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Abstract: The present article discusses some Bayes prediction bound lengths in one-parameter Rayleigh distribution. For this, Type-I

Progressive Hybrid censoring criterion (T-IPH Censoring) have been combined with Step-Stress Partially Accelerated Life Test (SS-

PALT). No literature was found tackling the Bayes prediction bound lengths under T-IPH Censoring with SS-PALT. One-Sample &

Two-Sample Bayes prediction bound lengths have been obtained in the above scenario. The analysis is done under simulated and

real data set, by using Metropolis-Hastings (M-H) algorithm that has been discussed. The optimal stress change time also have been

measured by the method of minimization of the asymptotic variance of ML Estimation. Approximate confidence lengths (ACL) also

have been discussed along with Bayes prediction bound lengths.

Keywords: Step-Stress Partially Accelerated Life Test (SS-PALT); Type-I Progressive Hybrid censoring (T-IPH-censoring); Bayes

Prediction Bound Length, Approximate Confidence Lengths (ACL).

1 Introduction

The One-Parameter Rayleigh distribution is recognized as an appropriate model by several researchers for several kinds of
medical studies and life testing trials. The concerned distribution is also a vital model in applications such as noise theory,
height of the sea waves and wave lengths. One-parameter Rayleigh distribution is considered as the underlying model for
the present discussion. Probability density and the cumulative density functions for the underlying model are given as

f (y;θ ) =
2y

θ
exp

(

−y2

θ

)

; θ > 0,y ≥ 0 (1)

and

F (y;θ ) = 1− exp

(

−y2

θ

)

; θ > 0,y ≥ 0. (2)

The parameter θ represents the shape parameter of the Rayleigh model given in Eq. (1). A massive amount of literature
for estimation regarding classical and Bayesian methodology are available, a few latest studies have discussed on
Rayleigh distribution.

[1] discussed the properties of some Bayes estimators for 3-component mixture of Rayleigh distribution. [2] studied the
properties of the Bayes estimators and one-sample Bayes prediction bound lengths, for the Rayleigh distribution under
Type-II Progressive censoring criterion.

[3] discussed the properties of Bayes prediction bound lengths by pooling of two different progressive censored Rayleigh
data. [4] has proposed some Bayes and shrinkage estimators for the unknown parameter of the Rayleigh distribution by
using Al-Bayyati loss function. [5] has studied generalized Rayleigh distribution by using progressive Type-II censoring
data with Binomial removals. They also developed optimum test plans to improve the quality of the statistical inference.
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[6] deals with E-Bayesian method under progressively Type-II censored Rayleigh sample for computing estimates of the
parameter. They also discussed some Bayesian and E-Bayesian estimators obtained under squared error and LINEX loss
functions. [7] discussed Bayes estimation for the Rayleigh distribution on simple random sample, ranked set sampling
and maximum ranked set sampling procedure with unequal samples in one cycle and m-cycle cases. Recently, [8]
discussed new aspects of compound Rayleigh distribution by using progressive first-failure censoring samples during
step-stress partially accelerated life tests.

To decrease the duration of testing and to minimize test expenses, progressive censoring and the accelerated life testing
are performed. So, the main objective of the present discussion is to combine SS-PALT with Type-I progressive hybrid
censoring. One-Sample and Two-Sample Bayes prediction bound lengths have been obtained under the above scenario
on one-parameter Rayleigh distribution. The optimal stress change time also was measured by the method of minimizing
the asymptotic variance of ML estimation under study. Simulated samples were generated based on the M-H algorithm.
An example based on a real data set also have been considered in the analysis of the proposed method.

2 Type-I Progressive Hybrid censoring

In Reliability analysis, the life-tests are performed to observe the life of units put to the test. In such trial, some surviving
units are removed or lost due to time and cost constraints or due to the immediate needs of the units for other drives. The
data obtained from such life tests are generally known as censored samples. The most common censoring scheme is
Type-II censoring, in which the test will terminate after a pre-assumed number of failures. Another censoring scheme is a
Type-I censoring, in which the test will stop at some pre-considered time. Both censoring schemes do not have the
flexibility of elimination of units rather than the deadly point of life test. The progressive Type-II censoring scheme
removes this lack of flexibility by providing removal of some units at each failure and at the final termination point there
are no units available.

See [9] for extensive reviews on literature of the progressive censoring. A brief introduction of progressive Type-II
censoring is, suppose from n test units are those placed on a life test with T1,T2, ...,Tn corresponding lifetimes. All units
are independent and identically distributed (Eq. (1)). Following [2], the trial stop at mth(m ≤ n) failure and the
progressively Type-II censored samples are T1:m:n ≤ T2:m:n ≤ ... ≤ Tm:m:n following the censoring pattern
R ≡ (R1,R2, ...,Rm) .

In the present article, we are concerned about the study of the behavior of Bayes prediction bound length under T-IPH
censoring in SS-PALT. In literature, no other studies have been found for the combination of these two under the
Bayesian methodology. Few recent articles on T-IPH censoring have been discussed here. The properties of maximum
likelihood estimators and Bayes estimators of unknown parameters for Exponential model were discussed by [10].
Classical estimation for two-parameter Weibull distribution have been discussed by [11] under Type-II progressive
hybrid censored data. [12] discussed the Bayes estimates for Lindley distribution by using Type-II hybrid censored data.
For more informative literature on hybrid censoring one may consult [13]. Inferences on Burr Type-XII distribution have
been discussed recently by [14] by using Type-I progressive hybrid censoring.

The Type-I progressive hybrid censoring is now discussed as:

Let us assume, total n identical test units x1,x2, ...,xm−1,xm,xm+1, ...,xn are subject to a life test trial. Under the
progressive Type-II censoring scheme, R ≡ (R1,R2, ...,Rm) be the prescribed censoring pattern which follows
n−m = R1 +R2 + ...+Rm. Under T-1PH censoring, the test will terminate either at mth(m ≤ n) failure or at time point t,
which one occurred first and, both are pre-fixed at the time of commencement. In case the experiment stops at time t with
a number of failures X j:m:m, then they must satisfy the condition X j:m:m < t < X j+1:m:m and the remaining life test units
n−R1−R2 − ...−R j − j = R∗ (say) are removed from the test. So, the observed sample may be one of the following two
types:







I : (X1:n:m,X2:n:m, ...,Xε:n:m,Xε+1:n:m, ...,Xm:n:m,) ; i f Xm:n:m < t

II : (X1:n:m,X2:n:m, ...,Xε:n:m,Xε+1:n:m, ...,X j:n:m,) ; i f X j:n:m < t < X j+1:n:m.
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3 Step - Stress Partially Accelerated Life Test

It is much more difficult to obtain the failure evidence under the normal stress condition for the excellence and reliable
products. It makes very costive and time consuming lifetime test on normal stress condition. For such motive, accelerated
life test (ALT) is used to get information about the lifetime distribution of product or materials in a shorter time and less
expensively. Accelerated life test is achieved by subjecting the test units to conditions that are more severe than the
normal ones, such as higher levels of temperature, pressure, voltage, vibration, cycling rate, load, etc.

In step stress scheme, stress is put to test units in the way that, the stress will be altered at pre-specified time. Usually, a
test starts at a specified low stress. If the unit does not fail at specified time, the stress is raised and held at specified
times. Stress is repeatedly increased until the test unit fails or censoring scheme is reached. SS-PALT is used to get,
rapidly, information for the lifetime of the product with high reliability; especially, when the mathematical model related
to test conditions of mean lifetime of the product is unknown and cannot be assumed ([15]).

