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Abstract: In this study, fractional singularly integrodifferential equations of first order are investigated. This numerical technique
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1 Introduction

Integral equations have several special forms and some of them are the Volterra integral equations. Several application for
them can be found in [1]. Numerous numerical strategies were utilized to take care of these issues. For example, Legendre
wavelet method [2], Legendre wavelet method [3], collocation method [4], difference methods [5], and STWS approach
[6]. Also, they were solved by Bernoulli polynomials [7]. The boundary layer was investigated by [8,9]. More methods
can be found in [10]-[18].

The singularly perturbed problem has several applications in mathematics, physics, and engineers [19]. One of these
applications is the nonlinear problems of plates and shells [20]. Other application appears in control problems [21,22,23,
24,25], More applications can be found in [27]-[38].

In this manuscript we explore the arrangement of the solution of

ξ Dµt +ω(r, t)+

r
∫

0

Ψ(r,ζ )χ(ζ , t)dζ = ρ(r),r ∈ (0,1),0 < µ ≤ 1, (1)

t(0) = t0 (2)

with ξ > 0, t0 is constant, Ψ(r,ζ ) and ρ(r) are differentiable as the discussion required, and Dµ is the Caputo derivative.
Next, we present the reproducing kernel (RKM) method for solving such problems.

The organisation of the manuscript is depicted below. In Section 2 we discuss the reproducing kernel method for first
order initial value problems. Section 3 is devoted to reported analytical results. In Section 4 we deal with the method of
solution. Section 5 presents the numerical examples. Finally, Section 6 presents our conclusions.

2 Reproducing kernel method for first order initial value problems

First, we define the fractional derivatives.
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Definition 1.Let µ > 0. Then, the Caputo derivative is

Dµt(r) =

{

1
Γ (m−µ)

∫ r
0

t(n)(τ)

(r−τ)µ−m+1 dτ, m− 1 < µ < m ∈N,

t(m)(r), m ∈ N

}

.

For more details, see [26] and [37].

Definition 2.Let Q 6= φ . A function Θ : N ×N →C is a RKHS G iff

–Θ(.,r) ∈ G for all r ∈ Q,
–(π(.),Θ(.,r)) = φ(r) where r ∈ E and π ∈ G.

Consider

Dµt +ρ(t) = a, r ∈ [0,1],0 < µ ≤ 1 (3)

such that

t(0) = ς (4)

where a and ς are scalars. Let ρ(t) = η(r)t. Let ω = t − ς . Then

Dµω +ϒ (ω) = a, r ∈ [0,1],0 < µ ≤ 1 (5)

subject to

ω(0) = 0. (6)

Let

H1
2 [0,1] = {ω(z) : ω is absolutely continuous real value function (ACRVF), ω ′ ∈ L2[0,1]}.

The inner product (IP) in H1
2 [0,1] is

(ω(t),χ(t))H1
2 [0,1]

= ω(0)χ(0) +

∫ 1

0
ω ′(t)χ ′(t)dt,

with ‖ω‖H1
2 [0,1]

is

‖ω‖H1
2 [0,1]

=
√

(ω(t),ω(t))H1
2 [0,1]

such that ω ,χ ∈ H1
2 [0,1].

Theorem 1.H1
2 [0,1] is a RKHS, i.e.; ∃ Ω(z, t) ∈ H1

2 [0,1] such that

(ω(t),Ω(z, t))H1
2 [0,1]

= ω(z).

Ω(z, t) is

Ω(z, t) =

{

1+ t, t ≤ z

1+ z , t > z

}

.

Proof: Simple calculations imply that

(ω(t),Ω(z, t))H1
2 [0,1]

= ω(0)Ω(z,0) +
∫ 1

0
ω ′(t)

∂Ω

∂ t
(z, t)dt

= ω(0)Ω(z,0)+ω(1)
∂Ω

∂ t
(z,1)−ω(0)

∂Ω

∂ t
(z,0)−

∫ 1

0
ω(t)

∂ 2Ω

∂ t2
(z, t)dt.

