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Abstract: We analyse the approximation of the unit operator by positive sublinear operators of quantitative mixed conformable and
iterated fractional type, including a precise Choquet integral interpretation of these operators. First of all, we examine the mixed
conformable and iterated fractional rate of convergence of both the Bernstein-Kantorovich-Choquet operator and the
Bernstein-Durrweyer-Choquet polynomial Choquet-integral operator. Next we use a representation theorem due to Schmeidler (1986)
[1] in order to study some very general comonotonic positive sublinear operators. Finally, we give an approximation using some very
general direct Choquet-integral form positive sublinear operators. The approximations of mixed conformable and iterated fractional
type are given as inequalities which involve the modulus of continuity of the approximated function and its mixed conformable and
iterated fractional derivatives.
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1 Introduction

Capacities and what is now called the Choquet integral were introduced by Choquet (1953) [2]. They have been applied
to potential theory and statistical mechanics, and have inspired studies of non-additive measure theory. Economists have
also become interested in these ideas, partly due to the study of Shapley (1953) [3] in cooperative game theory., and so
have decision theorists after the work of Schmeidler (1989) [4] using them in a model of choice with non-additive beliefs.
Using Choquet capacities gives stronger results than using probability measures.

The Choquet integral has now discovered many applications in the world of economics and finance: for example in
insurance, portfolio problems, and decision making under uncertainty and risk. Motivation for this study may also come
from the foundations of subjective probability and Bayesian decision theory.

In the current work, inspired by the Choquet integral and its immense significance, we study related approximations
by positive sublinear operators, specifically in the mixed conformable and iterated fractional sense.

The manuscript organization is given below. In Section 2 some Choquet integral properties are introduced. Section 3
deals with the conformable calculus. Some properties of the fractional calculus in the Caputo sense are given in Section
4. In Section 5 we discuss about representations of positive sublinear operators by Choquet integrals. Section 6 presents
the main results of the manuscript.

2 Definitions and Properties - I

We make [5]

Definition 1.Ler Q # @ and let € be a 6-algebra of subsets in .
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(1) [6] Wy : € — [0,+o0] denotes a monotone set function if W (&) =0 and p; (A1) <y (By) forall A,By € €, with
A1 C By. Also, W is called submodular if

pi (A UBy) 4y (A1 NBy) <y (Ay) + i (By), forall Ay By € 6.

Wi is called bounded if 1y () < +o0 and normalized if uy (2) = 1.
(2) (see, e.g., [6], p. 233, or [2]) If L is a monotone set function on € and if fi : Q — R is €-measurable (that is, for
any Borel subset By C R it follows ffl (B1) € €), then for any A| € €, the expression of Choquet integral becomes

: oo o
(C)./Alfldlil = ./0 i (Fp (f1)ﬂA1)dﬁ+1m [t (Fp (fi) NAY) — i (A1)] dB,

where we utilized the notation Fg (f1) = {® € Q : fi (w) > B}. Notice that if f; > 0 on Ay, then in the above formula we

0
get [ =0.
The function fy will be called Choquet integrable on Ay if (C) [, fidi € R.

Some Choquet integral properties are given below.

RemarkIf 1y : € — [0,+o0] is a monotone set function, then we have:

(1) For all @ > 0 we have (C) fA. afiduy =a-(C) fA] fduy Gf f; > 0 then see, e.g., [6], Theorem 11.2, (5), p. 228 and
if fi is arbitrary sign, then see, e.g., [7], p. 64, Proposition 5.1, (ii)).

(2) For all ¢ € R and f; of arbitrary sign, we have (see, e.g., [6], pp. 232-233, or [7], p. 65) (C) fAl (fi+c)du =
(C) [y, frdwy +c- i (Ay).

If uy is submodular too, then for all f1, g of arbitrary sign and lower bounded, we have (see, e.g., [7], p. 75, Theorem
6.3)

© ] Gi+endm<(©) [ fidm+©) [ gdm.

(3)If f1 < g on A; then (C) fAl Sidu < (C) fAl g1dyy (see, e.g., [6], p. 228, Theorem 11.2, (3) if fj,g; > 0 and p.
232 if fi,g are of arbitrary sign).
(4) Let us consider fi > 0.If A} C By then (C) [, fidp < (C) [p, fidi. Besides, if y; is finitely subadditive, then

© , fidm<(©) [ fidwi+(©) [ fida.

(5) We report that (C) [, 1-dp (1) = i (Ar).

