samples. Furthermore, the coverage probability which is the probability that the interval
involving the true parameter is computed for the asymptotic confidence interval and Bayes credible interval of α , λ ,
S(t = 4) and H(t = 4). The results are presented in Table 7.

5 Conclusion

In this article we considered the Bayesian and non-Bayesian inference of the two-parameter generalized inverted
exponential lifetime distribution, when the data are adaptive type-II progressive censoring. ML and Bayesian estimations
of the model parameters as well as the reliability and hzarard rat functions are obtained. We found that when both
parameters are unknown, the explicit expressions of the Bayes estimates cannot be obtained. We proposed Markov chain
Monte Carlo (MCMC) techniques to compute point and interval estimations of the unknown parameters. The Gibbs
sampling with Metropolis–Hastings sampling technique was confirmed to obtain the Bayesian estimators . The prior
belief of the model was represented by the independent gamma priors on the shape and scale parameters. The Bayes
estimates relative to BSEL and BLINEX loss functions. We also compared the confidence intervals obtained using
asymptotic distribution of the MLEs with the credible intervals obtained by sampling from the posterior distribution. To
illustrate the use of the proposed methods of estimation, numerical example was explained using a real life data, and
Monte Carlo simulations were performed to compare the different proposed methods. The results exhibit the following:

(i) Tables 3, 4, 5 and 6 demonstrate that the Bayesian estimates relative to both BSEL and BLINEX loss are better than
the ML estimates, for all different censoring schemes and most cases of n and m. Moreover, we notice that the MSE
decreases when n and m increase.

(ii) The censoring scheme R = (n−m,0, ...,0) is most efficient for all choices and it usually provides the smallest MSE
for most estimators.

(iii) When ω goes to one all the Bayes estimates go to the corresponding MLEs.

(iv) In all cases, from Tables 3- 6, we observe that when the value of the shape parameter (c) of BLINEX loss function
increases, the MSEs of the Bayes estimates using the BLINEX loss function decrease.

(v) Table 7 reveals that the coverage probabilities of the asymptotic confidence intervals and credible intervals based on
MCMC samples for λ , α , S(t) and H(t) are close to the desired level of 0.95.
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Table 3: Average estimates (AE) (first row) and MSE (second row) of α and λ , with ω = 0,0.3.
n m Scheme MLE Bayes (ω = 0.) Bayes (ω = 0.3)