Since Ω(z, t) is RK of H1
2 [0,1],

(ω(t),Ω(z, t))H1
2 [0,1]

= ω(z)

which implies that

−∂ 2Ω

∂ t2
(z, t) = δ (t − z ), (7)
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Ω(z,0)− ∂Ω

∂ t
(z,0) = 0, (8)

and
∂Ω

∂ t
(z,1) = 0. (9)

Thus, Ω(z, t) is

Ω(z, t) =

{

a0(z)+ a1(z)t, t ≤ z

b0(z)+ b1(z)t, t > z

Since ∂ 2Ω
∂ t2 (z, t) =−δ (t − z ), we have

Ω(z,z+ 0)−Ω(z,z+ 0) = 0 , (10)

∂Ω

∂ t
(z,z+ 0)− ∂Ω

∂ t
(z,z+ 0) = −1. (11)

Thus,

a0(z)− a1(z) = 0, (12)

b1(z) = 0,

a0(z)+ a1(z) y = b0(z)+ b1(z) z,

b1(z)− a1(z) = −1,

which implies that

a0(z) = 1, a1(z) = 1,b0(z) = 1+ z, b1(z) = 0.

Let

H2
2 [0,1] = {ρ(z) : ρ is ACRVF,

ρ ,ρ ′,ρ ′′ ∈ L2[0,1],ρ(0) = 0}.
The IP in H2

2 [0,1] is defined as

(ω(t),χ(t))H2
2 [0,1]

= ω(0)χ(0)+ω(1)χ(1)+
∫ 1

0
ω(2)(t)χ (2)(t)dt,

with ‖ω‖H2
2 [0,1]

is

‖ω‖H2
2 [0,1]

=
√

(ω(t),ω(t))H2
2 [0,1]

with ω ,χ ∈ H2
2 [0,1].

Theorem 2.H2
2 [0,1] is a RKHS, i.e.; ∃ Ξ(z, t) ∈ H2

2 [0,1] such that

(ω(t),Ξ(z, t))H2
2 [0,1]

= ω(z).

Ξ(z, t) is

Ξ(z, t) =

{

∑3
i=0 ai(z)t

i, t ≤ z

∑3
i=0 bi(z)t

i, t > z

}

where

a0 = 0, a1 =
1

6
(8z− 3z2 + z3), a2 = 0,a3 =

1

6
(z− 1),

b0 = − z3

6
, b1 =

1

6
(8z+ z3), b2 =− z

2
,b3 = − z

6
.
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Proof: Simple calculations imply that

(ω(t),Ξ(z, t))H2
2 [0,1]

= ω(0)Ξ(z,0)+ω(1)Ξ(z,1)+ω ′(1)Ξtt(z,1)−ω ′(0)Ξtt(z,0)

−ω(1)
∂ 3Ξ

∂ t3
(z,1)+ω(0)

∂ 3Ξ

∂ t3
(z,0)+

∫ 1

0
ω(t)

∂ 4Ξ

∂ t4
(z, t)dt.

ω(t) and Ξ(z, t) ∈ H2
2 [0,1] implies that

ω(0) = 0

and
Ξ(z,0) = 0. (13)

Hence,

(ω(t),Ξ(z, t))H2
2 [0,1]

= ω(1)Ξ(z,1)+ω ′(1)Ξtt(z,1)−ω ′(0)Ξtt(z,0)

−ω(1)
∂ 3Ξ

∂ t3
(z,1)+

∫ 1

0
ω(t)

∂ 4Ξ

∂ t4
(z, t)dt.

