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Abstract: Let G be a primitive strongly regular Graph of order n and A its matrix of adjacency and let A be the Euclidean Jordan

subalgebra of the Euclidean Jordan algebra of real symmetric matrices of order n equipped with the Jordan product of matrices and with

the inner product of two matrices being the usual trace of them, spanned by the identity of order n and the natural powers of A. In this

paper we establish some admissibility asymptotic conditions on the parameters and on the spectra of G, and next some admissibility

conditions are established recurring to the inequality of Cauchy-Schwarz and recurring to the Frobenius norm.
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1 Introduction

Several applications of Euclidean Jordan algebras were
developed on the various fields of science, namely on
establishing the formalism of quantum mechanics [1], on
the generalization of the theory of matrices to simple
Euclidean Jordan algebras, [2-7], on establishing
admissibility conditions on the spectra of a strongly
regular graph [8-10], on the construction of theory for
interior-point methods [11-17], and on developing
applications to statistics and to probability, [18-20].

In this work we first establish some asymptotic
inequalities over the spectra of a strongly regular graph,
and next we deduce some inequalities involving the
parameters and the spectra of a strongly regular graph
recurring to the inequality of Cauchy-Schwarz in the
environment of Euclidean Jordan algebras.

This paper is organized as follows. In the section 2,
we present the main concepts and theorems about Jordan
algebras and Euclidean Jordan algebras and some
examples. In section 3 we expose the main concepts and
results about strongly regular graphs needed for a clear
understanding of this paper. In section 4, we establish, in
an algebraic asymptotic way, inequalities over the spectra
of a strongly regular graph, after associating a
three-dimensional real Euclidean Jordan algebra A to it’s
adjacency matrix; and finally we deduce some
inequalities involving the parameters and the spectra of a

strongly regular graph recurring to the Cauchy-Schwarz
inequality applied to two elements of A . Finally, in
section 5 we present some conclusions.

2 Main Results on Euclidean Jordan

Algebras

In this section the main concepts about Euclidean Jordan
algebras are presented. Good expositions about Jordan
algebras and Euclidean Jordan algebras can be found, in
between other works, in the books of James D. Malley,
[21] and of Kevin McCrimmom [22], in the monograph
by Faraut and Korányi, [23], and in Koecher’s lecture
notes [24].

Now, we only present the principal results needed for
a clear understanding of this paper. Let A be a n−
dimensional algebra over a field K with a bilinear map •.
We consider the notation u2• = u • u for any element u in
A . Then, A is a Jordan algebra if for all u,v ∈ A we
have:

i)u • v = v• u,
ii)u • (u2• • v) = u2• • (u • v).

The properties i) and ii) can be replaced by the properties
j1) and j2),

j1)∀u,v ∈ A ,L(u)(v) = L(v)(u)
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j2)∀u,v ∈ A ,L(u)(L(u2•)(v)) = L(u2•)(L(u)(v)), where
the operators L(u) and L(u2•) are the endomorphisms:

L(u) : A 7→ A

v 7→ u • v
and

L(u2•) : A 7→ A

v 7→ u2• • v.

We always assume that K has not characteristic 2, and
we suppose in the later sections that K is usually R or C.
In the case that the field K is the field of real numbers we
call the Jordan algebra A a real Jordan.

Let A = Sym(n,R) be the space of real symmetric
matrices of order n and let’s consider on A the product
u • v = 1

2
(uv+ vu), where uv and vu represent the usual

product of the matrix u by the matrix v, and of the matrix
v by the matrix u respectively. We define the following
notation for the powers of an element u in A :
u0• = In,u

1• = u and uk+1• = u • uk• for any natural
number k. Here, we must say that the usual power of
order n,un coincides with the power un• for any natural n.
Then A with this product is a real Jordan algebra. Indeed
let u and v be elements of A , then we have
u • v = uv+vu

2
= vu+uv

2
= v• u.