BSEL BLINEX BSEL BLINEX

c =−0.5 c = 0.5 c =−0.5 c = 0.5

40 20 (20,190) α 0.7574 0.6485 0.6611 0.6371 0.6812 0.6914 0.6713

0.1201 0.0461 0.0529 0.0409 0.0615 0.0696 0.0544

λ 2.2394 1.8942 1.9633 1.8285 1.9978 2.0545 1.9386

0.5383 0.2739 0.3032 0.2596 0.3101 0.3507 0.2762

(100,20,90) α 0.7623 0.6392 0.6525 0.6270 0.6761 0.6872 0.6654

0.1345 0.0491 0.0561 0.0439 0.0666 0.0753 0.0591

λ 2.2621 1.8949 1.9649 1.8283 2.005 2.0638 1.9438

0.5896 0.2882 0.3181 0.2738 0.3297 0.3749 0.2918

(190,20) α 0.7527 0.6368 0.6499 0.6249 0.6716 0.682 0.6614

0.1066 0.0424 0.0484 0.0379 0.0555 0.0621 0.0495

λ 2.2558 1.8957 1.9661 1.829 2.0037 2.0615 1.944

0.4545 0.2321 0.2522 0.2258 0.2558 0.2885 0.2303

50 30 (20,290) α 0.6853 0.6283 0.6345 0.6223 0.6454 0.65 0.6408

0.0361 0.0223 00237 0.0212 0.0251 0.0263 0.024

λ 2.1547 1.9196 1.9709 1.8702 1.9901 2.0302 1.9492

0.2966 0.1988 0.2122 0.1924 0.2973 0.2234 0.1994

(150,20,140) α 0.7169 0.6467 0.6541 0.6396 0.6678 0.6735 0.6621

0.0588 0.0288 0.0309 0.0270 0.0352 0.0375 0.0331

λ 2.1818 1.9356 1.9856 1.8871 2.0095 2.0493 1.9684

0.3551 0.2105 0.2260 0.2019 0.2303 0.2512 0.2126

(290,20) α 0.7196 0.6526 0.6602 0.6453 0.6727 0.6784 0.6671

0.0513 0.0295 0.0317 0.0277 0.0342 0.0362 0.0323

λ 2.2223 1.974 2.0267 1.9231 2.0485 2.0897 2.006

0.3803 0.2311 0.2519 0.2181 0.2535 0.2773 0.2331

60 35 (25,340) α 0.705 0.6519 0.6577 0.6464 .6679 0.6721 0.6636

0.04 0.023 0.025 0.0221 0.0271 0.0285 0.0258

λ 2.1662 1.9569 2.0014 1.9135 2.0197 2.0542 1.9841

0.2795 0.1851 0.1987 0.1767 0.1967 0.2119 0.1837

(170,25,170) α 0.6858 0.6311 0.6371 0.6253 0.6457 0.652 0.6431

0.0374 0.0243 0.0257 0.0233 0.0271 0.0282 0.0259

λ 2.1616 1.9536 1.9969 1.9116 2.016 2.0495 1.9817

0.2388 0.1645 0.1747 0.1592 0.1707 0.1827 0.1612

(340,25) α 0.6915 0.635 0.6411 0.6292 0.6519 0.6565 0.6475

0.0394 0.0259 0.0274 0.0246 0.0286 0.0299 0.0273

λ 2.1609 1.9488 1.9913 1.9073 2.0124 2.0456 1.9783

0.2821 0.2044 0.2193 0.1951 0.2108 0.2263 0.1981
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Table 4: Average estimates (AE) (first row) and MSE (second row) of α and λ , with ω = 0.6,0.9.
n m Scheme ω = 0.6 ω = 0.9