There is a great amount of literature available on SS-PALT, a few of them are [16], [17], [18] and [19]. [20] presents
optimum SS-PALT concept for Rayleigh model that deals with the likelihood estimates of parameters and confidence
intervals, based on the asymptotic normality of the MLE. Based on constant-stress partially accelerated life test on the
truncated Logistic distribution, ML estimation and confidence limits have been obtained by [21] by using Type-I
censoring. Under step-stress partially accelerated life test, some bound lengths and their properties are recently studied
by [22] for Burr Type-II distribution.

Basically, in SS-PALT, all the test units are tested first at normal stress condition, if the unit does not fail for a
pre-specified time, then it runs at accelerated condition till failure. In such case the switching to the higher stress level
will shorten the life of the test item. An altered random variable model ([23]) for the lifetime of the units is considered
under SS-PALT and is defined as

X =







Y : 0 < Y ≤ ε

ε + Y−ε
β : Y > ε.

(3)

Here, the parameter ε and β are known respectively as stress change time and the acceleration factor. In SS-PALT, all of
n units are tested first under normal stress condition, if units do not fail for a pre-specified time ε, then the test is
switched to the higher level of stress and it continues until items fails. The effect of this shifting is to multiply the
remaining lifetime of the item by the inverse of the acceleration factor β (Eq. (3)).

Hence, the total lifetime of a test item, denoted by X , passes through two stages, the first one is normal stress condition
(denoted by I) and the second one is accelerated stress condition (denoted by II) and defined by an altered random
variable model given in Eq. (3). Using Eq. (3), the probability density function of the considered model is rewritten as

f (x;θ ) =















I : f1 =
2x
θ exp

(

− x2

θ

)

; 0 < x ≤ ε

II : f2 = β 2x̃
θ exp

(

− x̃2

θ

)

; x > ε ; x̃ = (x− ε)β + ε.

(4)

The joint probability density (likelihood) function on progressive Type-II censoring scheme under SS-PALT, is given as

L ∝
k

∏
i=1

(

f1 (1−F1)
Ri

)

×
m

∏
i=k+1

(

f2 (1−F2)
Ri

)

. (5)

The Eq. (5) is rewritten on SS-PALT under T-IPH censoring scheme, as















I : L ∝ ∏k
i=1

(

f1 (1−F1)
Ri

)

∏m
i=k+1

(

f2 (1−F2)
Ri

)

; x(i) ≡ Xi:n:m

II : L ∝ ∏l
i=1

(

f1 (1−F1)
Ri (1−F(t))R∗

)

∏
j
i=l+1

(

f2 (1−F2)
Ri (1−F2(t))

R∗
)

.

(6)
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Using Eq. (4) in Eq. (6), we get

L ∝
1

θ d
β d−δ W0 exp

{

− 1

θ
Wd

}

; (7)

where W0 = ∏d
i=δ+1 x̃(i), W1 = ∑k

i=1 (1+Ri)x2
(i), W2 = ∑m

i=k+1 (1+Ri) x̃2
(i), W3 = ∑l

i=1 (1+Ri) x̃2
(i) + R∗t2,

W4 = ∑
j
i=l+1 (1+Ri) x̃2

(i)+R∗ ((t − ε)β + ε)2 , d =

{

I : m

II : j
, δ =

{

I : k

II : l
and Wd =

{

I : W1 +W2

II : W3 +W4
.

4 The Bayes Prediction Bound Lengths

Prediction of the future observations based on an informative sample is an interesting topic and it has been used in
various purposes. Several applications can be found in actuarial studies, rainfall extremes, guarantee data analysis and
highest water levels. For example, in guarantee data analysis, setting up warranty period for a product, a manufacturer
would use some of the known previous failure times to predict a suitable warranty period of the product.

In practice, the experimenter would like to know the failure times of the removed surviving units (censored units) based
on the observed data. This problem leads to the prediction of the future sample based on censored sample. [24] has
discussed several references on the applications of Bayes prediction in different areas of applied statistics. Our main
focus is to study the bound lengths by using Bayesian approach under the current scenario.

Following [3], a natural family of the conjugate prior for the parameter θ is assumed here as the one-parameter Gamma
distribution, having a probability density function

πθ ∝ θ−α e−1/θ ; α > 0,θ > 0.

For the acceleration factor β , a vague prior is assumed here. The vague prior does not play any significant role in the
analyses that follow. Thus, the joint prior probability density is given as

π(θ ,β ) ∝
θ−α e−1/θ

β
; θ > 0,β > 0,α > 0. (8)

Now, the joint and marginal posterior densities corresponding to the parameters θ and β are obtained respectively as

π∗
(θ ,β ) =

1
θ α+d β d−δ−1W0 exp

(

−Wd+1
θ

)

∫

β β d−δ−1W0

∫

θ
1

θ α+d exp
(

−Wd+1
θ

)

dθ dβ

⇒ π∗
(θ ,β ) ∝ Ω

1

θ α+d
β d−δ−1W0 exp

(

−Wd + 1

θ

)

; Ω =

{

Γ (α + d− 1)

∫

β

β d−δ−1W0

(Wd + 1)α+d−1
dβ

}−1

(9)

and the marginal posteriors are

π∗
(θ) ∝ Ω

1

θ α+d

∫

β
β d−δ−1W0 exp

(

−Wd + 1

θ

)

dβ (10)

π∗
(β ) ∝ ΩΓ (α + d− 1)

β d−δ−1W0

(Wd + 1)α+d−1
. (11)
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4.1 One-Sample Bayes Prediction Procedure

Let us assume that x
(

= x(1),x(2), ...,x(d)
)

be the first ordered observed items from the model given in Eq. (1) under the
T-IPH censoring. If we assume that Z be the future random variable having independent ordered random sample
z
(

= z(1),z(2), ...,z(d)
)

under similar censoring pattern. Then the Bayes predictive density function h(z|x) (say)
corresponding to the assumed future random variable Z, is defined as

h(z|x) =
∫

Θ
f (z;θ )π∗

Θ d Θ ;Θ = θ ,β . (12)

The Eq. (12) presents the Bayes predictive density function defined for the parameter θ and acceleration factor β
separately. Since, the explicit solution of Eq. (12) does not exist for either parameter, so no mathematical solution exists.
We continue with Eq. (12) numerically for both parameters respectively.

Now, if l1 and l2 are the lower and upper Bayes prediction bound limits in One-Sample criterion. Then 100(1− τ)%
Bayes prediction bound length for the future observation corresponding to the parameter Θ , under the considered
censoring scenario is obtained by solving the following equation

LOne =
[

P
(

Z ≥ l2 =
τ

2

)]

−
[

P
(

Z ≤ l1 =
τ

2

)]

. (13)

Using Eq. (12) & Eq. (13), the Bayes prediction bound limits under one-sample technique for T-IPH censoring on SS-
PALT is obtained by solving the following equalities for both parameters respectively

(

1− τ

2

)

=

∫

Θ

(

1− e−
l2
1
θ

)

×π∗
Θ dΘ ,

(τ

2

)

=

∫

Θ

(

1− e−
l2
2
θ

)

×π∗
Θ dΘ

and
LOne = l2 − l1. (14)

4.2 Two-Sample Bayes Prediction Procedure

In the previous subsection, it was presumed that x
(

= x(1),x(2), ...,x(d)
)

be the first (observed) T-IPH censored samples with

the progressive censoring scheme R ≡ (R1,R2, ...,Rd) of the considered model given in Eq. (1). If Z
(

= z(1),z(2), ...,z(d)
)

be another T-IPH censored samples, drawn from same model independently, then the first sample is referred to as the
informative sample, while the second is mentioned as the future sample. Based on an informative sample, the kth order
statistic from the future sample will be predicted. For this, the cumulative predictive density G(z|x) is obtained as