We have

u • (u2• • v) =
u(u2••v)+(u2••v)u

2

=
u
(

u2•v+vu2•
2

)

+
(

u2•v+vu2•
2

)

u

2

=
u

(

u2v+vu2

2

)

+
(

u2v+vu2

2

)

u

2

=
u3v+uvu2+u2vu+vu3

2
2

=
u3v+u2vu+uvu2+vu3

2
2

=
u2( uv+vu

2 )+( uv+vu
2 )u2

2

= u2•(u•v)+(u•v)u2•
2

= u2• • (u • v).

Some Jordan algebras are obtained in a natural way from
associative algebras. If in an associative algebra A we
change his product u • v for u and v in A by the product
u ⋆ v = u•v+v•u

2
we obtain a new Jordan Algebra A +. We

call a Jordan algebra B special if B is isomorphic to a
subalgebra of an algebra A +. Otherwise if the Jordan
algebra B is not isomorphic to a subalgebra of the Jordan
algebra A +, then for any associative algebra A is called
an exceptional Jordan algebra.

From now on, when we say let A be a Jordan algebra
we suppose that A is finite dimensional real Jordan
algebra and has a unit element denoted by e. Let A be a n

dimensional Jordan algebra. Then A is power
associative, this is an algebra such that for any u in A the
algebra spanned by u and e is associative. Therefore, we
define for any element u in A the power of u in the

following way u0• = e,u1• = u and u(k+1)• = u • uk• for
any natural number k.

The rank of an element u in A is the least natural
number l such that {u0•,u1•,u2•, · · · ,ul•} is linearly
dependent and we write rank(u) = l. Since rank(u) ≤ n

the rank of A is defined as being the natural number

rank(A ) = max{rank(u) : u ∈ A }. An element u in A is
regular if r = rank(u) = rank(A ). Let u be a regular
element of A and r = rank(u). Then, there exist real
scalars α1(u),α2(u), . . . ,αr−1(u) and αr(u) such that

ur•− a1(u)u
r−1•+ · · ·+(−1)rar(u)e = 0, (1)

where 0 is the zero vector of A . Taking into account (1)
we conclude that the polynomial p(u,−) such that

p(u,λ ) = λ r −α1(u)λ
r−1 + · · ·+(−1)rαr(u) (2)

is the minimal polynomial of u. We call to the polynomial
p(u,λ ) the characteristic polynomial of u. The
coefficients αi(u) for i = 1, · · · ,r of the polynomial
p(u,−) are homogeneous polynomials in the coordinates
of u on a fixed basis of A . The coefficient α1(u) is called
the trace of u, which we denote by tr(u), and the
coefficient αr(u) is called the determinant of u, which we
denote by det(u). This is natural, since when u is a regular
element of A , then in the subalgebra R[u] of A , spanned
by u0 and the natural powers of u, then the trace and the
determinant of the matrix of the linear application L0(u),
from R[u] onto R[u], such that L0(u)(v) = u • v relatively
to the basis B = {u0•,u1•,u2•, · · · ,ur−1•} is respectively
α1(u) and αr(u). Since the set of regular elements of A

is a dense set in A then we extend by continuity to the
non regular elements of A the definitions of
characteristic polynomial, trace and determinant. For any
u in A , we call the roots of the characteristic polynomial
p(u,−) of u the eigenvalues of u.

A real Euclidean Jordan algebra A is a Jordan algebra
with an inner product < ·, · > such that for any u,v and w

in A , < L(u)v,w >=< v,L(u)w > . Now, we show that
the real vector space of real symmetric matrices of order
n, Sym(n,R), is a real Euclidean Jordan algebra endowed
with the Jordan product and the inner product defined by
< u,v >= trace(u• v), where trace denotes the usual trace
of matrices of order n. The unit element in this case is the
identity matrix of order n, In. Indeed, let u,v and w ∈ A =
Sym(n,R), then we have

< L(u)v,w >= trace((u • v)•w)

= trace
( uv+vu

2 w+w uv+vu
2

2

)

= trace( (uv)w
4

+ (vu)w
4

+ w(uv)
4

+ w(vu)
4

)

= trace( (vu)w
4

)+ trace(w(uv)
4

)+ trace( (uv)w
4

)+ trace(w(vu)
4

)

