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Abstract: In this paper, we consider classes of linear and nonlinear fractional differential equations involving the Caputo-Fabrizio

fractional derivative of non-singular kernel. We transform the fractional problems to equivalent initial value problems with integer

derivatives. We illustrate the obtained results by presenting two mathematical models of fractional differential equations and their

equivalent initial value problems. We show that it is impossible to convert all types of linear fractional differential equations to the

integer ones.The obtained results will lead to better understanding of fractional models, as the solutions of their equivalent models can

be studied analytically and numerically using well-known techniques of differential equations.
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1 Introduction

The Caputo-Fabrizio fractional derivative has added a new dimension in the study of fractional differential equations. The
beauty of the new derivative is that, it has a nonsingular kernel [1]. The Caputo-Fabrizio derivative is designed with the
convolution of an ordinary derivative and an exponential function but, it has the same supplementary motivating properties
of heterogeneous and configuration [2,3,4] with different scales as it is in the Caputo and Riemann-Liouville fractional
derivatives. Many results about the new Caputo-Fabrizio fractional derivative have been developed in the last two years.
For instance; the corresponding fractional integral as well as the solutions of several linear fractional differential equations
were discussed in [5]. Maximum principle theory of boundary-value problems, which plays an important role of solving
many fractional diffusion equations, was discussed in [6,7,8]. The existence and uniqueness results for fractional boundary
value problems were studied by many authors using different techniques [2,6,9,10]. A reduction of order formula and a
fundamental set of solutions results were established in [11] for a class of linear fractional differential equations. Also,
numerical techniques of Caputo-Fabrizio fractional models were examined by many authors. For instance; the numerical
solutions for groundwater pollution [12], for the model of RLC circuit [13], for the model of wave movement on the surface
of shallow water [14], and for the heat transfer model [15,16], were discussed. Caputo-Fabrizio fractional derivative has
been implemented in many areas of mathematical modeling to model real world problems. For instance, Mass-spring-
damper motion model [4,17], non-linear Fisher’s-diffusion equation [7], Elasticity model [18], Liénard model for fluid
transmission line [19] and the Korteweg-de Vries-Burgers functional differential equation [14,20].
The aim of this paper is, to convert Caputo-Fabrizio fractional differential equations to equivalent initial value problems
with integer derivatives, without losing the non-locality of the real world phenomena.

The paper is organized as follows. In Section 2, we discuss a class of fractional differential equations of variable
coefficients of order 0 < α < 1, and its equivalent initial value problem of order 2. In section 3, we extend the results for a
class of higher order fractional differential equations with variable coefficients. In Section 4, we present two applications
of the new results. Finally, we close up with some concluding remarks in section 5.
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2 Fractional differential equations with variable coefficients

In this section, we show that a class of linear and nonlinear fractional differential equations with variable coefficients can
be transformed to initial value problems with integer derivatives. We start with the definition and main properties of the
Caputo-Fabrizio fractional derivative.

Definition 1.[1] Let f ∈ H1(a,b), a < b, a ∈ (−∞, t), 0 < α < 1, the Caputo-Fabrizio fractional derivative in the Caputo

sense is defined by

(CFCDα
a f )(t) =

B(α)

1−α

∫ t

a
f ′(s)e−

α
1−α (t−s)ds, (1)

where B(α)> 0 is a normalization function satisfying B(0) = B(1) = 1.

The corresponding fractional integral is defined by, see [5]

(CFCIα
a f )(t) =

1−α

B(α)
f (t)+

α

B(α)

∫ t

a
f (s)ds, 0 < α < 1. (2)

The relation between the Caputo-Fabrizio fractional derivative and the corresponding integral is given by

(CFCIα
a )(

CFCDα
a ) f (t) = f (t)− f (a). (3)

For more about the Caputo-Fabrizio fractional derivatives we refer the readers to [1,5,9,21].