G(z|x) = Pr (Z ≤ z) =

∫

Θ

(

1− e
z2

θ

)

×π∗
Θ dΘ ;Θ = θ ,β . (15)

If we assume Zk be the kth order statistic from the future sample of size m(1 ≤ k ≤ m). Then the probability density
function of kth ordered future observation is defined as

φ (zk) = k(mCk)(G(z|x))k−1 (1−G(z|x))m−k
h(z|x) . (16)

One may obtain the solution of Eq. (16) by substituting Eq. (12) & Eq. (15), for both parameters respectively. However,
the closed form of the Eq. (16) for either parameter does not exist. If l2k & l1k be the upper and lower Bayes prediction
limits in Two-Sample approach for the kth future observation, then the Bayes prediction bound length under Two-Sample
approach can be obtained by solving following equality

LTwo =
[

P
(

Y ≥ l2k =
τ

2

)]

−
[

P
(

Z ≤ l1k =
τ

2

)]

(17)

Here, again the simplified forms of the Bayes prediction bound length for the smallest future observation k(= 1) and the
largest future observation k(= m) are not possible to obtain from the Eq. (17). Numerical technique is applied herewith
for the numerical illustration.
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5 The Approximate Confidence Lengths (ACL) & ML Estimation

The logarithm joint probability function based on concerned scenario is obtained, by using Eq. (7) as

Log L =−d logθ +(d − δ ) log β + logW0−
Wd

θ
. (18)

Differentiating Eq. (18) with respect to both parameters separately and equating to zero, we have

∂

∂θ
LogL =− d

θ
+

Wd

θ 2

and

∂

∂β
LogL =

d− δ

β
+

d

∑
i=δ+1

(x(i)− ε)

(

1

x̃(i)
− 2(1+Ri)

θ
x̃(i)

)

−











I : 0

II :
2(t−ε)R∗

θ((t−ε)β+ε)−1

.

The maximum likelihood estimators corresponding to the parameters θ and β are denoted respectively by θ̂Ml and β̂Ml ,
and obtained as

θ̂Ml =
Wd

d
(19)

and

λ = h(β ) say =
d − δ

∑d
i=δ+1(x(i)+ ε)

(

2(1+Ri)

θ̂Ml
x̃(i)− 1

x̃(i)

)

+Wd0

. (20)

[25] proposed a simple iterative scheme for a mathematical solution of Eq. (19-20). The procedures is: start with an
initial guess value of λ , say λ(0), then obtain λ(1) = h

(

λ(0)

)

and continue in this way iteratively to obtain

λ(n+1) = h
(

λ(n)

)

. Stop this procedure until |λ(n+1)−λ(n) < υ , | for some pre-assigned tolerance limit and obtained β̂Ml

for the parameter β and then θ̂Ml is obtained easily.

The precise mathematical expression for the expectation is also hard to find. So it can be approximated numerically
inverting the asymptotic Fisher’s information matrix and written as

F =−







∂ 2

∂θ 2 LogL ∂ 2

∂θ ∂β LogL

∂ 2

∂β ∂θ LogL ∂ 2

∂β 2 LogL






.

where
∂ 2

∂θ 2
LogL =

d

θ 2
− 2

Wd

θ 3
,

∂ 2

∂θ ∂β
LogL =

∂ 2

∂β ∂θ
LogL =

2

θ 2

d

∑
i=δ+1

(1+Ri) x̃i

(

x(i)− ε
)

+
Wd0

θ

and

∂ 2

∂β 2
LogL =

d − δ

β 2
−

d

∑
i=δ+1

(

x(i)− ε
)2

(

1

x̃2
(i)

+
2(1+Ri)

θ

)

−







I : 0

II :
2(t−ε)2

θ R∗
.

In practice, we usually estimate F−1 under the ML estimates. [26] stated the most common method to set confidence
bounds for the parameters which is to use asymptotic normal distribution of maximum likelihood estimators.
Asymptotically, the ML estimators, under suitable regularity conditions, are consistent and normally distributed. Thus,
100(1− τ)% normal Approximate Confidence Intervals for both the parameters θ and β can be obtained as

θ̂Ml ∓Zτ/2

√
v11
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and
β̂Ml ∓Zτ/2

√
v22

where v11 and v22 are the elements on the main diagonal of the variance covariance matrix and Zτ/2 is the percentile of

the standard normal distribution with right-tail probability τ
2
.

6 The Optimization Criterion in SS-PALT

The major issue in SS-PALT procedures is, how to measure optimum stress change time, the time in which stress level
changed from normal to higher. The optimization criterion cracked this issue, and provided the duration of lower stress
level (normal stress). [27] discussed the optimum test plan criterion, which is based on the determinant of the Fisher’s
information matrix. Maximizing that determinant is equivalent to minimizing the generalized asymptotic variance of the
ML estimation of the model parameters θ and the acceleration factor β .

Following [28], the generalized asymptotic variance is the reciprocal of the determinant of the Fisher’s information
matrix. Hence, the optimal value of ε is chosen such that the determinant of the Fisher’s information matrix is
maximized and then the generalized asymptotic variance is minimized and is obtained by using Wolfram Mathematica
software 10.0. This criterion is further known as D-optimality criterion.

7 Simulation Study

In this section, a simulation study has been discussed for the numerical illustration. Random numbers have been
generated from this distribution, by using Metropolis-Hastings method with the normal proposal distribution. [29] and
[30] have deliberated an algorithm for simulating samples from a given posterior distribution by use of an arbitrary
proposal distribution and this algorithm is broadly used to provide an alternative way for numerical computation.
Ensuing [14], the random sample generated from the posterior distribution. One may explore recent articles [31] and [32]
for more details on M-H algorithm.

The objective of the present discussion is based on the Bayes predictive bound lengths on One-Sample and Two-Sample
scenario. For this, we considered here One-Parameter Rayleigh distribution under the SS-PALT setup by combining
T-IPH censoring. The ML estimate and ACL are also obtained. Now for evaluating the behavior, the values are computed
by using Monte Carlo simulations on the basis of 10,000 replications based on Metropolis-Hastings (M-H) algorithm
following [14].

The total number of test units is fixed first at n(= 30). Three different progressive censoring stages have been assumed
with pre-supposed censoring pattern to study the behavior of censored sample size. These censoring stages are
(10,15,20), the test will terminate at these stages. The pre-supposed progressive censoring patterns for these stages are
(2,4,1,2,3,0,2,3,2,1), (0,1,1,0,1,2,3,0,2,0,2,1,0,1,1) and (0,0,0,1,0,1,0,1,2,0,1,0,2,0,0,0,1,0,1,0). For
censored sample size m(= 15), we considered one more progressive censoring pattern (1,0,0,0,2,1,2,2,0,4,0,1,0,0,2)
for perceiving the effect of censoring pattern when other parametric values are fixed.

The optimal stress change time ε is calculated by the method of minimizing the asymptotic variance of ML Estimation
of the parameter θ and the acceleration factor β as discussed in the previous section. For this we assumed the values of
the underlying parameter θ and accelerated factor β are θ = 0.50(0.10)2.50= β . We observed the effects at each value
of these parameters from 0.50 up to 2.50 with an increment of 0.10. The selected hyper parametric values were assumed
as α = 0.40(0.10)2.50. [33] studied the properties of the Bayes estimation in the generalized Exponential distribution
under the optimum SS-PALT scenario and found out the value of the acceleration factor for which the magnitude of
Bayes risks is minimized numerically when other parametric fixed values. So, in the present discussion, we also catch
out the values β ,θ and α for which the bound length touches maximum. The pre-determined failure time was assumed
here as t(= 04,07) for the numerical analysis.