= trace(
v(uw)

4
)+ trace(

(wu)v
4

)+ trace(
w(uv)

4
)+ trace(

(vu)w
4

)

= trace( v(uw)
4

)+ trace( v(wu)
4

)+ trace( (wu)v
4

)+ trace( v(uw)
4

)

= trace( v(uw)
4

)+ trace( v(wu)
4

)+ trace( (wu)v
4

)+ trace( (uw)v
4

)

= trace

(

v( uw+wu
2 )

2

)

+ trace

(

( uw+wu
2 )v

2

)

= trace
(

v(u•w)
2

+ (u•w)v
2

)

= trace(v• (u •w))
= trace(v•L(u)w)
=< v,L(u)w > .

Let A be a real Euclidean Jordan algebra with unit
element e. An element u in A is an idempotent if u2• = u.
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Two idempotents u and v are orthogonal if u • v = 0. The
set {u1,u2, . . . ,uk} of nonzero idempotents is a complete
system of orthogonal idempotents of A if and only if

u2•
i = ui, for i = 1, . . . ,k, ui • u j = 0 if i 6= j and

k

∑
i=1

ui = e.

An idempotent u is primitive if it is a nonzero idempotent
of A and if it can’t be written as a sum of two nonzero
idempotents. We say that {u1,u2, . . . ,um} is a Jordan
frame of A if {u1,u2, . . . ,um} is a complete system of
orthogonal of idempotents of A such that each
idempotent is primitive.

Example 1.Let u be a matrix of the Euclidean Jordan
algebra A = Sym(n,R) with l distinct eigenvalues
λ1,λ2, · · · ,λl−1 and λl then the set S = {u1,u2, · · · ,ul} is
a complete system of orthogonal idempotents of A where
each idempotent ui for i = 1, · · · , l is the projector on the
eigenvector space of u associated to the eigenvalue λi

defined by the equality

ui =
l

∏
j=1, j 6=i

λ jIn − u

λ j −λi

for i = 1, · · · , l. We must say that they are unique, and we
have u1 + u2 + · · ·+ ul = In,ui • u j = 0 for i 6= j and i, j ∈
{1, · · · , l} where • is the Jordan product of matrices, u2•

i =

ui for i = 1, · · · , l and we have u =
l

∑
j=1

λ ju j.

Example 2.Let’s consider the Euclidean Jordan Algebra
A = Sym(n,R) with the Jordan product u• v = uv+vu

2
and

the inner product u|v = trace(u • v). Then
S = {E11, · · · ,Enn} where the matrix Eii is such that
(Eii)ii = 1 and (Eii)αβ = 0 if α 6= i or β 6= i is a Jordan
frame of A .

Theorem 2.1([23], p. 43).
Let V be a real Euclidean Jordan algebra. Then for v in

V there exist unique real numbers λ1(v),λ2(v), . . . ,λk(v),
all distinct, and a unique complete system of orthogonal
idempotents {u1,u2, . . . ,uk} such that

v = λ1(v)u1 +λ2(v)u2 + · · ·+λk(v)uk. (3)

The numbers λ j(v)’s of (3) are the eigenvalues of v and
the decomposition (3) is the first spectral decomposition of
v.

Theorem 2.2([23], p. 44)
Let V be a real Euclidean Jordan algebra with

rank(V ) = r. Then for each v in V there exists a Jordan
frame {u1,u2, · · · ,ur} and real numbers
λ1(v), · · · ,λr−1(v) and λr(v) such that

v = λ1(v)u1 +λ2(v)u2 + · · ·+λr(v)ur. (4)

And, we have det(v) =
r

∏
i=1

λi(v) and tr(v) =
r

∑
i=1

λi(v). The

decomposition (4) is called the second spectral
decomposition of v. The distinct λ j(v)s are the
eigenvalues of v.

Example 3.In the Euclidean Jordan algebra
A = Sym(n,R) the second spectral decomposition of a
matrix u that has an orthonormal basis
B = {u1,u2, · · · ,un} of eigenvectors of u such that
uui = λiui for i = 1, · · · ,n has the spectral decomposition
u = ∑n

i=1 λiuiu
T
i . We must say that

{u1uT
1 ,u2uT

2 , · · · ,unuT
n } is a Jordan frame of A .