Because Ξ(z, t) is a RK of H2
2 [0,1],

(ω(t),Ξ(z, t))H2
2 [0,1]

= ω(z)

then
∂ 4Ξ

∂ t4
(z, t) = δ (t − z ) (14)

and

Ξ(z,1)− ∂ 3Ξ

∂ t3
(z,1) = 0, (15)

Ξtt(z,1) = 0, (16)

Ξtt(z,0) = 0. (17)

Thus, Ξ(z, t) is

Ξ(z, t) =

{

∑3
i=0 ai(z)t

i, t ≤ z

∑3
i=0 bi(z)t

i, t > z

}

.

Since ∂ 3Ξ
∂ t3 (z, t) = δ (z− t),

∂ nΞ

∂ tn
(z,z+ 0) =

∂ nΞ

∂ tn
(z,z− 0), n = 0 : 2. (18)

Integrate ∂ 6Ξ
∂ tz (z, t) = δ (z− t) from z− ξ to z+ ξ w.r.t t and ξ → 0,

∂ 3Ξ

∂ t3
(z,z+ 0)− ∂ 3Ξ

∂ t3
(z,z− 0) = 1. (19)

By 13 and 15-19,

a0(z) = 0,
3

∑
i=0

bi(z)− 6b3(z) = 0,

6b3(z)+ 2b2(z) = 0,a2(z) = 0,

3

∑
i=0

ai(z)z
i =

3

∑
i=0

bi(z)z
i,

3

∑
i=1

iai(z)z
i−1 =

3

∑
i=i

ibi(z)z
i−1,

3

∑
i=2

i(i− 1)ai(z)z
i−2 =

3

∑
i=1

i(i− 1)bi(z)z
i−2,
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3!b3(z)− 3!a3(z) = 1.

Thus,

a0 = 0, a1 =
1

6
(8z− 3z2 + z3), a2 = 0,a3 =

1

6
(z− 1),

b0 = − z3

6
, b1 =

1

6
(8z+ z3), b2 =− z

2
,b3 = − z

6
.

Now, we present how to solve Problem 5-6

σi(z) = Ω(zi,z)

i = 1,2, ... where {zi}∞
i=1 is dense on [0,1]. Thus, Π : H2

2 [0,1]→ H1
2 [0,1] is bounded. Assume

̥i(z) = Π ∗σi(z)

where Π(σi(z)) = Dµ σi(z)+η(z)σi(z) and Π ∗ is the adjoint operator. By GS, we get
{

̥i(z)
}∞

i=1
with

̥i(s) =
i

∑
j=1

µi j̥ j(z) (20)

µi j are parameters of GS. In the following them, we demonstrate the presence of the arrangement of Problem (5)-(6).

Theorem 3.If {zi}∞
i=1 is dense,

ω(z) = a
∞

∑
i=1

i

∑
j=1

µi j̥i(s). (21)

Proof: To begin with, we need to demonstrate that {̥i(z)}∞
i=1 is complete system with ̥i(z) = Π(Ω(z,zi)). Thus,

̥i(z) ∈ H2
2 [0,1] for i = 1,2, .... Thus,

̥i(z) = L∗σi(z) = (Π ∗σi(z),Ω(z, t))H2
2 [0,1]

= (σi(z),Π(Ω(z, t)))H2
2 [0,1]

= Π(Ω(z,zi)).

For ω(z) ∈ H2
2 [0,1], let

(ω(z),̥i(z))H2
2 [0,1]

= 0, i = 1,2, ....

Then

(ω(z),̥i(z))H2
2 [0,1]

= (ω(z),Π ∗σi(z))H2
2 [0,1]

= (Πρ(z),σi(z))H2
2 [0,1]

= Πω(zi) = 0.