The numerical findings based on simulated data are presented in Tables 1-2 in terms of Bayes prediction bound lengths
under One-Sample scenario for the parameter θ and acceleration parameter β respectively for selected parametric values
at τ(= 99%,95%,90%). It is observed that, the boost in the confidence level increases the bound lengths. The opposite
trend has been seen with the censored sample size m. Similar properties also have been seen when the censoring time t
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Table 1: Bound Length under One-Sample Criterion for Parameter θ

n = 30,θ = 1.80 t = 04 t = 07

β α m ↓ τ → 99% 95% 90% 99% 95% 90%

0.50

0.50

10 1.1786 1.1617 1.1348 1.1529 1.1225 1.0985

15 (I) 1.1179 1.1109 1.0811 1.0854 1.0706 1.0457

15 (II) 1.1174 1.0974 1.0634 1.0829 1.0718 1.0416

20 1.0915 1.0327 1.0138 1.0055 0.9958 0.9828

1.30

10 1.2512 1.2168 1.1881 1.2238 1.1756 1.1508

15 (I) 1.1796 1.1627 1.1326 1.1519 1.1215 1.0949

15 (II) 1.1646 1.1503 1.1142 1.1497 1.1221 1.0906

20 1.0939 1.0821 1.0624 1.0681 1.0435 1.0299

2.50

10 1.1098 1.0987 1.0826 1.0865 1.0716 1.0485

15 (I) 1.0664 1.0595 1.0317 1.0522 1.0219 0.9973

15 (II) 1.0637 1.0476 1.0148 1.0309 1.0226 0.9936

20 1.0206 0.9855 0.9672 0.9669 0.9511 0.9379

1.60

0.50

10 1.2838 1.2648 1.2352 1.2548 1.2225 1.1961

15 (I) 1.2178 1.2088 1.1776 1.1812 1.1666 1.1384

15 (II) 1.2165 1.1955 1.1585 1.1789 1.1665 1.1338

20 1.1891 1.1253 1.1049 1.0954 1.0851 1.0709

1.30

10 1.3616 1.3245 1.2934 1.3316 1.2795 1.2525

15 (I) 1.2847 1.2658 1.2333 1.2538 1.2217 1.1923

15 (II) 1.2675 1.2514 1.2135 1.2513 1.2215 1.1874

20 1.1912 1.1786 1.1575 1.1632 1.1367 1.1219

2.50

10 1.2086 1.1967 1.1794 1.1822 1.1676 1.1425

15 (I) 1.1615 1.1541 1.1241 1.1459 1.1133 1.0868

15 (II) 1.1583 1.1416 1.1059 1.1221 1.1138 1.0824

20 1.1118 1.0741 1.0545 1.0536 1.0357 1.0222

2.50

0.50

10 1.1238 1.1077 1.0813 1.0994 1.0703 1.0473

15 (I) 1.0693 1.0582 1.0305 1.0342 1.0205 0.9961

15 (II) 1.0458 1.0365 1.0136 1.0326 1.0214 0.9924

20 1.0021 0.9842 0.9667 0.9592 0.9489 0.9366

1.30

10 1.1934 1.1604 1.1328 1.1673 1.1211 1.0985

15 (I) 1.1248 1.1087 1.0802 1.0984 1.0693 1.0438

15 (II) 1.1066 1.0935 1.0621 1.0945 1.0686 1.0378

20 1.0428 1.0329 1.0146 1.0182 0.9956 0.9806

2.50

10 1.1442 1.0602 1.0326 1.1409 1.0235 1.0024

15 (I) 1.0996 1.0089 0.9812 1.0865 0.9734 0.9515

15 (II) 1.0422 0.9955 0.9674 1.0425 0.9728 0.9459

20 1.0253 0.9394 0.9234 0.9335 0.9073 0.8935

increases. It is observed for the pre-assumed values of θ that, the bound lengths increase first when the value of θ rises
up to θ (= 1.80) and then bound lengths decrease with the further increase of θ . That shows the widest bound length at
θ (= 1.80). Hence, all the numerical findings are presented here only for θ = 1.80. Similar, behavior also has been noted
for the parameter β (= 1.60) and α(= 1.30). Therefore, all the tables presents the numerical findings only for selected
values of α(= 0.50,1.30,2.50) and β (= 0.50,1.60,2.50).

Further, the censored sample size m = 15 has two different censoring patterns (I) & (II). The first censoring pattern
shows the wide bound length as compared to second one. However, the difference in magnitude is nominal. This shows
that, different censoring patterns show different magnitudes of bound lengths. However, the difference in magnitude is
nominal with similar behavior.

Table 2 presents the bound lengths for the parameter β . All the properties have been seen similar as discussed above, but
the magnitude of bound length have been seen narrower when compared with the bound length for the parameter θ under
similar parametric values.

The Tables 3-6 present the Bayes prediction bound lengths under Two-Sample approach for the parameter θ and β
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Table 2: Bound Length under One-Sample Criterion for Parameter β

n = 30,θ = 1.80 t = 04 t = 07

β α m ↓ τ → 99% 95% 90% 99% 95% 90%

0.50

0.50

10 1.1186 1.1019 1.0763 1.0937 1.0647 1.0418

15 (I) 1.0603 1.0527 1.0251 1.0294 1.0153 0.9909

15 (II) 1.0609 1.0408 1.0083 1.0272 1.0166 0.9872

20 1.0351 0.9791 0.9614 0.9534 0.9444 0.9317

1.30

10 1.1872 1.1544 1.1275 1.1613 1.1153 1.0916

15 (I) 1.1196 1.1029 1.0741 1.0927 1.0637 1.0384

15 (II) 1.1049 1.0911 1.0566 1.0908 1.0645 1.0344

20 1.0374 1.0261 1.0073 1.0137 0.9894 0.9765

2.50

10 1.0525 1.0419 1.0266 1.0305 1.0163 0.9942

15 (I) 1.0113 1.0047 0.9781 0.9978 0.9689 0.9455

15 (II) 1.0088 0.9934 0.9622 0.9768 0.9697 0.9425

20 0.9676 0.9341 0.9166 0.9166 0.9014 0.8889

1.60

0.50

10 1.2175 1.2001 1.1718 1.1908 1.1595 1.1348

15 (I) 1.1546 1.1468 1.1176 1.1206 1.1067 1.0798

15 (II) 1.1543 1.1337 1.0988 1.1186 1.1068 1.0755

20 1.1281 1.0672 1.0477 1.0395 1.0291 1.0156

1.30

10 1.2923 1.2569 1.2273 1.2639 1.2143 1.1885

15 (I) 1.2185 1.2011 1.1701 1.1898 1.1585 1.1312

15 (II) 1.2029 1.1875 1.1512 1.1875 1.1591 1.1266

20 1.1301 1.1185 1.0978 1.1035 1.0782 1.0641

2.50

10 1.1466 1.1352 1.1187 1.1216 1.1077 1.0833

15 (I) 1.1018 1.0947 1.0661 1.0871 1.0559 1.0306

15 (II) 1.0989 1.0823 1.0487 1.0645 1.0566 1.0266

20 1.0545 1.0185 0.9997 0.9992 0.9823 0.9692

2.50

0.50

10 1.0658 1.0505 1.0253 1.0428 1.0158 0.9931

15 (I) 1.0144 1.0034 0.9773 0.9807 0.9676 0.9443

15 (II) 0.9917 0.9823 0.9608 0.9793 0.9686 0.9409

20 0.9589 0.9329 0.9154 0.9093 0.8994 0.8877

1.30

10 1.1321 1.1007 1.0743 1.1074 1.0635 1.0414

15 (I) 1.0668 1.0515 1.0243 1.0418 1.0145 0.9897

15 (II) 1.0495 1.0372 1.0074 1.0381 1.0129 0.9841

20 0.9887 0.9793 0.9618 0.9655 0.9438 0.9295

2.50

10 1.0855 1.0054 0.9783 1.0815 0.9706 0.9504

15 (I) 1.0429 0.9564 0.9299 1.0305 0.9223 0.9019

15 (II) 0.9881 0.9437 0.9164 0.9881 0.9222 0.8966

20 0.9721 0.8898 0.8749 0.8849 0.8599 0.8466

respectively for the smallest future observation (k = 1) and the largest future observation (k = m). All the properties that
have been discussed above are seen similar. On different censoring patterns (I) & (II) for censored sample size m = 15,
no clear trend have been seen to be discussed for a better censoring pattern. However, as the censored sample size gets
wider the bound lengths become narrower.