Remark.Herein, we must say that any Jordan frame on a
finite dimensional Euclidean Jordan algebra has the same
number of elements and is equal to the rank of the
algebra. Let’s consider an Euclidean Jordan algebra such
that rank(A ) = r and u in A with the second spectral
decomposition u = λ1u1 + λ2u2 + · · · + λrur where
{u1,u2, · · · ,ur} is a Jordan frame. Then the Frobenius

norm of u is ||u||F =
√

tr(u • u) =

√

r

∑
i=1

λ 2
i .

3 Graphs and Strongly Regular Graphs

The results presented in this section can be founded in a
more detailed way on the very readable book Spectra of
graphs written by A. E. Brouwer and W. H. Haemers, see
[25] and in the book Algebraic graph theory written by C.
Godsil and G. F. Royle, see [26].

Along this paper we consider only non-empty, simple
herein called graphs. By simple graphs we mean graphs
without loops and parallel edges.

We denote the set of vertices of a graph X by V (X)
and the set of edges of X by E(X) and the number of
vertices of X , |V (X)| is called the order of X . An edge
whose endpoints are the vertices u and v is represented by
uv and, in this case, the vertices u and v are adjacent or
neighbors.

A graph in which all pairs of vertices are adjacent is
called a complete graph and a graph such that all pair of
vertices is non adjacent is called a null graph. The number
of neighbors of a vertex u in V (X) is the degree of u. If
all vertices of a graph X have the same degree k then X

is a k−regular graph. The adjacency matrix of a graph X

of order n is a matrix A = [ai j] such that ai j = 1, if uiu j ∈
E(X), otherwise ai j = 0. We define the eigenvalues of X

as being the eigenvalues of A.
We observe that a graph X is k−regular if and only if

his adjacency matrix has an eigenvector with all the
coordinates equal to 1 associated to k.

A non-null and non-complete graph X it is a
(n,k;λ ,µ)− strongly regular graph if it is a k−regular
graph, and each pair of adjacent vertices have λ common
neighbors and each pair of non-adjacent vertices have µ
common neighbors.

The complement of a simple graph X denoted by X

is a simple graph that has the same set of vertices of X

and such that two distinct vertices of X are adjacent if and
only if they are non adjacent vertices of X . A graph X is
a (n,k;λ ,µ)−strongly regular graph if and only if X is a
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(n,n− k− 1;n− 2− 2k+µ ,n−2k+λ )−strongly regular
graph.

A graph X is a (n,k;λ ,µ)−strongly regular graph if
and only if its adjacency matrix A verifies the inequality
(5).

A2 = kIn +λ A+ µ(Jn−A− In). (5)

The parameters of a strongly regular graph are related
by the equality (6).

k(k−λ − 1) = (n− k− 1)µ . (6)

It is known, see for instance [25,26], that the eigenvalues
of a (n,k;λ ,µ)−strongly regular graph X are k,θ and τ
which are given by the relations (7) and (8).

θ =
λ − µ +

√

(λ − µ)2 + 4(k− µ)

2
(7)

τ =
λ − µ −

√

(λ − µ)2 + 4(k− µ)

2
. (8)

Therefore, the restricted eigenvalues θ and τ are such
that the former is the positive eigenvalue and the latter is
the negative eigenvalue of X . Their multiplicities fθ and
fτ , are defined by the equalities (9) and (10).

fθ =
|τ|n+ τ − k

θ − τ
(9)

fτ =
θn+ k−θ

θ − τ
. (10)

If the parameter set (n,k;λ ,µ) is a parameter set of a
strongly regular graph then the Krein conditions obtained
in [27] that we present in the inequalities (11) and (12)
hold,

(θ + 1)(k+θ + 2θτ) ≤ (k+θ )(τ + 1)2 (11)

(τ + 1)(k+ τ + 2θτ) ≤ (k+ τ)(θ + 1)2. (12)

and the Seidel’s absolute bounds(see [28]) that are the
relations (13) and (14).