Since {zi}∞
i=1 is dense on [0,1], Πω(z) = 0. Since Π−1 exists, ω(z) = 0. Thus, {̥i(z)}∞

i=1 is the complete system of

H2
2 [0,1].
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Second, we prove Equation 21. Thus,

ω(z) =
∞

∑
i=1

(ω(z),̥i(z))H2
2 [0,1]

̥i(z)

=
∞

∑
i=1

i

∑
j=1

µi j(ω(z),Π ∗(Ω(z,z j)))H2
2 [0,1]

̥i(z)

=
∞

∑
i=1

i

∑
j=1

µi j(Πρ(z),Ω(z,z j))H2
2 [0,1]

̥i(z)

=
∞

∑
i=1

i

∑
j=1

µi j(a,Ω(z,z j))H2
2 [0,1]

̥i(z)

= a
∞

∑
i=1

i

∑
j=1

µi j̥i(s).

Thus,

ωN(z) = a
N

∑
i=1

i

∑
j=1

µi j̥i(z). (22)

Theorem 4.
{

dlωN (z)

dzl

}∞

N=1
converges uniformly to

dlω(z)

dzl for l = 0,1.

Proof: For l = 0. For any s ∈ [0,1],

‖ω(z)−ωN(z)‖2
H2

2 [0,1]
= (ω(z)−ωN(z),ω(z)−ωN(z))H2

2 [0,1]

=
∞

∑
i=N+1

((ω(z),̥i(z))H2
2 [0,1]

̥i(z),(ω(z),̥i(z))H2
2 [0,1]

̥i(z))H2
2 [0,1]

=
∞

∑
i=N+1

(ω(z),̥i(z))
2
H2

2 [0,1]
.

Thus,

Sup
z∈[0,1]

‖ω(z)−ωN(z)‖2
H2

2 [0,1]
= Sup

z∈[0,1]

∞

∑
i=N+1

(ω(z),̥i(z))
2
H2

2 [0,1]
.

By Theorem (6), ∑∞
i=1(ω(z),̥i(z))H2

2 [0,1]
̥i(z) converges uniformly to ω(z). Hence,

Lim
N→∞

Sup
z∈[0,1]

‖ω(z)−ωN(z)‖H2
2 [0,1]

= 0

which implies that {ωN(z)}∞
N=1 converges uniformly to ω(z).

Since
dlΩ(z,t)

dzl is bounded,
∥

∥

∥

∥

dlΩ(z, t)

dzl

∥

∥

∥

∥

H2
2 [0,1]

≤ γl , l = 1.

For z ∈ [0,1],

∣

∣

∣
ω(l)(z)−ω

(l)
N (z)

∣

∣

∣
=

∣

∣

∣

∣

(ω(z)−ωN(z),
dlΩ(z, t)

dzl
)H2

2 [0,1]

∣

∣

∣

∣

≤ ‖ω(z)−ωN(z)‖H2
2 [0,1]

∥

∥

∥

∥

dlΩ(z, t)

dzl

∥

∥

∥

∥

H2
2 [0,1]

≤ γl ‖ω(z)−ωN(z)‖H2
2 [0,1]

≤ γl Sup
z∈[0,1]

‖ω(z)−ωN(z)‖H2
2 [0,1]

.

Hence,
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Sup
z∈[0,1]

∥

∥

∥
ω(l)(z)−ω

(l)
N (z)

∥

∥

∥

H2
2 [0,1]

≤ γl Sup
z∈[0,1]

‖ω(z)−ωN(z)‖H2
2 [0,1]

which implies that

Lim
N→∞

Sup
z∈[0,1]

∥

∥

∥
ω(l)(z)−ω

(l)
N (z)

∥

∥

∥

H2
2 [0,1]

= 0.

Therefore,
{

dlωN (z)

dzl

}∞

N=1
converges uniformly to

dl ω(z)

dzl for l = 1.