Table 7 presents the ML estimation based on simulated data for all pre-assumed values of the parameters. A similar trend
has been noted in terms of estimate. It was observed that, the ML estimate first increases when θ increases for (= 1.80)
and then ML estimate decreases otherwise. Hence, numerical findings are presented here only for θ = 1.80. ML estimate
increases first as β increases up to (= 1.60) and then decreases for other values of β . Further, a decreasing trend also
have been seen if the censored sample size m increases or censored time t increases. It is noted further that, the
magnitude of ML estimate is larger for the parameter β as compared with θ when other parametric values are fixed.

The approximate confidence lengths (ACL) for both parameters are measured for all pre-assumed parametric values. The
numerical finding are presented here only for θ (= 1.80), for both concerned parameters in Tables 8-9 respectively. All
the properties have been seen similar as discussed above. One remarkable point is that, the magnitude of ACL for
parameter θ was noted wider when compared to ACL of the parameter β .
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Table 3: Bound Length under Two-Sample Criterion for Parameter θ

n = 30,k = 1,θ = 1.80 t = 04 t = 07

β α m ↓ τ → 99% 95% 90% 99% 95% 90%

0.50

0.50

10 0.7327 0.7171 0.6935 0.7214 0.6951 0.6738

15 (I) 0.6868 0.6791 0.6532 0.6655 0.6516 0.6296

15 (II) 0.6932 0.6728 0.6367 0.6705 0.6594 0.6331

20 0.6658 0.6147 0.5953 0.6022 0.5989 0.5819

1.30

10 0.7904 0.7608 0.7357 0.7778 0.7372 0.7153

15 (I) 0.7358 0.7201 0.6994 0.7185 0.6919 0.6686

15 (II) 0.7309 0.7149 0.6771 0.7234 0.6993 0.6729

20 0.6678 0.6539 0.6338 0.6582 0.6278 0.6193

2.50

10 0.6782 0.6671 0.6592 0.6687 0.6546 0.6342

15 (I) 0.6496 0.6382 0.6139 0.6392 0.6131 0.5911

15 (II) 0.6507 0.6334 0.5982 0.6292 0.6203 0.5952

20 0.6097 0.5771 0.5583 0.5716 0.5544 0.5462

1.60

0.50

10 0.8162 0.7989 0.7731 0.8023 0.7745 0.7513

15 (I) 0.7662 0.7568 0.7297 0.7416 0.7278 0.7031

15 (II) 0.7719 0.7508 0.7122 0.7468 0.7345 0.7064

20 0.7434 0.6881 0.6674 0.6736 0.6608 0.6519

1.30

10 0.8788 0.8464 0.8194 0.8633 0.8196 0.7959

15 (I) 0.8193 0.8019 0.7738 0.7992 0.7715 0.7459

15 (II) 0.8124 0.7951 0.7558 0.8041 0.7781 0.7489

20 0.7451 0.7305 0.7092 0.7274 0.7017 0.6924

2.50

10 0.7566 0.7448 0.7289 0.7446 0.7381 0.7087

15 (I) 0.7214 0.7133 0.6872 0.7136 0.6856 0.6621

15 (II) 0.7258 0.7078 0.6705 0.7016 0.6928 0.6655

20 0.6822 0.6475 0.6275 0.6404 0.6217 0.6132

2.50

0.50

10 0.6894 0.6743 0.6591 0.6791 0.6536 0.6331

15 (I) 0.6483 0.6372 0.6131 0.6295 0.6119 0.5903

15 (II) 0.6364 0.6245 0.5973 0.6306 0.6194 0.5941

20 0.5949 0.5763 0.5578 0.5654 0.5527 0.5453

1.30

10 0.7444 0.7161 0.6919 0.7329 0.6994 0.6738

15 (I) 0.6923 0.6773 0.6523 0.6769 0.6506 0.6298

15 (II) 0.6757 0.6629 0.6357 0.6751 0.6523 0.6255

20 0.6272 0.6172 0.6003 0.6122 0.5921 0.5778

2.50

10 0.7146 0.6433 0.6122 0.7166 0.6211 0.6021

15 (I) 0.6723 0.5959 0.5692 0.6665 0.5722 0.5571

15 (II) 0.6245 0.5851 0.5606 0.6338 0.5763 0.5526

20 0.6111 0.5407 0.5257 0.5473 0.5243 0.5191

8 Numerical Illustration

A numerical illustration is presented in this section by using a real data set. The concerned real data set is taken from the
data set of wind speed in Taiz, located southwest of Yemen, which was used by [34] and recently by [3]. The monthly
wind speed for the year 2002 has been used for the investigation. [3] discussed the fitting of the data by using
Kolmogorov-Smirnov (KS) test (test statistic value = 0.3436 with p-value 0.0671) and Chi-Square goodness of fit test
(test statistic value = 0.7821 with p-value = 0.3236). Based on results, one-parameter Rayleigh distribution affords a
satisfactory fit to this data set.

For numerical illustration, we considered here a set of 30(= n) wind speed data. Using all above pre-assumed parametric
values, the Bayes prediction bound lengths under the One-Sample and Two-Sample criterion for both parameters in
Tables 10-12 are presented for θ = 1.80 & β = 1.60 only. All the properties have been seen similar as discussed above.
The remarkable point is that, the wider bound lengths have been noticed for real data set when compared with
corresponding simulated data. Further, for censored sample size m = 15, the second censoring pattern (II) shows wider
bound length as compared with the first censoring pattern (I), when other parametric values are assumed to be fixed.
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Table 4: Bound Length under Two-Sample Criterion for Parameter θ