Lemma 1.Let z ∈ H1(a,b) and consider the linear fractional differential equation

k0(t)(
CFCDα

a z)(t)+ k1(t)z
′
(t)+ k2(t)z(t) = f (t), 0 < α < 1, (4)

where k0,k1,k2, f ∈ C[a,b], and CFCDα
a is the Caputo-Fabrizio fractional derivative in the Caputo sense. This fractional

differential equation is equivalent to the initial value problem

c2(t)v
′′(t)+ c1(t)v

′(t)+ c0(t)v(t) = h(t), (5)

v(a) = 0,v′(a) = eµα az(a), (6)

where v(t) =
∫ t

a eµα sz(s)ds, µα = α
1−α , and

h(t) = (1−α)eµαt f (t)+ k0(t)B(α)v′(a), (7)

c2(t) = (1−α)k1(t), (8)

c1(t) = k0(t)B(α)+ (1−α)(k2(t)− µαk1(t)), (9)

c0(t) = −µαk0(t)B(α). (10)

Proof.We have

(CFCDα
a z)(t) =

B(α)

1−α

∫ t

a
z′(s)e−

α
1−α (t−s)ds =

B(α)

1−α
e−µα t

∫ t

a
eµα sz′(s)ds. (11)

Integrating by parts yields

(CFCDα
a z)(t) =

B(α)

1−α
[z(t)− e−µα(t−a)z(a)− µαe−µα t

∫ t

a
eµα sz(s)ds]. (12)

We have v(t) =
∫ t

a eµα sz(s)ds, and since z ∈ H1(a,b), then z is continuous on (a,b). Applying the Fundamental Theorem
of Calculus, it holds that v′(t) = eµα tz(t), a < t < b. We have

z(t) = e−µα tv′(t), z′(t) = e−µα t(−µα v
′
(t)+ v

′′
(t)), v(a) = 0,and v′(a) = eµα az(a).

Therefore,

(CFCDα
a z)(t) =

B(α)

1−α
[e−µα tv′(t)− e−µαtv′(a)− µαe−µα tv(t)],

= e−µα t B(α)

1−α
[v′(t)− v′(a)− µαv(t)]. (13)
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By substituting in equation (4) we get

e−µα t

(

k0(t)
B(α)

1−α
[v′(t)− v′(a)− µαv(t)]+ k1(t)[−µα v

′
(t)+ v

′′
(t)]+ k2(t)v

′(t)

)

= f (t).

Multiplying the above equation by (1−α)eµαt and arranging the terms yields

(1−α)k1(t)v
′′
(t)+

(

k0(t)B(α)+ (1−α)(k2(t)− µαk1(t))

)

v
′
(t)− µαk0(t)B(α)v(t)

= (1−α)eµαt f (t)+ k0(t)B(α)v′(a),

which proves the result.

Remark.In equation (4) if the coefficients k0,k1 and k2 are all constants, then the fractional differential equation reduces
to the second order initial value problem with constant coefficients

c2v′′+ c1v′(t)+ c0v(t) = h(t), v(a) = 0,v′(a) = eµα az(a).

This special case has been discussed in [17].

Remark.In equation (4) if we choose k1(t) = 0, then the fractional differential equation reduces to the first order initial
value problem

[(1−α)k2(t)+ k0(t)B(α)]v′(t)− µαB(α)k0(t)v(t) = eµα t(1−α) f (t)+ k0(t)B(α)v′(a),

v(a) = 0.

Remark.We remark here that, since v(t) =
∫ t

a eµsz(s)ds, and z ∈ H1(a,b), then v ∈ H2(a,b).

Remark.Using equation (12) one can define the Caputo-Fabrizio fractional derivative for a more wider space, such as
L1(a,b), see [18] for more details. However, the restriction in the space we have considered, which is H1(a,b), comes
from the appearance of the term z′ in Eq. (4). This constrain doesn’t allow us to consider a more wider space.

Following analogous steps in the proof of Lemma 1 we have

Lemma 2.Let z ∈ H1(a,b) and consider the nonlinear fractional differential equation

k0(t)(
CFCDα

a z)(t)+ k1(t)z
′
(t)+ k2(t)z(t) = f (t,z(t)), 0 < α < 1, (14)

where k0,k1,k2, f ∈ C[a,b], and CFCDα
a is the Caputo-Fabrizio fractional derivative in the Caputo sense. This fractional

differential equation is equivalent to the initial value problem

c2(t)v
′′(t)+ c1(t)v

′(t)+ c0(t)v(t) = (1−α)eµαt f (t,e−µα tv′(t))+ k0(t)B(α)v′(a),

v(a) = 0,v′(a) = eµα az(a),

where v(t),µα ,c2(t),c1(t),c0(t) are as defined in Lemma 1.