Let Π(t(r)) = Dµt(r)− a and N(t(r)) = ρ(t). Let

∆(t,ν) = Π(t(r))+νN(t(r)) = 0 (23)

with ν ∈ [0,1]. If ν = 0,
Dµt(r)− a = 0

and t(r) = a rµ

Γ (1+µ) . If ν = 1, Equation 3 is produced. Let

t = t0 +νt1 +ν2t2 +ν3t3 + .... (24)

From Equation 24 and 23, we get

ν0 : Dµt0(r) = a , t0(0) = ς ,

ν1 : Dµt1(r) =−N(
∞

∑
i=0

ν iti(r)) |ν=0 , t1(0) = 0,

ν2 : Dµt2(r) =−dN(∑∞
i=0 ν iti(r))

dν
|ν=0 , t2(0)0,

ν3 : Dµt3(r) =−d2N(∑∞
i=0 ν iti(r))

dν2
|ν=0, t3(0) = 0,

...

νk : Dµtk(r) =−dk−1N(∑∞
i=0 ν iti(r))

dνk−1
|ν=0, tk(0) = 0.

By RKM,

tk(r) =
∞

∑
i=1

i

∑
j=1

νi jϒk(r j)̥i(z) ,k = 0,1, ... (25)

where

ϒ0(r) = a

ϒ1(r) = −N(
∞

∑
i=0

ν iti(r)) |ν=0

...

ϒk(r) = −dk−1N(∑∞
i=0ϒ iti(r))

dνk−1
|ν=0,k > 1.

By 25,

t(r) =
∞

∑
k=0

tk(r) =
∞

∑
k=0

(

∞

∑
i=1

i

∑
j=1

µi jϒk(r j)̥i(r)

)

. (26)

Thus,

tn,m(r) =
m

∑
k=0

(

n

∑
i=1

i

∑
j=1

µi jϒk(r j)̥i(r)

)

. (27)
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3 Analytical results

In this part, we prove some of our theoretical results. Define

∆ t : ξ Dµt +ω(r, t)+

r
∫

0

Ψ(r,ξ )χ(ξ , t)dξ = ρ(r),r ∈ (0,1),0 < µ ≤ 1, (28)

t(0) = t0 (29)

−ϑ2 ≥ ω(r, t)≥−ϑ1, (30)

0 ≥ χ(r, t)≥−ϑ3, (31)

Ψ (r,ξ )≥ ϑ4 ≥ 0, (32)

for all r ∈ [0,1], where ϑ1,ϑ2,ϑ3, and ϑ4 are positive with t ∈C1(0,1)∪C[0,1].

Theorem 5.Let Λk≥ 0 and k(0)≥ 0. then, k(r) ≥ 0 in [0,1].

Proof.Let k(r) < 0 with r ∈ [0,1]. Thus, k(r) attend its minimum at r0 with r0 ∈ (0,1]. Thus,

Λk(r0) = ξ Dµk(r0)+ω(r0,k)+

x0
∫

0

K(x0, t)v(t,φ)dt

≤ ξ
r
−µ
0

Γ (1− µ)
(k(r0)−k(0))+ω(r0,k)+

r0
∫

0

Ψ(r0, t)χ(t,k)dt

≤ 0.

Thus, k(r) ≥ 0 in [0,1].

Theorem 6.Let ω = ω(r) and χ = χ(r). If t(r) is differentiable function as the discussion required,

‖t‖= 1

ε
max{|t(r)| : r ∈ [0,1]} ≤ 1

ξ
max

{

|t0| , max
r∈[0,1]

|Λ t|
}

.

Proof.Let

ϑ0 = max

{

|t0| , max
r∈[0,1]

|∆ t|
}

= max

{

|t0| , max
r∈[0,1]

|ρ(r)|
}

with

z±(r) =
ϑ0

ξ
(1+

rµ

Γ (1+ µ)
)± t(r),r ∈ [0,1].