n = 30,k = m,θ = 1.80 t = 04 t = 07

β α m ↓ τ → 99% 95% 90% 99% 95% 90%

0.50

0.50

10 1.4488 1.4117 1.3564 1.4321 1.3710 1.3212

15 (I) 1.3488 1.3286 1.2684 1.3046 1.2712 1.2197

15 (II) 1.3689 1.3188 1.2292 1.3224 1.2953 1.2342

20 1.3008 1.1821 1.1341 1.1627 1.1391 1.1175

1.30

10 1.5782 1.5095 1.4511 1.5586 1.4654 1.4141

15 (I) 1.4588 1.4205 1.3598 1.4235 1.3616 1.3072

15 (II) 1.4535 1.4131 1.3198 1.4411 1.3848 1.3214

20 1.3054 1.2698 1.2204 1.2743 1.2157 1.1989

2.50

10 1.3265 1.2994 1.2634 1.3184 1.2802 1.2324

15 (I) 1.2565 1.2369 1.1804 1.2455 1.1885 1.1334

15 (II) 1.2737 1.2305 1.1428 1.2298 1.2077 1.1493

20 1.1753 1.0977 1.0513 1.0984 1.0511 1.0375

1.60

0.50

10 1.6359 1.5985 1.5349 1.6136 1.5479 1.4947

15 (I) 1.5276 1.5028 1.4397 1.4753 1.4421 1.3847

15 (II) 1.5453 1.4937 1.3984 1.4934 1.4638 1.3985

20 1.4749 1.3466 1.2958 1.3228 1.2896 1.2772

1.30

10 1.7746 1.7016 1.6387 1.7503 1.6501 1.5947

15 (I) 1.6451 1.6039 1.5388 1.6044 1.5401 1.4805

15 (II) 1.6362 1.5929 1.4962 1.6218 1.5615 1.4938

20 1.4788 1.4417 1.3895 1.4435 1.3814 1.3628

2.50

10 1.5023 1.4738 1.4361 1.4841 1.4514 1.3993

15 (I) 1.4256 1.4052 1.3445 1.4124 1.3475 1.2926

15 (II) 1.4462 1.3977 1.3049 1.3921 1.3703 1.3068

20 1.3376 1.2556 1.2063 1.2484 1.2092 1.1852

2.50

0.50

10 1.3517 1.3157 1.2612 1.3373 1.2798 1.2298

15 (I) 1.2617 1.2346 1.1785 1.2138 1.1823 1.1317

15 (II) 1.2416 1.2106 1.1409 1.2393 1.2056 1.1468

20 1.1492 1.0959 1.0501 1.0803 1.0475 1.0393

1.30

10 1.4749 1.4093 1.3529 1.4579 1.3685 1.3212

15 (I) 1.3604 1.3246 1.2663 1.3282 1.2691 1.2162

15 (II) 1.3291 1.2998 1.2269 1.3284 1.2795 1.2128

20 1.2144 1.1898 1.1497 1.1851 1.1378 1.1037

2.50

10 1.4369 1.2527 1.1742 1.4257 1.2095 1.1647

15 (I) 1.3156 1.1398 1.0757 1.3069 1.0912 1.0593

15 (II) 1.2562 1.1156 1.0586 1.2357 1.1047 1.0493

20 1.1762 1.0161 0.9802 1.0418 0.9881 0.9562

The ML estimate and ACL for both parameters under real data set have been presented in Tables 7-9. All the properties
that have been discussed above are seen similar. The remarkable point is that, the magnitude of ML estimate was noted
larger when compared with simulated data respectively. Similarly, the wider ACL was obtained from a real data set.

9 Conclusion

In the present article, we discussed Bayes prediction bound lengths on One-Parameter Rayleigh distribution. We have
combined here Type-I Progressive Hybrid censoring with Step-Stress Partially Accelerated Life Test (SS-PALT).
One-Sample & Two-Sample Bayes prediction bound lengths have been obtained for t analysis by using
Metropolis-Hastings algorithm under simulated data and real data set. The optimal stress change time also have been
measured by the method of minimization of asymptotic variance of ML Estimation.

For numerical analysis, three censoring size with four different censoring patterns have been selected along with several
pre-assumed parametric values and studied their properties in different aspects. All findings are discussed in previous
section along with analysis on real data set. The present discussion, also shows the parametric values for which the
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Table 5: Bound Length under Two-Sample Criterion for Parameter β

n = 30,k = 1,θ = 1.80 t = 04 t = 07

β α m ↓ τ → 99% 95% 90% 99% 95% 90%

0.50

0.50

10 0.6695 0.6496 0.6203 0.6644 0.6321 0.6055

15 (I) 0.6185 0.6077 0.5758 0.5979 0.5799 0.5526

15 (II) 0.6319 0.6044 0.5548 0.6096 0.5948 0.5625

20 0.5944 0.5314 0.5051 0.5249 0.5068 0.4995

1.30

10 0.7362 0.7091 0.6691 0.7295 0.6806 0.6534

15 (I) 0.6751 0.6585 0.6229 0.6591 0.6264 0.5976

15 (II) 0.6754 0.6583 0.6014 0.6707 0.6409 0.6074

20 0.5966 0.5766 0.5494 0.5824 0.5505 0.5426

2.50

10 0.6067 0.5919 0.5725 0.6036 0.5854 0.5598

15 (I) 0.5714 0.5605 0.5305 0.5676 0.5354 0.5081

15 (II) 0.5829 0.5589 0.5104 0.5682 0.5497 0.5187

20 0.5295 0.4888 0.4623 0.4895 0.4657 0.4583

1.60

0.50

10 0.7659 0.7484 0.7123 0.7578 0.7237 0.6985

15 (I) 0.7102 0.6974 0.6641 0.6857 0.6679 0.6373

15 (II) 0.7228 0.6944 0.6482 0.6977 0.6816 0.6471

20 0.6839 0.6161 0.5883 0.6073 0.5886 0.5803

1.30

10 0.8373 0.7988 0.7657 0.8282 0.7758 0.7465

15 (I) 0.7715 0.7494 0.7195 0.7522 0.7183 0.6868

15 (II) 0.7695 0.7455 0.6923 0.7638 0.7319 0.6961

20 0.6859 0.6651 0.6365 0.6694 0.6358 0.6279

2.50

10 0.6971 0.6815 0.6614 0.6912 0.6735 0.6458

15 (I) 0.6585 0.6472 0.6151 0.6534 0.6191 0.5909

15 (II) 0.6695 0.6475 0.5938 0.6456 0.6334 0.5999

20 0.6132 0.5692 0.5422 0.5689 0.5434 0.5356

2.50

0.50

10 0.6196 0.6002 0.5713 0.6157 0.5842 0.5585

15 (I) 0.5741 0.5594 0.5295 0.5512 0.5341 0.5072

15 (II) 0.5663 0.5487 0.5093 0.5636 0.5477 0.5175

20 0.5125 0.4871 0.4617 0.4824 0.4638 0.4572

1.30

10 0.6873 0.6484 0.6185 0.6777 0.6308 0.6055

15 (I) 0.6249 0.6056 0.5748 0.6101 0.5787 0.5507

15 (II) 0.6237 0.5871 0.5537 0.6119 0.5827 0.5498

20 0.5498 0.5363 0.5147 0.5364 0.5113 0.4927

2.50

10 0.6666 0.5703 0.5265 0.6529 0.5507 0.5268

15 (I) 0.6018 0.5097 0.4749 0.5991 0.4863 0.4708

15 (II) 0.5747 0.4992 0.4669 0.5633 0.4965 0.4656

20 0.5292 0.4469 0.4267 0.4635 0.4349 0.4177

bound lengths show wider tendency. Further, for a fixed censored sample size the different censoring patterns do not play
any significant role.
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Table 6: Bound Length under Two-Sample Criterion for Parameter β