BSEL BLINEX BSEL BLINEX

c =−0.5 c = 0.5 c =−0.5 c = 0.5

40 20 (20,190) α 0.7139 0.7204 0.707 0.7466 0.7484 0.7445

0.0828 0.0896 0.0755 0.1098 0.1121 0.1067

λ 2.1013 2.1379 2.0587 2.2049 2.215 1.1916

0.3833 0.4206 0.3406 0.4934 0.5067 0.4733

(100,20,90) α 0.7131 0.7203 0.7055 0.75 0.752 0.7477

0.0911 0.0986 0.0831 0.1225 0.1251 0.1191

λ 2.1152 2.1536 2.0703 2.2254 2.236 2.211

0.4131 0.4557 0.3632 0.5385 0.5583 0.5138

(190,20) α 0.7063 0.713 0.6994 0.7411 0.7429 0.739

0.0738 0.0793 0.0681 0.975 0.0994 0.0952

λ 2.1117 2.149 2.069 2.2198 2.23 2.2065

0.3164 0.3483 0.2815 0.4138 0.4256 0.3965

50 30 (20,290) α 0.6625 0.6653 0.6597 0.6796 0.6803 0.6788

0.0291 0.0299 0.0282 0.0341 0.0344 0.0339

λ 2.0607 2.0858 2.0332 2.1312 2.138 2.1232

0.2336 0.2477 0.2189 0.2779 0.2828 0.2715

(150,20,140) α 0.6888 0.6924 0.6851 0.7099 0.7109 0.7088

0.0438 0.0457 0.0419 0.0547 0.0553 0.0539

λ 2.0833 2.1085 2.0553 2.1572 2.164 1.1488

0.2703 0.2891 0.2497 0.3306 0.3372 0.3214

(290,20) α 0.6928 0.6963 0.6893 0.7129 0.7138 0.7119

0.0404 0.0419 0.0390 0.0483 0.0487 0.0478

λ 2.123 2.1488 2.0942 2.1974 2.2044 2.189

0.2951 0.3149 0.2736 0.3558 0.3625 0.3468

60 35 (25,340) α 0.6838 0.6864 0.6812 0.6997 0.7004 0.699

0.0319 0.0329 0.0309 0.0378 0.0381 0.0374

λ 2.0825 2.1040 2.0589 2.1453 2.1510 2.1385

0.2226 0.2353 0.2091 0.2629 0.2673 0.2573

(170,25,170) α 0.6639 0.6666 0.6612 0.6803 0.6810 0.6796

0.0307 0.0317 0.0299 0.0355 0.0358 0.0353

λ 2.0784 2.0992 2.0557 2.1408 2.1464 2.1343

0.1908 0.2010 0.1802 0.2245 0.2281 0.2201

(340,25) α 0.6689 0.6716 0.6661 0.6858 0.6865 0.6851

0.0324 0.0334 0.0315 0.0375 0.0378 0.0372

λ 2.076 2.0968 2.0533 2.1397 2.1453 2.1331

0.2317 0.2442 0.2189 0.2672 0.2713 0.2620
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Table 5: Average estimates (AE) (first row) and MSE (second row) of S(t = 4) and H(t = 4),
with ω = 0,0.3.

n m Scheme MLE ω = 0 ω = 0.3
BSEL BLINEX BSEL BLINEX

c =−0.5 c = 0.5 c =−0.5 c = 0.5

40 20 (20,190) S(t) 0.5200 0.5327 0.5241 0.5314 0.5289 0.5299 0.5280

0.0042 0.0037 0.0038 0.0037 0.0038 0.0038 0.0037

H(t) 0.1542 0.113 0.1382 0.1374 0.1427 0.143 0.1424

0.0031 0.0019 0.0020 0.0019 0.0022 0.0023 0.0022

(100,20,90) S(t) 0.5445 0.5585 0.5598 0.5572 0.5443 0.5553 0.5434

0.0035 0.0028 0.0028 0.0027 0.0029 0.0029 0.0029

H(t) 0.1462 0.1249 0.1252 0.1246 0.1313 0.1315 0.121

0.0031 0.0018 0.0018 0.0018 0.0021 0.0021 0.0021

(190,20) S(t) 0.5617 0.5702 0.5714 0.569 0.5677 0.5685 0.5668

0.0031 0.0024 0.0025 0.0024 0.0026 0.0026 0.0025

H(t) 0.1372 0.1248 0.1251 0.1245 0.1285 0.1287 0.1258

0.0029 0.0018 0.0018 0.0017 0.0021 0.0021 0.0021

50 30 (20,290) S(t) 0.5599 0.558 0.5589 0.5571 0.5586 0.5592 0.5579

0.0027 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

H(t) 0.1229 0.1166 0.1168 0.1165 0.1185 0.1186 0.1184

0.0013 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012

(150,20,140) S(t) 0.5188 0.5257 0.5266 0.5248 0.5236 0.5243 0.523

0.0023 0.0021 0.0021 0.0021 0.0021 0.0021 0.0022

H(t) 0.1461 0.1327 0.1329 0.1324 0.1367 0.1369 0.1365

0.0015 0.0011 0.0011 0.0012 0.0012 0.0012 0.0013

(290,20) S(t) 0.5399 0.5452 0.5461 0.5443 0.5436 0.5442 0.543

0.0025 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

H(t) 0.1370 0.1255 0.1257 0.1253 0.1274 0.1275 0.1272

0.0015 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012

60 35 (25,340) S(t) 0.5131 0.5140 0.5149 0.5132 .5138 0.5143 0.5132

0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0025

H(t) 0.1412 0.134 0.1341 0.1338 0.1361 0.1362 0.136

0.0014 0.0011 0.0012 0.0011 0.0012 0.0012 0.0012

(170,25,170) S(t) 0.5760 0.5759 0.5766 0.5752 0.5759 0.5764 0.5754

0.0021 0.0018 0.0018 0.0017 0.0018 0.0018 0.0018

H(t) 0.1150 0.1089 0.1088 0.1086 0.1106 0.1107 0.1105

0.0013 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

(340,25) S(t) 0.5403 0.5400 0.5447 0.5432 0.5428 0.543 0.5423

0.0021 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018

H(t) 0.1300 0.1200 0.1240 0.1236 0.1257 0.1258 0.1256

0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
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Table 6: Average estimates (AE) (first row) and MSE (second row) of S(t = 4) and H(t = 4) with ω = 0.6,0.9.
n m Scheme ω = 0.6 ω = 0.9