Hence,

∆z±(r) = ξ Dµ

(

ϑ0

ξ
(1+

rµ

Γ (1+ µ)
)± t(r)

)

+ω(r)+

∫ r

0
Ψ (r, t)χ(t)dt

= ξ
ϑ0

ξ
±∆ t(r) = ϑ0 ±∆ t(r)≥ 0

withr ∈ [0,1]. Furthermore,

z±(0) =
ϑ0

ξ
± t(0)> ϑ0 ± t0 ≥ 0

since 0 < ξ << 1. By Theorem 3,

‖t‖ ≤ max
r∈[0,1]

{

ϑ0

ξ
(1− rµ

Γ (1+ µ)
)

}

≤ ϑ0

ξ
=

1

ξ
max

{

|t0| , max
r∈[0,1]

|∆ t|
}

.
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Theorem 7.Let ω = ω(r) with χ = χ(r). If t1 and t2 satisfy Eqs. 1-2, t1(r) = t2(r) with r ∈ [0,1].

Proof.Assume χ(r) = t1(r)− t2(r). Thus,

∆φ = 0, φ(0) = 0,

∆(−φ) = 0, −φ(0) = 0.

By Theorem 9, χ(r)≥ 0 with χ(r)≤ 0 for r ∈ [0,1]. Thus, t1(r) = t2(r) for all r ∈ [0,1].

4 Method of solution

Let

ξ Dµt +ω(r, t)+

∫ r

0
Ψ(r,z)χ(z, t)dz = ρ(r),r ∈ (0,1),0 < µ ≤ 1,

such that

t(0) = t0

with ξ > 0. Thus,
Step 1: Let ξ = 0, then

ω(r, t1)+

r
∫

0

Ψ(r,z)v(z, t1)dz = ρ(r), r ∈ [0,1]. (33)

Step 2: Choose r = ξ
1
µ z

1
µ to get

Dµt(r) =
1

Γ (1− µ)

∫ r

0
(r− z)−α t ′(z)dz

=
1

Γ (1− µ)

∫ ξ
1
µ z

1
µ

0
(ξ

1
µ z

1
µ − z)−µt ′(z)dz

=
1

ξΓ (1− µ)

∫ ξ
1
µ s

1
µ

0
(z

1
µ − z

ξ
1
µ

)−µt ′(z)dz.

Assume ρ = z

ξ
1
µ
. Then, dz = ξ

1
µ dρ and

dt

dz
=

dt

dρ

dρ

dz
=

1

ξ
1
µ

dt

dρ
.

Thus,

Dµt(r) =
1

ξΓ (1− µ)

∫ z
1
µ

0
(z

1
µ −ρ)−µ 1

ξ
1
µ

dt

dρ
ξ

1
µ dρ

=
1

ξΓ (1− µ)

∫ z
1
µ

0
(z

1
µ −ρ)−µ dt

dρ
dρ

=
1

ξ
Dµt(z

1
µ ). (34)

Hence, Eq.1 becomes

Dµt +ω(ξ
1
µ zµ , t)+

ξ
1
µ zµ
∫

0

Ψ(ξ
1
µ zµz,σ)χ(σ , t)dσ = ρ(ξ

1
µ zµz). (35)
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Putting ξ = 0 in Eq. 35 to get

Dµt +ω(0, t) = ρ(0). (36)

The solution has the form t1(0)+ t2(r). Substitute

t(r) = t1(0)+ t2(r)

in Eq. 36, we obtain

Dµt2(z
1
µ )+ω(0, t1(0)+ t2(z

1
µ )) = ρ(0). (37)

Thus,

t(r) = t1(r)+ t2(
r

1
µ

ξ
), (38)

with
t0 = t(0) = t1(0)+ t2(0)

or
t2(0) = t0 − t1(0). (39)

Using RKM, we get the solution.

5 Numerical examples

Tow examples will be presented in this part.
Example 1: Consider

ξ D
1
2 t(r)+ t(r)+

r
∫

0

t(σ)dσ = ρ(r), 0 ≤ r ≤ 1, 0 < ξ << 1, (40)

with
t(0) = 2 (41)

such that

ρ(r) =
2√
π

r1/2 − r1/2E1,3/2(
−r

ε
)+

r2

2
+ 2r+(2− ξ )e−r/ξ +(1+ ξ ).