n ≤ fθ ( fθ + 3)

3
(13)

n ≤ fτ ( fτ + 3)

3
. (14)

Given a graph X , we denote by a path in X between
two vertices v1 and vk+1 to a non null sequence of
vertices(distinct) and edges(distinct)
W = v1e1v2e2v3 · · ·vkekvk+1 whose terms are vertices and
edges alternated and such that for 1 ≤ i ≤ k the vertices vi

and vi+1 define the edge ei.
A graph X ′ is a subgraph of a graph X and we write

X ′ ⊑ X if V (X ′) ⊑ V (X) and E(X ′) ⊑ E(X). If X ′ 6= X ,
we say that X ′ is a proper subgraph of X . We must
observe that for any non empty subset V ′ of V (X) we can
construct a subgraph of X whose set of vertices is V ′ and
such that E(X ′) ⊑ E(X), and uv ∈ E(X ′) if and only if
u ∈ V ′ and v ∈ V ′, which we call the induced subgraph of
X and which we denote by X(V ′). Two vertices v1 and v2

of a graph X are connected if there is a path between v1

and v2 in X . This relation between vertices is a relation of
equivalence in the set of vertices of the graph X ,V (X),
whereby there exists a partition of V (X) in non-empty
subsets V1,V2, · · · ,Vl of V (X) such that two vertices are
connected if and only if they belong to the same set Vi for
a given i ∈ {1,2, · · · , l}. The subgraphs
X(V1),X(V2), · · · ,X(Vl) are called the connected
components of X . If X has only one component then we
say that the graph X is connected otherwise the graph X is
a disconnected graph. A strongly regular graph X is
primitive if and only if X and X are connected, otherwise
the strongly regular graph X is called imprimitive.

Now, we must say, that a (n,k;λ ,µ)−strongly regular
is imprimitive if and only if µ = 0 or µ = k. From now on,
on the next sections we only consider primitive strongly
regular graphs.

4 Some Asymptotic Conditions on the

Parameters of a Strongly Regular Graph

Herein, we first introduce some notation needed for this
section. We denote the set of real matrices of order n by
Mn(R). For two matrices C = [ci j] and D = [di j] in Mn(R)
we define the Hadamard product of the matrices C and D

as being the matrix of Mn(R), C ◦ D = [ci jdi j] and we
define the Kronecker product of the matrices C and D as
being the matrix of Mn2(R), C ⊗ D = [ci jD]. We define
the Hadamard powers of a matrix Z ∈ Mn(R) in the

following way: Z0◦ = Jn,Z
1◦ = X and Z(1+ j)◦ = Z ◦ Z j◦

for any natural number j.

Let’s consider a primitive (n,k;λ ,µ)−strongly
regular graph X such that its adjacency matrix has three
distinct eigenvalues k,θ and τ, and let’s consider the
Euclidean Jordan subalgebra A of the Jordan Euclidean
Jordan algebra Sym(n,R) equipped with the Jordan
product u • v = uv+vu

2
and with the inner product

u|v = trace(uv) for any symmetric matrices u and v of
order n, spanned by the powers of In and A. We have
rank(A ) = 3 since A has three distinct eigenvalues. Now,
consider the unique Jordan frame B = {F1,F2,F3} of A

associated to A, with
F1 = 1/nIn + 1/nA + 1/n(Jn − A − In),
F2 = (|τ|n + τ − k)/(n(θ − τ))In + (n + τ − k)/(n(θ −
τ))A + (τ − k)/(n(θ − τ))(Jn − A − In), and
F3 = (θn+ k − θ )/(n(θ − τ))In + (−n+ k − θ )/(n(θ −
τ))A+(k−θ )/(n(θ − τ))(Jn −A− In).