(6) The expression of iy (A;) =7y (M (Ay)), where y: [0, 1] — [0, 1] is an increasing and concave function, with ¥ (0) =
0, Y(1) = 1 and M represents a probability measure (or only finitely additive) on a c-algebra on Q (that is, M (&) = 0,
M (22) =1 and M is countably additive), gives simple examples of normalized, monotone and submodular set functions
(see [7], p. 16, Example 2.1). i, is called distorsions of countably normalized, additive measures (or distorted measures).
For a simple example, we can take y(f) = lz—il, y(t) =/t

(7) If W, is a countably additive bounded measure, then (C) || 4, J1dp1 becomes to the usual Lebesgue type integral
(see, e.g., [7], p. 62, or [6], p. 226).

(8)If f1 >0, then (C) fA] fiduy > 0.

9) Let uy = /M, where M is the Lebesgue measure on [0, +o0), then u; is a monotone and submodular set function,
furthermore y; is strictly positive, see [8].

‘We have

Definition 2.(/9]) For the Q # @, the power set & (Q) means the family of all subsets of Q.

(1) A function A : Q — [0, 1] with the property sup{A (s) : s € Q} = 1, denotes the possibility distribution on .

(2) P: & (R2) — [0,1] is called possibility measure, if it fulfills P(@) =0, P(Q) = 1, and P (Uic;A;) = sup{P (A;) :
i €1} forall Ay C Q, and any I, an at most countable family of indices. Note that if A{,B; C Q, A C By, then the last
property implies P(A;) < P(By) and that P(A{UB;) < P(A)+ P (B)).

Any possibility distribution A on Q, induces the possibility measure Py, : 2 () — [0,1], Py (A1) =sup{A (s) :s €A},
Ay C Q. If fi : Q — Ry, then the possibilistic integral of f on Ay C Q with respect to Py becomes (Pos) [, fidP) =

sup{fi (t)A (¢):t €A} ([9])
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3 Definitions and Properties - 11

We present [10] some basic definitions of conformable calculus [11].

Definition 3./10] Consider a,b € R. The expression of the left conformable derivative starting from a of fi : [a,o0) — R
of order 0 < a0 < 1 is written as

fi (f+€(f—a)lfa) —fi(t)

(Tif1) (1) = lim - 1)
If (T4 f1) (t) exists on (a,b), then
(Taf1) (@) = lim (Tgfi) (1) 2
The form of the right conformable derivative of order 0 < o < 1 terminating at b of fi : (—eo,b] — R becomes
filtre@—0"%) = fi)
(4741) (1) =~lim ( . L) ©)
If (5T 11) (¢) exists on (a,b), then
(4751) 0) = 1im (47A) ). @
If 11 is differentiable then we conclude
(Tefi) () =(t—a) £ (1), )
and
(57h) ) ==0=0""" £ (1) (©)
Denote as .
)0 = [ =" fiwa ™
and ,
(1) 0= [ 0=2"" i (W ®)

these are the forms of the left and right conformable integrals of order 0 < o < 1.

For the higher order case we conclude:
Definition 4./10] We consider o € (n,n+ 1], and set B = o« — n. Then, the left conformable derivative starting from a of
a function f : [a,o°) — R of order o, where fl(") (t) exists and it reads as

(e () = (T4 (@), ©)

The expression of the right conformable derivative of order o terminating at b of f1 : (—eo,b] — R, where fl(n) (1) exists
is given by

(b)) 0= 0 (rA") o). (10)

Fora =n-+1wehave B =1and T, fi = flnH)

If nis odd, then n+lel —fln+1 and if n is even, then aIh= an
Whenn =0 (or a € (0,1]), then B = o, and (9), (10) collapse to {(1) (4)}, respectively.

Lemma 1./10] Consider fi : (a,b) — R be continuously differentiable and 0 < o < 1. Thus, for all t > a we conclude
IoTy (fi) (1) = f1 (1) = fi(a). (11)

We recall that
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Definition 5./10] For o € (n,n+ 1], then form of the left fractional integral of order o starting at a becomes

(Tef1) () = % / (1 =x)" (= a)P ™" fi (x) dx. (12)

Similarly [12] the expression of the right fractional integral of order o terminating at b reads as

("art) (0 = %/b (=)' (b =P " fi (x) dx. (13)
We need

Proposition 1./10] Consider a € (n,n+ 1] and fi : [a,0) — R be (n+ 1) times continuously differentiable for t > a.
Thus, for all t > a we conclude

n (k) Nk
1T () () = fi ) - Y DA (1)
k=0 :
In addition we have

Proposition 2./12] Consider a. € (n,n+ 1] and fi : (—eo,b] — R be (n+ 1) times continuously differentiable for t < b.
Thus, for all t < b we report

n (k) _ )k
() 0) = i) - Y O (15)

k=0
Ifn=00r0< o <1, then (see also [10])