3 Higher order fractional differential equations

We extend the results obtained in Section 2 to a class of higher order fractional differential equations. We start with the
following result.

Lemma 3.Let f ∈ H2(a,b) and 0 < α < 1, then it holds that,

(CFCDα+1
a z)(t) =

B(α)

1−α
[z

′
(t)− e−µα(t−a)z′(a)]− µα(

CFCDα
a z)(t), µα =

α

1−α
. (15)

Proof.We have

(CFCDα+1
a z)(t) =

B(α)

1−α

∫ t

a
z′′(s)e−

α
1−α (t−s)ds,

=
B(α)

1−α
e−µα t

∫ t

a
eµα sz′′(s)ds, µα =

α

1−α
.
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Integration by parts yields

(CFCDα+1
a z)(t) =

B(α)

1−α
e−µα t [eµα sz

′
(s)|ta − µα

∫ t

a
eµα sz

′
(s)ds],

=
B(α)

1−α
[z

′
(t)− e−µα(t−a)z′(a)]− µα(

CFCDα
a z)(t),

which proves the result.

Lemma 4.Let z ∈ H2(a,b) and consider the linear fractional differential equation

k0(t)(
CFCDα+1

a z)(t)+ k1(t)(
CFCDα

a z)(t)+ k2(t)z(t) = f (t), 0 < α < 1, (16)

where k0,k1,k2, f ∈ C[a,b], and CFCDα
a is the Caputo-Fabrizio fractional derivative in the Caputo sense. This fractional

differential equation is equivalent to the initial value problem

d2(t)v
′′(t)+ d1(t)v

′(t)+ d0(t)v(t) = g(t), (17)

v(a) = 0,v′(a) = eµα az(a),

where v(t) =
∫ t

a eµα sz(s)ds, µα = α
1−α , and

g(t) =
(1−α)

B(α)
eµα t f (t)+B(α)[k0(t)v

′′(a)− (2µαk0(t)− k1(t))v
′(a)], (18)

d2(t) = k0(t), (19)

d1(t) = k1 − 2µαk0 + k2(1−α), (20)

d0(t) = µα(µα k0 − k1). (21)

Proof.We have v′(t) = eµα tz(t), z(t) = e−µα tv′(t), z′(t) = e−µα t(v′′(t)− µαv′(t)), and from Eq. (13) it holds that

(CFCDα
a z)(t) =

e−µα tB(α)

1−α
[v′(t)− v′(a)− µαv(t)]. (22)

Substituting in Eq. (15) yields

(CFCDα+1
0 z)(t) =

e−µα tB(α)

1−α
[v

′′
(t)− 2µαv

′
(t)+ µ2

αv(t)− v′′(a)+ 2µαv′(a)]. (23)

By substituting the above results in Eq. (16) we have

k0(t)
e−µα tB(α)

1−α
[v

′′
(t)− 2µαv

′
(t)+ µ2

αv(t)− v′′(a) + 2µαv′(a)]+ k1(t)
e−µα tB(α)

1−α
[v′(t)− v′(a)− µαv(t)]

+k2(t)e
−µα tv′(t) = f (t).

The last equation yields

k0(t)v
′′
(t)+ [k1 − 2µαk0 + k2(1−α)]v

′
(t)+ [k0µ2

α − k1µα ]v(t)

=
(1−α)

B(α)
eµα t f (t)+B(α)[k0(t)v

′′(a)− (2µαk0(t)− k1(t))v
′(a)],

which proves the result.