Let y be a real positive number that’s than one and
let’s consider the binomial Hadamard series

Sy =
+∞

∑
j=0

(−1) j

(−y

j

)(

A2

k+ µ

) j◦
. Now Sy =

3

∑
i=1

qyiFi is

the second spectral decomposition of Sy respectively to
the Jordan frame B = {F1,F2,F3} of A . We deduce that
the eigenvalues qyi of Sy are all positive. Since
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(−1) j
(−y

j

)

= (−1) j (−y)(−y−1)(−y−2)···(−y− j+1)
j!

then

(−1) j
(−y

j

)

= (−1)2 j (y)(y+1)(y+2)···(y+ j−1)
j!

≥ 0.

We have Syn =
n

∑
j=0

(−1) j

(−y

j

)(

A2

k+ µ

) j◦
. Let’s

consider the second spectral decomposition of Syn

relatively to the Jordan frame B,
Syn = qyn1F1 + qyn2F2 + qyn3F3.

Hence, since the eigenvalues of A2

k+µ are positive and

since we have that for any two real matrices of order n,
V and W λmin(V )λmin(W )≤ λmin(V ◦W) and since B is a
Jordan frame of A that is a basis of A and A is closed for
the Hadamard product then we deduce that the eigenvalues
of Syn are all positive.

Therefore, using the fact that
qy1 = limn→+∞ qyn1,qy2 = limn→+∞ qyn2 and
qy3 = limn→+∞ qyn3 then we conclude that qy1 ≥ 0,qy2 ≥ 0
and qy3 ≥ 0. We note that SyF1 = qy1F1,SyF2 = qy2F2 and
SyF3 = qy3F3, and therefore we have

qy1 =
1

( µ
k+µ )

y
+

1

( k+µ−λ
k+µ )y

k+

+
1

( k
k+µ )

y
(n− k− 1),

qy2 =
1

( µ
k+µ )

y
+

1

( k+µ−λ
k+µ )y

θ +

+
1

( k
k+µ )

y
(−θ − 1)

qy3 =
1

( µ
k+µ )

y
+

1

( k+µ−λ
k+µ )y

τ +

+
1

( k
k+µ )

y
(−τ − 1).

Let’s now consider the element Sy3 = F3 ◦ Sy of the
Euclidean Jordan algebra A . Since the eigenvalues of F3

and of Sy are positive and since
λmin(F3)λmin(Sy) ≤ λmin(F3 ◦ Sy) then the eigenvalues of
F3 ◦ Sy are positive. Now, let’s consider the second

spectral decomposition F3 ◦ Sy = q1
y3F1 + q2

y3F2 + q3
y3F3.

Then, we have

q1
y3 =

θn+ k−θ

n(θ − τ)

1
(

µ
k+µ

)y +
−n+ k−θ

n(θ − τ)

1
(

k+µ−λ
k+µ

)y k+

+
k−θ

n(θ − τ)

1
(

k
k+µ

)y (n− k− 1).

q2
y3 =

θn+ k−θ

n(θ − τ)

1
(

µ
k+µ

)y +
−n+ k−θ

n(θ − τ)

1
(

k+µ−λ
k+µ

)y θ

+
k−θ

n(θ − τ)

1
(

k
k+µ

)y (−θ − 1).

Supposing that k < n
2

and that λ ≥ µ and by an
asymptotical analysis of the spectrum of F3 ◦ Sy we
conclude the inequalities (15) and (23) of the Theorems
3.1. and 3.2., respectively. From now on when we say let
G be a (n,k;λ ,µ)-strongly regular graph we mean that G

is primitive strongly regular graph.

Theorem 3.1. Let µ ,λ ,k and n be natural numbers such
that n − 1 > k > µ and let G be a (n,k;λ ,µ)-strongly
regular graph such that k < n

2
and λ ≥ µ , and with the

distinct eigenvalues τ,θ and k. Then
(

k

k+ µ −λ

)k

<

(

k

µ

)2θ+1

. (15)

Proof. Since q1
y3 ≥ 0 then we have

θn+ k−θ

n(θ − τ)
· 1
(

µ
k+µ

)y +
−n+ k−θ

n(θ − τ)

1
(

k+µ−λ
k+µ

)y k+

+
k−θ

n(θ − τ)

1
(

k
k+µ

)y (n− k− 1)≥ 0. (16)

Knowing that
θn+k−θ
n(θ−τ)

+ −n+k−θ
n(θ−τ)

k + k−θ
n(θ−τ)

(n− k− 1) = 0 we conclude

that

k−θ

n(θ − τ)
(n− k− 1) = −−n+ k−θ

n(θ − τ)
k−

− θn+ k−θ

n(θ − τ)
. (17)

Now, recurring to the equality (17) to rewriting the
inequality (16) we deduce the inequality (18).