n = 30,k = m,θ = 1.80 t = 04 t = 07

β α m ↓ τ → 99% 95% 90% 99% 95% 90%

0.50

0.50

10 1.2167 1.1715 1.1061 1.2158 1.1438 1.0841

15 (I) 1.1096 1.0884 1.0129 1.0702 1.0292 0.9688

15 (II) 1.1486 1.0818 0.9652 1.1029 1.0686 0.9966

20 1.0577 0.9175 0.8559 0.9134 0.8695 0.8564

1.30

10 1.3601 1.2993 1.2108 1.3557 1.2488 1.1871

15 (I) 1.2312 1.1931 1.1142 1.2017 1.1291 1.0648

15 (II) 1.2394 1.1977 1.0654 1.2343 1.1676 1.0932

20 1.0625 1.0146 0.9581 1.0371 0.9634 0.9489

2.50

10 1.0898 1.0474 1.0032 1.0852 1.0434 0.9859

15 (I) 1.0085 0.9824 0.9155 1.0052 0.9335 0.8725

15 (II) 1.0407 0.9894 0.8698 1.0139 0.9717 0.9027

20 0.9183 0.8258 0.7639 0.8373 0.7812 0.7677

1.60

0.50

10 1.4284 1.3838 1.3038 1.4166 1.3407 1.2894

15 (I) 1.3067 1.2766 1.2025 1.2591 1.2183 1.1598

15 (II) 1.3411 1.2752 1.1696 1.2924 1.2553 1.1786

20 1.2501 1.0993 1.0347 1.0906 1.0453 1.0309

1.30

10 1.5774 1.4922 1.4184 1.5678 1.4526 1.3872

15 (I) 1.4385 1.3885 1.3218 1.4092 1.3267 1.2564

15 (II) 1.4417 1.3895 1.2607 1.4345 1.3633 1.2839

20 1.2544 1.2048 1.1384 1.2241 1.1467 1.1324

2.50

10 1.2762 1.2401 1.1943 1.2734 1.2329 1.1708

15 (I) 1.1955 1.1688 1.0972 1.1896 1.1134 1.0503

15 (II) 1.2267 1.1744 1.0491 1.1805 1.1515 1.0771

20 1.0983 0.9985 0.9356 1.0081 0.9481 0.9384

2.50

0.50

10 1.1295 1.0653 1.0007 1.1111 1.0409 0.9831

15 (I) 1.0142 0.9801 0.9133 0.9997 0.9307 0.8704

15 (II) 1.0095 0.9721 0.8674 1.0094 0.9674 0.9509

20 0.8817 0.8222 0.7627 0.8222 0.7772 0.7655

1.30

10 1.2549 1.1688 1.1021 1.2444 1.1409 1.0841

15 (I) 1.1234 1.0794 1.0108 1.0964 1.0265 0.9684

15 (II) 1.1183 1.0382 0.9629 1.1093 1.0376 0.9644

20 0.9619 0.9303 0.8815 0.9383 0.8817 0.8392

2.50

10 1.2204 1.0086 0.9044 1.1961 0.9794 0.9201

15 (I) 1.0738 0.8708 0.7991 1.0729 0.8254 0.7947

15 (II) 1.0129 0.8681 0.7763 0.9984 0.8524 0.7834

20 0.9195 0.7356 0.6897 0.7839 0.7299 0.6805

Table 7: Maximum Likelihood Estimates for Both Parameter

n = 30 θ̂Ml β̂Ml

θ = 1.80 Simulated Data Real Data Simulated Data Real Data

β m ↓ t → 04 07 04 07 04 07 04 07

0.50

10 1.0678 1.0421 1.1225 1.1092 1.1003 1.0778 1.1726 1.1434

15 (I) 1.0134 0.9869 1.0611 1.0297 1.0369 1.0091 1.0965 1.0565

15 (II) 1.0177 0.9856 1.0635 1.0301 1.0483 1.0139 1.1057 1.0633

20 0.9356 0.9232 1.0339 0.9475 0.9431 0.9324 1.0616 0.9595

1.60

10 1.1224 1.0959 1.1971 1.1729 1.1662 1.1426 1.2625 1.2312

15 (I) 1.0658 1.0374 1.1245 1.0988 1.1098 1.0798 1.1729 1.1389

15 (II) 1.0694 1.0369 1.1121 1.0988 1.1107 1.0746 1.1642 1.1462

20 0.9846 0.9716 1.0364 1.0119 1.0022 0.9907 1.0646 1.0371
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2.50

10 1.0155 0.9907 1.0517 1.0318 1.0373 1.0158 1.0872 1.0612

15 (I) 0.9634 0.9371 1.0081 0.9955 0.9766 0.9491 1.0326 1.0153

15 (II) 0.9671 0.9363 1.0084 0.9766 0.9874 0.9544 1.0392 0.9988

20 0.8896 0.8779 0.9611 0.9079 0.8877 0.8766 0.9739 0.9118

Table 8: ACL for Parameter θ

n = 30,θ = 1.80 t = 04 t = 07

β m ↓ τ → 99% 95% 90% 99% 95% 90%

ACL On Simulated Data

0.50

10 1.2402 1.2148 1.1763 1.2324 1.1769 1.1423

15 (I) 1.1643 1.1519 1.1095 1.1287 1.1059 1.0701

15 (II) 1.1736 1.1418 1.0832 1.1353 1.1175 1.0747

20 1.1298 1.0464 1.0151 1.0242 1.0057 0.9913

1.60

10 1.3349 1.2867 1.2458 1.3125 1.2463 1.2105

15 (I) 1.2448 1.2193 1.1768 1.2154 1.1724 1.1342

15 (II) 1.2353 1.2099 1.1494 1.2226 1.1832 1.1398

20 1.1339 1.1109 1.0627 1.1067 1.0672 1.0527

2.50

10 1.1503 1.1325 1.1082 1.1333 1.1106 1.0776

15 (I) 1.0979 1.0548 1.0451 1.0852 1.0424 1.0069

15 (II) 1.1037 1.0759 1.0198 1.0674 1.0533 1.0121

20 1.0374 0.9858 0.9543 0.9746 0.9465 0.9331

ACL On Real Data

0.50

10 1.2648 1.2298 1.1783 1.2685 1.1953 1.1487

15 (I) 1.1733 1.1542 1.0978 1.1348 1.1031 1.0554

15 (II) 1.1943 1.1487 1.0617 1.1528 1.1273 1.0705

20 1.1298 1.0188 0.9732 1.0041 0.9744 0.9595

1.60

10 1.3834 1.3198 1.2653 1.3683 1.2821 1.2346

15 (I) 1.2737 1.2386 1.1821 1.2435 1.1863 1.1353

15 (II) 1.2716 1.2333 1.1446 1.2622 1.2096 1.1521

20 1.1349 1.0995 1.0328 1.1073 1.0513 1.0365

2.50

10 1.1522 1.1267 1.0929 1.1439 1.1122 1.0676

15 (I) 1.0898 1.0325 1.0172 1.0804 1.0235 0.9759

15 (II) 1.1068 1.0655 0.9822 1.0677 1.0469 0.9927

20 1.0149 0.9429 0.8976 0.9419 0.9002 0.8868

Table 9: ACL for Parameter β

n = 30,θ = 1.80 t = 04 t = 07

β m ↓ τ → 99% 95% 90% 99% 95% 90%

ACL On Simulated Data

0.50

10 1.1225 1.1041 1.0754 1.1098 1.0678 1.0421

15 (I) 1.0611 1.0529 1.0212 1.0297 1.0134 0.9869

15 (II) 1.0635 1.0411 1.0021 1.0301 1.0177 0.9856

20 1.0339 0.9715 0.9501 0.9475 0.9356 0.9232

1.60

10 1.1971 1.1607 1.1302 1.1729 1.1224 1.0959

15 (I) 1.1245 1.1061 1.0742 1.0981 1.0658 1.0374

15 (II) 1.1121 1.0954 1.0543 1.0988 1.0694 1.0369

20 1.0364 1.0223 0.9876 1.0119 0.9846 0.9716

2.50

10 1.0517 1.0393 1.0218 1.0318 1.0155 0.9907

15 (I) 1.0081 0.9765 0.9705 0.9955 0.9634 0.9371

15 (II) 1.0084 0.9898 0.9521 0.9766 0.9671 0.9363

20 0.9611 0.9231 0.9022 0.9079 0.8896 0.8773
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ACL On Real Data