Lemma 5.Let z ∈ Hn+1(a,b) and 0 < α < 1, then it holds that

(CFCDα+n
a z)(t) =

B(α)

1−α

(

n−1

∑
k=0

(−1)kµk
α z(n−k)(t)− e−µα(t−a)

n−1

∑
k=0

(−1)kµk
α z(n−k)(a)

)

+ (−1)nµn
α(

CFCDα
a )z(t), where n ≥ 1, µα =

α

1−α
. (24)
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Proof.We apply mathematical induction to prove the Lemma. For n = 1 Eq. (24) yields

(CFCDα+1
a z)(t) =

B(α)

1−α

(

z
′
(t)− e−µα(t−a)z′(a)

)

− µα(
CFCDα

a z)(t). (25)

This result is true by virtue of Lemma 3. Assume (24) holds true for k = n, and want to show that it is true for k = n+ 1,
i.e;

(CFCD
α+(n+1)
a z)(t) =

B(α)

1−α

(

n

∑
k=0

(−1)kµk
α z(n+1−k)(t)− e−µα(t−a)

n

∑
k=0

(−1)kµk
α z(n+1−k)(a)

)

+ (−1)n+1µn+1
α (CFCDα

a )z(t). (26)

Now integrating by parts of (CFCD
α+(n+1)
a z)(t) yields

(CFCD
α+(n+1)
a z)(t) =

B(α)

1−α
e−µα t

∫ t

a
eµα sz(n+2)(s)ds,

=
B(α)

1−α
e−µα t

(

eµα sz(n+1)(s)|ta − µα

∫ t

a
eµα sz(n+1)(s)ds

)

,

=
B(α)

1−α
e−µα t

(

eµα tz(n+1)(t)− eµαaz(n+1)(a)

)

− µα(
CFCDα+n

a z)(t),

=
B(α)

1−α

(

z(n+1)(t)− z(n+1)(a)
)

− µα(
CFCDα+n

a z)(t).

Applying the induction hypothesis we have

(CFCD
α+(n+1)
a z)(t) =

B(α)

1−α

(

z(n+1)(t)− z(n+1)(a)

)

− µα

(

B(α)

1−α
(

n−1

∑
k=0

(−1)kµk
α z(n−k)(t)

−e−µα (t−a)
n−1

∑
k=0

(−1)kµk
α z(n−k)(a))+ (−1)nµn

α(
CFCDα

a )z(t)

)

,

=
B(α)

1−α

(

z(n+1)(t)− µα

n−1

∑
k=0

(−1)kµk
αz(n−k)(t)− z(n+1)(a)

+µαe−µα (t−a)
n−1

∑
k=0

(−1)kµk
α z(n−k)(a)

)

− (−1)nµn
α(

CFCDα
a )z(t).

(27)

We have

z(n+1)(t)− µα

n−1

∑
k=0

(−1)kµk
α z(n−k)(t) = z(n+1)(t)+

n−1

∑
k=0

(−1)k+1µk+1
α z(n−k)(t)

= z(n+1)(t)+
n

∑
k=1

(−1)kµk
α z(n+1−k)(t)

=
n

∑
k=0

(−1)kµk
α z(n+1−k)(t),

and

z(n+1)(a)− µα

n−1

∑
k=0

(−1)kµk
α z(n−k)(a) =

n

∑
k=0

(−1)kµk
α z(n+1−k)(a).

Thus,

(CFCD
α+(n+1)
a z)(t) =

B(α)

1−α

(

n

∑
k=0

(−1)kµk
α z(n+1−k)(t)− e−µα(t−a)

n

∑
k=0

(−1)kµk
α z(n+1−k)(a)

)

+(−1)n+1µn+1
α (CFCDα

a )z(t),
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which proves the result for k = n+ 1.

Lemma 6.Let z ∈ Hn(a,b) and 0 < α < 1, and consider the linear fractional differential equation

c0(t)(
CFCDα

a z)(t)+ c1(t)z
′(t)+ c2(t)z

′′(t)+ · · ·+ cnz(n)(t)+ cn+1(t)z(t) = g(t), (28)

where c0,c1, · · · ,cn+1,g ∈ C[a,b], and CFCDα
a is the Caputo-Fabrizio fractional derivative in the Caputo sense. This

fractional differential equation is equivalent to a linear initial value problem of order (n+ 1).