When ξ → 0,

t1(r)+

r
∫

0

t1(σ)dσ =
r2

2
+ 2r+ 1 (42)

since lim
ξ→0

E1,3/2(
−r
ξ
) = 0. Thus,

t ′1(r)+ t1(r) = r+ 2.

Hence,

t1(r) = 1+ r+ ae−r. (43)

Substitute Eq. 43 into Eq. 42 to get

1+ r+ ae−r+
r2

2
+ r− ae−r + a =

r2

2
+ 2r+ 1.

Thus, a = 0 and
t1(r) = r+ 1.

Let r = ξ 2z2, we get

D1/2t2(z
2)+ 1+ t2(z

2) = 1
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or
D1/2t2(z

2)+ t2(z
2) = 0

subject to
t2(0) = t0 − t1(0) = 1.

Using the RKM, we get

t2(z
µ) = 1− z

1
+

z2

2!
− z3

3!
+ ...

=
∞

∑
k=0

(−1)kzk

k!
= e−z.

Thus,

t(r) = t1(r)+ t2(

√
r

ξ
)

= r+ 1+ e
−

√
r

ξ .

Figures 1-3 show our solution to ξ = 0.1, 0.01, , 0.001.

0.2 0.4 0.6 0.8 1.0
x

1.4

1.6

1.8

2.0

yHxL

Figure 1. Proposed solution to ξ = 0.1.

Example 2: Let

ξ D
1
4 t(r)− 1

2
t2 +

r
∫

0

t(σ)dσ = 0, 0 ≤ r ≤ 1, 0 < ξ << 1, (44)

subject to
t(0) = 1. (45)

When ξ → 0,

−1

2
t2
1 (r)+

r
∫

0

t1(σ)dσ = 0. (46)
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0.2 0.4 0.6 0.8 1.0
x

1.2

1.4

1.6

1.8

2.0

yHxL

Figure 2. The proposed solution to ξ = 0.01.

0.2 0.4 0.6 0.8 1.0
x

1.2

1.4

1.6

1.8

2.0

yHxL

Figure 3. The proposed solution to ξ = 0.001.

Thus,
−t ′1(r)t1(r)+ t1(r) = 0.

Hence,
t1(r) = a+ r. (47)

Substitute Eq. 47 into Eq. 46 to get

−1

2
(a+ r)2 +

1

2
(a+ r)2 − 1

2
a2 = 0
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0.2 0.4 0.6 0.8 1.0
x

-4

-2

0

2

yHxL

Figure 4. The proposed solution to ξ = 0.1.

0.2 0.4 0.6 0.8 1.0
x

-1

0

1

2

3

yHxL

Figure 5. The proposed solution to ξ = 0.01.

which implies that a = 0 and

t1(r) = r.

Using the change of variable r = ξ 4z4, we get

D1/4t2(z
4)− 1

2
t2
2 (z

4) = 0
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0.2 0.4 0.6 0.8 1.0
x

-1

0

1

2

3

yHxL

Figure 6. The proposed solution to ξ = 0.001.

subject to
t2(0) = t0 − t1(0) = 1.

Using the RKM, we get

t2(z
4) = 1+

z

2
+

z2

4
+

z3

8
+ ...

=
∞

∑
k=0

zk

2k
=

1

1− r
2

=
2

2− r
.

Thus,

t(r) = t1(r)+ t2(
4
√

r

ξ
)

= r+
2ξ

2ξ − 4
√

r
.

Figures 4-6 show the proposed solutions to ξ = 0.1, 0.01, and 0.001.

6 Conclusions

In this article, we study singularly perturbed problem of first order with fractional derivative. We present a numerical
scheme based on RKM. We prove several theorems related to this topic. Two examples are presented. The outcomes
demonstrate that the proposed technique is promising and give precise outcomes. Six figures are presented to support this
conclusion.
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