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1 Introduction

In 1960, Opial established the following integral inequality[1]:

Theorem 1.Let y(s) ∈C(1) [0,b] be such that y(0) = y(b) = 0, and y(s)> 0 in (0,b) . Then, the following inequality holds

b
∫

0

∣

∣y(s)y′(s)
∣

∣ds ≤
b

4

b
∫

0

(

y′(s)
)2

ds. (1)

The constant b/4 is best possible.

Opial’s inequality and its generalizations, extensions and discretizations play a fundamental role in establishing
existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as
difference equations. Throughout the last twenty years a large number of papers addressed simple proofs, various
generalizations and discrete analogues of Opial inequality and its generalizations, see [2]-[16].

The Opial inequality is of great interest in differential and difference equations as well as other areas mathematics.
The present paper aims to establish some generalizations of Opial type inequalities for conformable integral. Then,
conformable Opial type inequalities are given. The paper is outlined as follows. In Section 2 we give the definitions of
conformable derivatives and integral. It also involves several useful notations conformable integral used our main results.
In Section 3 the main result is presented.

2 Definitions and properties of conformable fractional derivative and integral

The following definitions and theorems with respect to conformable fractional derivative and integral were denoted in
(see, [17]-[24]).

Definition 1(Conformable fractional derivative). Given a function g : [0,∞) → R. Then the “conformable fractional

derivative” of g of order α is defined by

Dα (g)(s) = lim
ε→0

g
(

s+ εs1−α
)

− g(s)

ε
(2)
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for all s > 0, α ∈ (0,1) . If g is α-differentiable in some (0,a) , α > 0, lim
t→0+

g(α) (s) exists. Then, define

g(α) (0) = lim
t→0+

g(α) (s) . (3)

We can write g(α) (s) for Dα (g)(s) to denote the conformable fractional derivatives of g of order α . In addition, if the

conformable fractional derivative of g of order α exists, we simply say g is α-differentiable.

Theorem 2.Let α ∈ (0,1] and h,g be α-differentiable at a point s > 0. Then

i. Dα (ah+ bg) = aDα (h)+ bDα (g) , for all a,b ∈ R,
ii. Dα (λ ) = 0, for all constant functions g(s) = λ ,
iii. Dα (hg) = f Dα (g)+ gDα (h) ,
iv. Dα (h ◦ g) = h′ (g(s))Dα (g)(s) for h differentiable at g(s),

v. Dα

(

h

g

)

=
gDα (h)− hDα (g)

g2
.

If g is differentiable, then

Dα (g)(s) = s1−α dg

ds
(s) . (4)

We mention that the conformable fractional derivative is a local operator.

Definition 2(Conformable fractional integral). Let α ∈ (0,1] and 0 ≤ a < b. A function g : [a,b] → R is α-fractional

integrable on [a,b] if the integral
∫ b

a
g(s)dα s :=

∫ b

a
g(s) sα−1ds (5)

exists and is finite. All α-fractional integrable on [a,b] is indicated by L1
α ([a,b]) .

Remark.

Ia
α (g)(s) = Ia

1

(

sα−1g
)

=

∫ t

a

g(s)

s1−α
ds,

where the integral is the usual Riemann improper integral, and α ∈ (0,1].

Theorem 3.Let g : (a,b)→ R be differentiable and 0 < α ≤ 1. Then, for all s > a we have

Ia
αDα g(s) = g(s)− g(a) . (6)

Theorem 4(Integration by parts). Let h,g : [a,b]→ R be two functions such that hg is differentiable. Then

∫ b

a
h(s)Dα (g)(s)dαs = hg|ba −

∫ b

a
g(s)Dα (h)(s)dαs. (7)

Theorem 5.Assume that g : [a,∞)→ R such that g(α)(t) is continuous and α ∈ (n,n+ 1]. Then, for all t > a we have

Dα (Ia
α g(s)) = g(s) .

We can give the Hölder’s inequality in conformable integral as follows:

Lemma 1.Let h,g ∈C [a,b] , p,q > 1 with 1
p
+ 1

q
= 1,. Then,

b
∫

a

|h(s)g(s)|dαs ≤





b
∫

a

|h(s)|p dα s





1
p




b
∫

a

|g(s)|q dαs





1
q

.

Remark.If we take p = q = 2 in Lemma 1 , we have the Cauchy-Schwartz inequality for conformable integral.