Proof.We have

(CFCDα
a z)(t) =

B(α)

1−α
e−µα t

∫ t

a
z′(s)eµα sds, where 0 < α < 1, µα =

α

1−α

=
B(α)

1−α
[z(t)− e−µαtz(a)− µαe−µα t

∫ t

a
eµα sz(s)ds]

Let v(t) =
∫ t

a eµα sz(s)ds, then, v′(t) = eµα tz(t), and z(t) = e−µα tv′(t). Substituting in Eq. (28) yields

c0(t)
B(α)

1−α
e−µα t [v′(t)− e−µαav′(a)− v(t)]+

n

∑
k=1

ck(t)(e
−µα tv′(t))(k)+ cn+1(t)e

−µα tv′(t) = g(t).

Since
(

e−µα tv′(t)

)(k)

=
k

∑
j=0

(

k

j

)

(e−µα t)( j)(v′)(k− j)(t)

= e−µα t
k

∑
j=0

(

k

j

)

(−µα)
( j)(v)(k− j+1)(t),

we have

c0(t)
B(α)

1−α
[e−µα tv′(t)− e−µα(t+a)v′(a)− µαe−µα tv(t)] +

n

∑
k=1

ck(t)e
−µα t

k

∑
j=0

(

k

j

)

(−µα)
( j)(v)(k− j+1)(t)

+ cn+1(t)e
−µα tv′(t) = g(t),

or,

c0(t)
B(α)

1−α
[v′(t)− µαv(t)]+

n

∑
k=1

ck(t)
k

∑
j=0

(

k

j

)

(−µα)
( j)(v)(k− j+1)(t)+ cn+1(t)v

′(t)

= g(t)eµα t + c0(t)
B(α)

1−α
e−µα av′(a),

which is an ordinary differential equation of order (n + 1) of the function v(t). The initial conditions

v(a),v′(a), · · · ,v(n−1)(a), follow from v(t) =
∫ t

a eµα sz(s)ds.

Lemma 7.Let z ∈ Hn(a,b) and 0 < α < 1, and consider the linear fractional differential equation

k0(
CFCDα+n

a z)(t)+ k1(
CFCDα+n−1

a z)(t)+ · · ·+ kn(
CFCDα

a z)(t)+ kn+1z(t) = h(t),

(29)

where k0,k1, · · · ,kn+1,h ∈ C[a,b], and CFCDα
a is the Caputo-Fabrizio fractional derivative in the Caputo sense. This

fractional differential equation is equivalent to a linear initial value problem of order (n+ 1).

Proof.We show that Eq. (29) can be transformed to have the same form as in Eq. (28), and hence the result follows from
Lemma 6. From Eq. (24) we have

(CFCDα+n
a z)(t) =

B(α)

1−α

n−1

∑
m=0

(−1)mµm
α [z

(n−m)(t)− e−µα(t−a)z(n−m)(a)]+ (−1)nµn
α(

CFCDα
a z)(t)

= (−1)nµn
α(

CFCDα
a z)(t)+

n−1

∑
m=0

Cn
m,
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where

Cn
m =

B(α)

1−α
(−1)mµm

α [z
(n−m)(t)− e−µα(t−a)z(n−m)(a)]. (30)

Thus,

h(t) = k0(
CFCDα+n

a z)(t)+ k1(
CFCDα+n−1

a z)(t)+ k2(
CFCDα+n−2

a z)(t)+ · · ·+ kn(
CFCDα

a z)(t)

+kn+1z(t)

=
n

∑
j=0

k j(
CFCDα+n− j

a z)(t)+ kn+1z(t)

=
n

∑
j=0

k j

(

(−1)n− jµ
n− j
α (CFCDα

a z)(t)+
n− j−1

∑
m=0

Cn− j
m

)

+ kn+1z(t)

=
n

∑
j=0

k j(−1)n− jµ
n− j
α (CFCDα

a z)(t)+
n

∑
j=0

n− j−1

∑
m=0

k jC
n− j
m + kn+1z(t)

= (CFCDα
a z)(t)

n

∑
j=0

k j(−1)n− jµ
n− j
α + kn+1z(t)

+
n

∑
j=0

n− j−1

∑
m=0

k j

(

B(α)

1−α
(−1)mµm

α [z(n− j−m)(t)− e−µα(t−a)z(n− j−m)(a)]

)

= (CFCDα
a z)(t)

n

∑
j=0

k j(−1)n− jµ
n− j
α + kn+1z(t)

+
B(α)

1−α

n

∑
j=0

n− j−1

∑
m=0

k j(−1)mµm
α z(n− j−m)(t)− e−µα(t−a) B(α)

1−α

n

∑
j=0

n− j−1

∑
m=0

k j(−1)mµm
α z(n− j−m)(a).