BSEL BLINEX BSEL BLINEX

c =−0.5 c = 0.5 c =−0.5 c = 0.5

40 20 (20,190) S(t) 0.5251 0.5257 0.5246 0.5213 0.5214 0.5211

0.0039 0.0039 0.0039 0.0041 0.0041 0.0041

H(t) 0.1476 0.1478 0.1475 0.1526 0.1526 0.1525

0.0026 0.0026 0.0025 0.0029 0.003 0.0029

(100,20,90) S(t) 0.5401 0.5407 0.5496 0.5459 0.5461 0.5458

0.0031 0.0031 0.0031 0.0034 0.0034 0.0034

H(t) 0.1377 0.1378 0.1375 0.1441 0.1441 0.144

0.0025 0.0025 0.0024 0.0029 0.0029 0.0029

(190,20) S(t) 0.5651 0.5656 0.5646 0.5625 0.5627 0.5624

0.0027 0.0027 0.0027 0.003 0.003 0.003

H(t) 0.1322 0.1324 0.1321 0.1359 0.136 0.1359

0.0024 0.0024 0.0024 0.0028 0.0028 0.0028

50 30 (20,290) S(t) 0.5591 0.5595 0.5588 0.5597 0.5598 0.5596

0.0026 0.0026 0.0025 0.0027 0.0027 0.0027

H(t) 0.1204 0.1205 0.1203 0.1223 0.1223 0.1223

0.0012 0.0012 0.0012 0.0013 0.0013 0.0013

(150,20,140) S(t) 0.5215 0.5219 0.5212 0.5195 0.5195 0.5194

0.0022 0.0022 0.0022 0.0033 0.0023 0.0023

H(t) 0.1408 0.1409 0.1406 0.1448 0.1448 0.1448

0.0013 0.0013 0.0013 0.0015 0.0015 0.0015

(290,20) S(t) 0.542 0.5424 0.5416 0.5404 0.5405 0.5405

0.0023 0.0023 0.0023 0.0025 0.0025 0.0025

H(t) 0.1292 0.1293 0.1291 0.1311 0.1311 0.131

0.0013 0.0013 0.0013 0.0014 0.0014 0.0014

60 35 (25,340) S(t) 0.5135 0.5138 0.5132 0.5132 0.5133 0.5131

0.0025 0.0025 0.0025 0.0026 0.0026 0.0026

H(t) 0.1383 0.1384 0.1382 0.1405 0.1405 0.1404

0.0013 0.0013 0.0013 0.0014 0.0014 0.0014

(170,25,170) S(t) 0.576 0.5763 0.5757 0.576 0.5761 0.5759

0.0019 0.0019 0.0019 0.002 0.002 0.002

H(t) 0.1125 0.1125 0.1124 0.1143 0.1143 0.1143

0.0012 0.0012 0.0012 0.0013 0.0013 0.0013

(340,25) S(t) 0.5417 0.542 0.5414 0.5406 0.5407 0.5432

0.0019 0.0019 0.0019 0.0019 0.0019 0.0019

H(t) 0.1275 0.1276 0.1275 0.1294 0.1294 0.1236

0.0011 0.0011 0.0011 0.0012 0.0012 0.0012

Table 7: 95% coverage probabilities for α,λ , S(t = 4), and H(t = 4).
Method ML Bayes

n m Scheme α λ S(t) H(t) α λ S(t) H(t)

40 20 (20,190) 0.966 0.956 0.93 0.93 0.934 0.916 0.948 0.952

(100,20,90) 0.92 0.908 0.932 0.932 0.928 0.908 0.976 0.954

(190,20) 0.962 0.964 0.948 0.948 0.940 0.924 0.974 0.950

50 30 (20,290) 0.962 0.962 0.936 0.936 0.936 0.900 0.952 0.954

(150,20,140) 0.980 0.954 0.940 0.940 0.942 0.908 0.970 0.968

(290,20) 0.980 0.936 0.926 0.926 0.944 0.915 0.960 0.960

60 35 (25,340) 0.960 0.956 0.932 0.932 0.942 0.902 0.936 0.944

(170,25,170) 0.972 0.974 0.938 0.938 0.936 0.914 0.956 0.946

(340,25) 0.966 0.946 0.940 0.940 0.922 0.920 0.962 0.956
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