Theorem 6(Jensen Inequality). Let α ∈ (0,1], a,b,c,d ∈ [0,∞). If h : R → R and f : R → (c,d) are nonnegative

continuous functions with
∫ b

a p(t)dαt > 0, and F : (c,d)→ R is continuous and convex function. Then, we have

F

(

∫ b
a h(s) f (s)dα s
∫ b

a h(s)dαs

)

≤

∫ b
a h(s)F ( f (s))dαs
∫ b

a h(s)dα s
.
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Opial inequality can be represented for conformable fractional integral forms as follows [13]:

Theorem 7.Let α ∈ (0,1], f : [a,b] → R be an α- fractional differentiable function, and f (a) = 0. Then, we have the

following inequality
∫ b

a
| f (s)| |Dα f (s)|dα s ≤

bα − aα

2α

∫ b

a
(Dα f (s))2dα s. (8)

Theorem 8.Let α ∈ (0,1], f : [a,b] → R be an α- fractional differentiable function, and f (a) = 0. Then, we have the

following inequality

∫ b

a
| f (s)|p |Dα f (s)|q dαs ≤

q

p+ q

(

bα − aα

α

)p ∫ b

a
(Dα f (s))p+qdαs for p ≥ 0, q ≥ 1.

For more details about the non-local versus local fractional operators, see [25]-[29] and the references. The following
section presents the main results:

3 Opial type inequalities for conformable fractional integral

Theorem 9.Let α ∈ (0,1], f : [0,b]→ R be an α-fractional differentiable function. Then, we have the following inequality

∫ b

0
| f (t)| |Dα f (t)|dα t ≤

γ

2α

(

∫ b

0
|Dα f (s)|2 dα s

)

+β

∫ b

0
|Dα f (s)|dαs (9)

where β = max{| f (0)| , | f (b)|} and γ =
bα + |bα − 2τα |

2
for τ ∈ [0,b] .

Proof.We consider

y(t) =

∫ t

0
|Dα f (s)|dαs and z(t) =

∫ b

t
|Dα f (s)|dα s

such that Dα y(t) = |Dα f (t)| , Dα z(t) =−|Dα f (t)| . Therefore, we get

| f (t)| ≤ | f (t)− f (0)|+ | f (0)|

≤

∫ t

0
|Dα f (s)|dα s+ | f (0)|

= y(t)+ | f (0)| ,

and similarly
|u(t)| ≤ z(t)+ |u(b)| .

Let τ ∈ [0,b] . Then, using (7) and the Cauchy-Schwarz inequality for conformable integral, it follows that

∫ τ

0
| f (t)| |Dα f (t)|dα t ≤

∫ τ

0
[y(t)+ | f (0)|]Dα y(t)dα t

=
∫ τ

0
y(t)Dα y(t)dαt + | f (0)|

∫ τ

0
Dα y(t)dα t

=
1

2
y2(τ)+ | f (0)|y(τ)

≤
τα

2α

(

∫ τ

0
|Dα f (s)|2 dα s

)

+ | f (0)|

∫ τ

0
|Dα f (s)|dα s. (10)

Similarly, we get

∫ b

τ
| f (t)| |Dα f (t)|dα t ≤

bα − τα

2α

(

∫ b

τ
|Dα f (s)|2 dαs

)

+ | f (b)|

∫ b

τ
|Dα f (s)|dα s. (11)

Putting ν(τ) = max{τα ,bα − τα} and β = max{| f (0)| , | f (b)|} and adding the inequalities (10) and (11), we have

∫ b

0
| f (t)| |Dα f (t)|dαt ≤

ν(τ)

2α

(

∫ b

0
|Dα f (s)|2 dαs

)

+β

∫ b

0
|Dα f (s)|dα s

for τ ∈ [0,b] . This completes the proof.
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Remark.If we take β = 0 in Theorem 9, it follows that | f (0)| = | f (b)| = 0 and τ = 0(or τ = b). Then, we have the
following inequality

∫ b

0
| f (t)| |Dα f (t)|dαt ≤

bα

2α

(

∫ b

0
|Dα f (s)|2 dα s

)

(12)

which Sarikaya and Bilisik prove in [13].

Remark.If we take β = 0 in Theorem 9, it follows that | f (0)| = | f (b)| = 0 and τ = b

2
1
α

. Then we have the following

inequality
∫ b

0
| f (t)| |Dα f (t)|dαt ≤

hα

4α

(

∫ b

0
|Dα f (s)|2 dα s

)

which Sarikaya and Budak prove in [11].

Theorem 10.Let α ∈ (0,1], f : [0,b]→ R be an α-fractional differentiable function with f (0) = 0. Let p and q be positive

and continuous on [0,b] ,
∫ b

0
dα s
p(s)

< ∞, and q nonincreasing. Then, we have the following inequality

∫ b

0
q(t) | f (t)| |Dα f (t)|dα t ≤

1

2

(

∫ b

0

dα s

p(s)

)(

∫ b

0
p(s)q(s) |Dα f (s)|2 dαs

)

. (13)

Proof.Let us consider,

y(t) =

∫ t

0

√

q(s) |Dα f (s)|dαs.

Then we have Dα y(t) =
√

q(t) |Dα f (t)| . Using the nonincreasing q function, it follows that

|u(t)| ≤

∫ t

0
|Dα f (s)|dα s

≤

∫ t

0

√

q(s)

q(t)
|Dα f (s)|dαs =

y(t)
√

q(t)
.