The last equation yields

h(t)+ e−µα(t−a) B(α)

1−α

n

∑
j=0

n− j−1

∑
m=0

k j(−1)mµm
α z(n− j−m)(a)

= (CFCDα
a z)(t)

n

∑
j=0

k j(−1)n− jµ
n− j
α +

B(α)

1−α

n

∑
j=0

n− j−1

∑
m=0

k j(−1)mµm
α z(n− j−m)(t)+ kn+1z(t),

which proves the result.

Following analogous steps in the proof of Lemma 7 we have

Lemma 8.Let z ∈ Hn(a,b) and 0 < α < 1, and consider the nonlinear fractional differential equation

c0(t)(
CFCDα

a z)(t)+ c1(t)z
′(t)+ c2(t)z

′′(t)+ · · ·+ cnz(n)(t)+ cn+1(t)z(t) = g(t,z(t)), (31)

where c0,c1, · · · ,cn+1,g ∈ C[a,b], and CFCDα
a is the Caputo-Fabrizio fractional derivative in the Caputo sense. This

nonlinear fractional differential equation is equivalent to a nonlinear initial value problem of order (n+ 1).

4 Applications

We consider two applications of fractional differential equations with Caputo-Fabrizio fractional derivative.

4.1 Fractional oscillatory system

In [22], the authors modified the classical oscillatory system to a fractional oscillatory system. They replaced the second

derivative( d2

dtα ) by the fractional derivative ( d2α

dt2α ), where 0 < α < 1, with justifications on the mechanical system. In this

manuscript, we propose a modified fractional oscillatory system by replacing the derivative term d2α

dt2α with d1+α

dt1+α , without
losing the behaviour of the physical system.
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In order to be consistent with the time dimensionality of a fractional oscillatory system, the authors in [22], introduced
a parameter σ in the fractional operator as follows:

d

dt
→ 1

σ1−α

dα

dtα
,

d2

dt2
→ 1

σ2(1−α)

d2α

dt2α
, 0 < α ≤ 1,

where the parameter σ represents the no-local fractional time components in the system. The proposed fractional
differential equation corresponding to the mass-spring-damper mechanical system is given by

m

σ2(1−α)

d2αx(t)

dt2α
+

β

σ1−α

dα

dtα
x(t)+ kx(t) = 0, 0 < α ≤ 1, (32)

where m is the mass, β is the damped coefficient, and k is the spring constant. In this manuscript, we introduce the
fractional operator as follows:

d

dt
→ 1

σ1−α

dα

dtα
→ 1

σ1−α
Dα

,
d2

dt2
→ 1

σ2(1−α)

d1+α

dt1+α
→ 1

σ2(1−α)
D1+α

, 0 < α ≤ 1.

Thus, the fractional differential equation (32) can be written as

m

σ2(1−α)

d1+αx(t)

dt1+α
+

β

σ1−α

dα

dtα
x(t)+ kx(t) = 0, 0 < α ≤ 1, (33)

or in a formal fractional sense

m

σ2(1−α)
CFCD1+α

0 x(t)+
β

σ1−α
CFCDα

0 x(t)+ kx(t) = 0, 0 < α ≤ 1, (34)

which is a fractional differential equation of order 0 < α ≤ 1, where CFCD1+α
0 denotes the Caputo-Fabrizio fractional

operator. By virtue of Lemma 3.2, this fractional differential equation is equivalent to the second order initial value
problem

γ0v
′′
(t)+ γ1v′(t)+ γ2v(t) = g(t),

v(0) = 0,v′(0) = x(0),

where, v(t) =
∫ t

0 eµα sx(s)ds, µα = α
1−α , and

g(t) =
m

σ2(1−α)
v
′′
(0)− (

2mµα

σ2(1−α)
− β

σ1−α
)v′(0), (35)

γ0(t) =
m

σ2(1−α)
, (36)

γ1(t) =
β

σ1−α
− 2mµα

σ2(1−α)
+ k(1−α), (37)

γ2(t) =
mµ2

α

σ2(1−α)
− β µα

σ1−α
. (38)

The above problem possesses a solution in a closed form as the differential equation is linear, second order with constant
coefficients.