θn+ k−θ

n(θ − τ)
·





1
(

µ
k+µ

)y −
1

(

k
k+µ

)y



+

+
−n+ k−θ

n(θ − τ)





1
(

k+µ−λ
k+µ

)y −
1

(

k
k+µ

)y



k ≥ 0. (18)

After some algebraic manipulation of (18) we
conclude that the equality (19) is verified.

1 ≥ n− k+θ

θn+ k−θ
k

(

µ
k+µ

)y

(

k+µ−λ
k+µ

)y ·

·

(

k
k+µ

)y

−
(

k+µ−λ
k+µ

)y

(

k
k+µ

)y

−
(

µ
k+µ

)y . (19)

Now, since k < n
2

then we deduce that n−k+θ
θn+k−θ > 1

2θ+1
.

After making y tend to zero on the right hand side of
(19) we obtain the inequality (20)

1 > k
2θ+1

ln
(

k
k+µ

)

−ln
(

k+µ−λ
k+µ

)

ln
(

k
k+µ

)

−ln
(

µ
k+µ

) . (20)
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Then, from (20) we establish the inequality (21).

1 >
k

2θ + 1

ln
(

k
k+µ−λ

)

ln( k
µ )

. (21)

Hence, the inequality (22) is verified.

(2θ + 1) ln

(

k

µ

)

> k ln

(

k

k+ µ −λ

)

. (22)

So, from (22) we conclude that
(

k
k+µ−λ

)k

<
(

k
µ

)2θ+1

, this is (15) which is satisfied.

Theorem 3.2. Let λ ,µ ,k and n be natural numbers such
that n − 1 > k > µ and let G be a (n,k;λ ,µ)-strongly
regular graph such that k < n

2
and λ ≥ µ , with the distinct

eigenvalues τ,θ and k. Then

(

k

µ

)2θ+1

<

(

k+ µ −λ

k

)θ

. (23)

Proof. Now, since q2
y3 ≥ 0 then we have the inequality (24).

θn+ k−θ

n(θ − τ)
· 1
(

µ
k+µ

)y +
−n+ k−θ

n(θ − τ)

1
(

k+µ−λ
k+µ

)y θ +

+
k−θ

n(θ − τ)

1
(

k
k+µ

)y (−θ − 1)≥ 0. (24)

Since θn+k−θ
n(θ−τ) + −n+k−θ

n(θ−τ) θ + k−θ
n(θ−τ)(−θ − 1) = 0 we

conclude that (25) is verified.

k−θ

n(θ − τ)
(−θ − 1) = −−n+ k−θ

n(θ − τ)
θ −

− θn+ k−θ

n(θ − τ)
(25)

Proceeding, in the same way that we have followed in the
proof of Theorem 3.1 and using the fact that n−k+θ

θn+k−θ >
1

2θ+1
when k < n

2
we deduce the inequality (26).

ln

(

k

µ

)

>
θ

2θ + 1
ln

(

k

k+ µ −λ

)

. (26)

Therefore we conclude that
(

k
k+µ−λ

)θ
<
(

k
µ

)2θ+1

,

this is (23) which is established.

Now considering the norm of Frobenius

||x||F =

√

3

∑
i=1

λ 2
i for x = λ1F1 + λ2F2 + λ3F3 and,

recurring to the inequality of Cauchy Schwarz for the

elements (A3 − k3

n
Jn) ◦ In and In of the Euclidean Jordan

algebra A we establish the inequalities (27) of Theorem
3.3.