0.50

10 1.2362 1.2118 1.1728 1.2283 1.1733 1.1388

15 (I) 1.1608 1.1484 1.1063 1.1251 1.1026 1.0671

15 (II) 1.1698 1.1375 1.0803 1.1317 1.1141 1.0716

20 1.1264 1.0436 1.0126 1.0214 1.0024 0.9888

1.60

10 1.3304 1.2824 1.2418 1.3087 1.2422 1.2067

15 (I) 1.2407 1.2156 1.1733 1.2115 1.1688 1.1309

15 (II) 1.2312 1.2061 1.1462 1.2185 1.1794 1.1363

20 1.1296 1.1078 1.0599 1.1027 1.0643 1.0498

2.50

10 1.1469 1.1292 1.1059 1.1298 1.1073 1.0747

15 (I) 1.0939 1.0519 1.0424 1.0821 1.0395 1.0042

15 (II) 1.1003 1.0729 1.0172 1.0642 1.0503 1.0094

20 1.0345 0.9826 0.9521 0.9715 0.9443 0.9308

Table 10: Bound Length under One-Sample Criterion for Real Data

n = 30,β = 1.60 t = 04 t = 07

α m ↓ τ → 99% 95% 90% 99% 95% 90%

For Parameter θ

0.50

10 1.3904 1.3684 1.3331 1.362 1.3239 1.2929

15 (I) 1.3152 1.3046 1.2675 1.2759 1.2579 1.2243

15 (II) 1.3177 1.2908 1.2444 1.2764 1.2618 1.2229

20 1.2829 1.2076 1.1813 1.1766 1.1626 1.1472

1.30

10 1.4813 1.4374 1.4004 1.4509 1.3896 1.3572

15 (I) 1.3927 1.3706 1.3319 1.3599 1.3209 1.2866

15 (II) 1.3768 1.3561 1.3086 1.3602 1.3246 1.2841

20 1.2853 1.2687 1.2422 1.2551 1.2224 1.2062

2.50

10 1.3043 1.2896 1.2685 1.2788 1.2601 1.2294

15 (I) 1.2514 1.2414 1.2056 1.2351 1.1963 1.1646

15 (II) 1.2504 1.2283 1.1835 1.2106 1.2008 1.1626

20 1.1935 1.1478 1.1231 1.1282 1.1055 1.0909

For Acceleration Factor β

0.50

10 1.2175 1.2001 1.1718 1.1908 1.1595 1.1348

15 (I) 1.1546 1.1468 1.1176 1.1206 1.1067 1.0798

15 (II) 1.1543 1.1337 1.0988 1.1186 1.1068 1.0755

20 1.1281 1.0672 1.0477 1.0395 1.0291 1.0156

1.30

10 1.2923 1.2569 1.2273 1.2639 1.2143 1.1885

15 (I) 1.2185 1.2011 1.1701 1.1898 1.1585 1.1312

15 (II) 1.2029 1.1875 1.1512 1.1875 1.1591 1.1266

20 1.1301 1.1185 1.0978 1.1035 1.0782 1.0641

2.50

10 1.1466 1.1352 1.1187 1.1216 1.1077 1.0833

15 (I) 1.1018 1.0947 1.0661 1.0871 1.0559 1.0306

15 (II) 1.0989 1.0823 1.0487 1.0645 1.0566 1.0266

20 1.0545 1.0185 0.9997 0.9992 0.9823 0.9692

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


164 Prakash, G.: Type-I Progressive Hybrid Rayleigh Data under SS-PALT

Table 11: Bound Length for θ under Two-Sample Criterion for Real Data

n = 30,β = 1.60 t = 04 t = 07

α m ↓ τ → 99% 95% 90% 99% 95% 90%

k = 1

0.50

10 0.8878 0.8658 0.8333 0.8757 0.8408 0.8115

15 (I) 0.8285 0.8158 0.7819 0.8008 0.7883 0.7518

15 (II) 0.8387 0.8109 0.7593 0.8106 0.7945 0.7592

20 0.8007 0.7313 0.7038 0.7184 0.7005 0.6908

1.30

10 0.9641 0.9234 0.8895 0.9497 0.8956 0.8656

15 (I) 0.8938 0.8706 0.8353 0.8708 0.8386 0.8037

15 (II) 0.8879 0.8646 0.8122 0.8802 0.8475 0.8109

20 0.8028 0.7827 0.7545 0.7836 0.7501 0.7487

2.50

10 0.8156 0.8002 0.7797 0.8056 0.7966 0.7598

15 (I) 0.7739 0.7683 0.7302 0.7669 0.7317 0.7021

15 (II) 0.7829 0.7587 0.7087 0.7559 0.7439 0.7097

20 0.7265 0.6821 0.6555 0.6788 0.6529 0.6439

k = m

0.50

10 1.7006 1.6551 1.5795 1.6834 1.6052 1.5416

15 (I) 1.5775 1.5466 1.4714 1.5213 1.4807 1.4121

15 (II) 1.6044 1.5404 1.4216 1.5487 1.5123 1.4346

20 1.5165 1.3637 1.3008 1.3448 1.3022 1.2945

1.30

10 1.8691 1.7744 1.6994 1.8416 1.7235 1.6571

15 (I) 1.7133 1.6635 1.5861 1.6706 1.5984 1.5229

15 (II) 1.7095 1.6585 1.5346 1.6971 1.6253 1.5448

20 1.5281 1.4737 1.4091 1.4845 1.4084 1.3889

2.50

10 1.5496 1.5109 1.4651 1.5336 1.4936 1.4311

15 (I) 1.4595 1.4338 1.3613 1.4486 1.3712 1.3056

15 (II) 1.4897 1.4293 1.3134 1.4316 1.4042 1.3285

20 1.3578 1.2586 1.1972 1.2588 1.2092 1.1836

Table 12: Bound Length for β under Two-Sample Criterion for Real Data

n = 30,β = 1.60 t = 04 t = 07

α m ↓ τ → 99% 95% 90% 99% 95% 90%

k = 1

0.50

10 0.8098 0.7824 0.7315 0.8097 0.7599 0.7228

15 (I) 0.7361 0.7164 0.6697 0.7082 0.6819 0.6386

15 (II) 0.7603 0.7174 0.6458 0.7316 0.7076 0.6589

20 0.7009 0.6253 0.5933 0.6234 0.5932 0.5847

1.30

10 0.9036 0.8497 0.8073 0.9011 0.8287 0.7897

15 (I) 0.8178 0.7861 0.7435 0.7971 0.7494 0.7048

15 (II) 0.8226 0.7858 0.7065 0.8199 0.7749 0.7246

20 0.7036 0.6707 0.6277 0.6864 0.6365 0.6283

2.50

10 0.7161 0.6929 0.6636 0.7179 0.6919 0.6524

15 (I) 0.6667 0.6494 0.6074 0.6651 0.6168 0.5766

15 (II) 0.6879 0.6546 0.5773 0.6617 0.6431 0.5959

20 0.6163 0.5727 0.5615 0.5782 0.5453 0.5395
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k = m

0.50

10 1.4805 1.4302 1.3411 1.4716 1.3869 1.3294

15 (I) 1.3474 1.3131 1.2304 1.2971 1.2581 1.1855

15 (II) 1.3884 1.3138 1.1932 1.3369 1.2985 1.2094

20 1.2885 1.1168 1.0435 1.1114 1.0593 1.0445

1.30

10 1.6446 1.5496 1.4673 1.6382 1.5103 1.4371

15 (I) 1.4926 1.4365 1.3628 1.4624 1.3705 1.2919

15 (II) 1.4993 1.4396 1.2935 1.4935 1.4139 1.3254

20 1.2897 1.2331 1.1578 1.2585 1.1711 1.1564

2.50

10 1.3127 1.2719 1.2204 1.3139 1.2681 1.1987

15 (I) 1.2249 1.1944 1.1144 1.2205 1.1354 1.0649

15 (II) 1.2623 1.2026 1.0604 1.2135 1.1806 1.0975

20 1.1178 1.0057 0.9343 1.0205 0.9523 0.9426
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