4.2 Application to corneal topography

Okrasiński and Pĺociniczak [23] introduced the nonhomogenous fractional Bessel differential equation of order 0, for
human corneal topography as follows:

xα Dα
0 (xz′(x))− x2z(x) =

a

b
x2
, z′(0) = 0, z(

√
a) = 0, 0 < α ≤ 1,

where a and b are dimensionless, positive constants and Dα
0 is the Riemann-Liouville fractional derivative. Here we

consider the fractional Bessel equation with the Caputo-Fabrizio fractional derivative. We have

xα CFCDα
0 (xz′(x))− x2z(x) =

a

b
x2
, (39)
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where CFCDα
0 (xz′(x)) = B(α)

1−α e−µα x
∫ x

0 eµα s
(

sz′(s)
)′

ds, and µα = α
1−α . Integration by parts twice yields

∫ x

0
eµα s

(

sz′(s)
)′

ds = eµα ssz′(s)|x0 − µα

∫ x

0
eµα ssz′(s)ds,

= xeµα xz′(x)− µα

(

eµα ssz(s)|x0 −
∫ x

0

(

eµα ss
)′

z(s)ds

)

= xeµα xz′(x)− µαxeµα xz(x)+ µα

∫ x

0

(

eµα ss
)′

z(s)ds. (40)

Let w(x) =
∫ x

0

(

eµα ss
)′

z(s)ds, then it holds that

w′(x) = eµα x(1+ µαx)z(x), w(0) = 0, w′(0) = z(0),

and

z′(x) =
e−µα x

(1+ µαx)2

(

(1+ µαx)w′′(x)− µα(2+ µα)w
′(x)

)

. (41)

Using Equations (40) and (41) we have

CFCDα
0 (xz′(x)) =

B(α)

1−α

e−µα x

1+ µαx

(

xw′′(x)− µαx(1+
2+ µα

1+ µαx
)w′(x)+ µα(1+ µαx)w(x)

)

. (42)

Substituting Eq. (42) in Eq. (39) yileds

xw′′(x)−
(

µα x(1+
2+ µα

1+ µαx
)+ x2−α

)

w′(x)+ µα(1+ µαx)w(x) =
a

b

1−α

B(α)
x2−α(1+ µαx)eµα x

,

a second order linear differential equation of w.

5 Conclusion

The Caputo-Fabrizio fractional derivative has attracted the attention of many researchers because of its appearance in
various applications and its kernel is nonlocal and nonsingular of convolution type. We have developed a simple and
efficient technique to convert fractional differential equations to initial value problems with integer derivatives. The degree
of the resulting differential equation depends on the order of the fractional derivative α. It is observed that, for 0 < α < 1
the linear and nonlinear fractional differential equations of order (α + n) can be transformed to an initial value problems
of integer order (n+ 1). The technique works for several classes of linear and nonlinear fractional equations and can be
extended to other types of equations. We indicate here that, the transformation is valid for a restricted space H1(a,b),
while the Caputo-Fabrizio derivative can be defined for a more general space. Also, it is not possible to convert all types
of linear fractional equations to integer ones. For instant the linear fractional equation

k0(t)(
CFCDα

a z)(t)+ k1(t)
CFCDβ

a z(t)+ k2(t)z(t) = f (t), 0 < α < 1,1 < β < 2, (43)

where β 6= α + 1, can’t be converted to initial value problem with integer order using the current technique.
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[19] J. F. Gómez-Aguilar, L. Torres, H. Yépez-Martı́nez, D. Baleanu, J. M. Reyes and I. O. Sosa, Fractional Liénard tyme model of a

pipeline within the fractional derivative without singular kernel, Adv. in Differ. Equ. 2016 , (2016).

[20] E. F. D Goufo, Application of the Caputo-Fabrizio fractinal derivative without singular kernel to Korteweg-de Vries-Bergers

equation, Math. Mod. Anal. 21(2), 188–198 (2016).

[21] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ. 2017:313, (2017).
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