Theorem 3.3. Let λ ,µ ,k and n be natural numbers such
that n− 1 > k > µ and G be a (n,k;λ ,µ)-strongly regular

graph, with the distinct eigenvalues τ,θ and k. Then

(λ > µ) ⇒
(

θ ≥ 3

√

∣

∣

∣

∣

λ k− k3

n

∣

∣

∣

∣

)

,

(λ < µ) ⇒
(

|τ| ≥ 3

√

∣

∣

∣

∣

λ k− k3

n

∣

∣

∣

∣

)

. (27)

Proof. Since G is a (n,k;λ ,µ) strongly regular graph then

its adjacency matrix verifies the inequality (28).

A2 = kIn +λ A+ µ(Jn−A− In). (28)

Therefore, we conclude that

A2 = (k− µ)In +(λ − µ)A+ µJn. (29)

But, writing A3 on the basis B1 = {In,A,Jn −A− In}
of the Euclidean Jordan subalgebra A of the Euclidean
Jordan algebra Sym(n,R) spanned by In and the natural
powers of A we obtain the following calculations:

A3 = (k− µ)A+(λ − µ)A2 + µAJn

= (k− µ)A+(λ − µ)(kIn +λ A+ µ(Jn−A− In))+

+ µkJn

= (k− µ)A+(λ − µ)kIn +(λ − µ)λ A+

+ (λ − µ)µ(Jn −A− In)+ µk(Jn −A− In)+ µkA+

+ µkIn

= ((λ − µ)k+ µk)In +((k− µ)+ (λ − µ)λ + µk)A+

+ ((λ − µ)µ + µk)(Jn −A− In)

= λ kIn +((k− µ)+ (λ − µ)λ + µk)A+

+ ((λ − µ)µ + µk)(Jn −A− In).

Hence, we have established that
A3 = λ kIn + ((k− µ)+ (λ − µ)λ + µk)A +
((λ − µ)µ + µk)(Jn −A− In).

Therefore, we conclude that

A3 − k3

n
Jn = (λ k− k3

n
)In +

+

(

(k− µ)+ (λ − µ)λ + µk− k3

n

)

A+

+

(

(λ − µ)µ + µk− k3

n

)

(Jn −A− In).

So, we have that

(A3 − k3

n
Jn) ◦ In = (λ k − k3

n
)In, has the following

spectral decomposition,

(A3 − k3

n
Jn)In = q1F1 + q2F2 + q3F3. If λ > µ then we

have that all the qis are less or equal θ 3.
Now using the norm of Frobenius and the inner

product trace on the Euclidean Jordan algebra A we
deduce that
∣

∣

∣

∣

trace

((

(A3 − k3

n
Jn)◦ In

)

In

)∣

∣

∣

∣

=

∣

∣

∣

∣

(

(λ k− k3

n
)3

)∣

∣

∣

∣
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and since λ > µ by the Cauchy-Schwarz inequality we
have

∣

∣

∣

∣

(λ k− k3

n
)3

∣

∣

∣

∣

≤
√

3(θ 3)2
√

tr(In).

This is, we have

∣

∣

∣

∣

(λ k− k3

n
)3

∣

∣

∣

∣

≤ θ 3
√

3
√

3.

Hence, we have
∣

∣

∣

∣

λ k− k3

n

∣

∣

∣

∣

≤ θ 3.

And, therefore θ ≥ 3

√

∣

∣

∣
λ k− k3

n

∣

∣

∣
. In the same way, if µ > λ

we deduce that |τ| ≥ 3

√

∣

∣

∣λ k− k3

n

∣

∣

∣.

5 Conclusions

In this paper we have established new admissibility
conditions over the parameters and over the spectra of a
(n,k;λ ,µ)−strongly regular graph in the environment of
Euclidean Jordan algebras in an algebraic asymptotic way
and recurring to the Cauchy-Schwarz inequality. Further
investigations must proceed so that new admissibility
conditions over the parameters of a strongly regular graph
X are established, recurring to the spectral analysis of
other Hadamard series of other elements of the Euclidean
Jordan algebra associated to the adjacency matrix of the
strongly regular graph X .

The theory developed in this paper can be extended to
develop admissibility conditions over the parameters of
symmetric structures like the symmetric associations
schemes.
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