Using the Cauchy-Schwarz inequality for conformable integral, we obtain

∫ b

0
q(t) | f (t)| |Dα f (t)|dα t ≤

∫ b

0
q(t)

y(t)
√

q(t)

Dα y(t)
√

q(t)
dα t

=
y2 (b)

2
=

[

∫ b

0

1
√

p(s)

√

p(s)q(s) |Dα f (s)|dαs

]2

≤
1

2

(

∫ b

0

dα s

p(s)

)(

∫ b

0
p(s)q(s) |Dα f (s)|2 dαs

)

which completes the proof.

Corollary 1.Based on the hypotheses of Theorem 10, if we choose p(s) = 1, we have

∫ b

0
q(t) | f (t)| |Dα f (t)|dαt ≤

bα

2α

(

∫ b

0
q(s) |Dα f (s)|2 dαs

)

. (14)

Remark.If we take q(s) = 1 in Corollary 1, the inequality (14) reduces to the inequality (12).

Theorem 11.Let α ∈ (0,1], f be a convex function on [0,∞) with f (0) = 0. Let g : [a,b] → R be a α-fractional

differentiable function with g(a) = 0. Then, we have the inequality

∫ b

a
f ′ (|g(t)|) |Dα g(t)|dα t ≤ f

(

∫ b

a
|Dα g(t)|dα t

)

. (15)
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Proof.We consider

y(t) =

∫ t

a
|Dα g(s)|dαs, t ∈ [a,b]

So Dα y(t) = |Dα g(t)| , and y(t)≥ |g(t)| . Thus, it follows that

∫ b

a
f ′ (|g(t)|) |Dα g(t)|dαt ≤

∫ b

a
f ′ (y(t))Dα y(t)dαt

=

∫ b

a
Dα f (y(t))dαt = f (y(b))

which completes the proof of the inequality (15).

Corollary 2.Let α ∈ (0,1], g : [a,b] → R be a α-fractional differentiable function with u(a) = 0. Then, we have the

inequality
∫ b

a
|g(t)|p |Dα g(t)|dα t ≤

1

p+ 1

(

bα − aα

α

)p∫ b

a
|Dα g(t)|p+1

dαt.

Proof.For f (t) = t p+1, p ≥ 0, the inequality (15) reduces to

∫ b

a
|g(t)|p |Dα g(t)|dαt ≤

1

p+ 1

(

∫ b

a
|Dα g(t)|dαt

)p+1

Hence, from Hölder’s inequality with indices p+ 1 and
p+1

p
, it follows that

∫ b

a
|g(t)|p |Dα g(t)|dαt ≤

1

p+ 1

(

bα − aα

α

)p(∫ b

a
|Dα g(t)|p+1

dα t

)

.

Theorem 12.Let α ∈ (0,1], f ,g be a convex function on [0,∞) with f (0) = 0. Let p(t) ≥ 0, Dα p(t) > 0, t ∈ [a,b] with

p(a) = 0. Furthermore, let h : [a,b] → R be a α-fractional differentiable function with h(a) = 0. Then, we have the

inequality
∫ b

a
Dα p(t)g

(

|Dα h(t)|

Dα p(t)

)

f ′
(

p(t)g

(

|h(t)|

p(t)

))

dαt ≤ f

(

∫ b

a
|Dα h(t)|dαt

)

. (16)

Proof.Let

y(t) =

∫ t

a
|Dα h(s)|dαs, t ∈ [a,b]

So Dα y(t) = |Dα h(t)| , and y(t)≥ |h(t)| . Thus, from Jensen’s inequality, it follows that

g

(

|h(t)|

p(t)

)

≤ g

(

y(t)

p(t)

)

≤ g





∫ t
a Dα p(s) |Dα h(s)|

Dα p(s)
dαs

∫ t
a Dα p(s)dα s



≤
1

p(t)

∫ t

a
Dα p(s)g

(

Dα y(s)

Dα p(s)

)

dα s. (17)

Thus, using (17), we obtain

∫ b

a
Dα p(t)g

(

|Dα h(t)|

Dα p(t)

)

f ′
(

p(t)g

(

|h(t)|

p(t)

))

dαt ≤

∫ b

a
Dα p(t)g

(

y(t)

Dα p(t)

)

f ′
(

∫ t

a
Dα p(s)g

(

Dα y(s)

Dα p(s)

)

dα s

)

dα t

=
∫ b

a
Dα

[

f

(

∫ t

a
Dα p(s)g

(

Dα y(s)

Dα p(s)

)

dα s

)]

dα t

= f

(

∫ b

a
Dα p(s)g

(

Dα y(s)

Dα p(s)

)

dαs

)

= f

(

∫ b

a
Dα p(t)g

(

|Dα h(t)|

Dα p(t)

)

dα t

)

,

which completes the proof of the inequality (16).

Remark.If we take f (t) = t2 and g(t) = t in Theorem 12 and use the Cauchy-Schwarz inequality for conformable integral
in right integral, the inequality (16) reduces to the inequality (8).
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