PIa 5T (1) (1) = fi(t) — i (b). (16)
As a result we derive

Theorem 1./12] Let & € (n,n+ 1] and f; € C"*' ([a,b]), n € N. Then

1)
h6-Y M = [0 P () a7
and -
2)
fi(0) kzow = [P e () W as)
YVt € |a,b].
We have

Remark.[12] Consider o € (n,n+ 1] and f; € C"*! ([a,b]),n € N. Thus (B :=a—n,0< B < 1)

(T8 () () = (T8A7) () = =) P A7 (), (19)

and

(Lrom) @ =0 (51" ) () =

()" D=9 P A @) = (1) -0 P AT (). (20)
We conclude
(e () (), (BT0) @) €C(lab)).
Also, we recall

(T8 (7)) (@) = (5T (A1) () =0, @
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when 0 < 8 < 1,i.e. when @ € (n,n+1).
Iffl(kl)(a):(), ki =1,...,n, then

A0 1i@ = [ =2 -0 (15 (7)) )

Vitéela,b].
Iffl(kl) (b) =0,k =1,...,n, then

0 i) = [ 6P ey (5T(0)) W 3)

n' Jt
Vi€ la,b].
For f1 € C([a,b]), § > 0, denote by

o1 (f1,8)= sup [fi(x)—fi(y)]
x,y€la,bl:
[x—y|<6

the (first) modulus of continuity of f;.
We have

Theorem 2.[12] Consider o € (n,n+ 1), n €N, and f; € C""' ([a,b]), x € [a,b] andfl(k') (x) =0, k; = 1,...,n. Denote

o (Tafi,8) = max{a)] (T5fi,8) ) O ()&Tf],S)[a’x]}. (24)
Then, over [a,b), we conclude
) o (Tafi,8) [l =al® ="
1fi () fl(xngl—[?;é(a*j) [(a—n) @+’ 6>0. (25)

We have

Definition 6.Here C. ([a,b]) := {fi : [a,b] — R, continuous functions} . Let Ly : C ([a,b]) — Cx+ ([a,b]), operators, ¥
N € N, such that

v Ly (afi)=aly(fi), V>0,V f€Ci([ab]), (26)
(2)if f1,81 € Cy([a,b]) : fi < g1, then
Ly (f1) <Ly(g1), VNEN, 27
(3)
Ly (fi+g1) <Ln(fi)+Ln(g1), V f1.81 € Cy ([a,b]). (28)

Here {Ly} ycy denotes a positive sublinear operators.

We have
Theorem 3./12] Consider o € (n,n+1), n €N, and fi € C"" ([a,b],R+), x € [a,b] and fl(k) (x) =0, k=1,....,n. Let
Ly : Cy ([a,b]) = C+ ([a,b]), V N €N, be positive sublinear operators, such that Ly (1) = 1, V N € N. Thus,

o1 (Tafi,8) | Ln (1 —2%) ) Ly (=2 ()
ITj=o (o — ) (a—n) (a+1)8

ILn (f1) (x) = f1 (x)| < : (29)

6> 0.

Besides we conclude

© 2019 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

84 N S B G. A. Anastassiou: Mixed conformable and iterated fractional ...

Theorem 4./12] Consider f; € C' ([a,b]), a € (0,1), x € [a,b]. Let us denote
o1 (T fi,8) := max {a)l (T f128) ey 01 (T f1,8) 00 } ) (30)

Then over [a,b] we conclude

, 0>0. 31

T  y|ot!
A0 =A@ < o (Tafi,8) l| a| + |(a+|1)8

‘We have
Theorem 5./12] Consider f; € C' ([a,b],Ry), o € (0,1), and let Ly : C+ (|a,b]) — C4 ([a,b]), ¥ N € N, be positive
sublinear operators, such that Ly (1) = 1, VN € N. Then

L =) ) | B (1) 9
o (a+1)0

ILn (f1) (x) = f1 (x)| < o1 ("Taf1,6) ; (32)

VNeN, Vxelab],ds>0.
Also we will use

Theorem 6./12] Let us consider f € C' ([a,b],R;), & € (0,1), x € [a,b]. Let Ly : C ([a,b]) — Cs+ ([a,b]), ¥V N € N be
positive sublinear operators, such that Ly (1) = 1, and Ly (| —x|a+1) (x) >0,V N € N. Thus,

1Ly (f1) (¥) = fr ()] <

o

St () ) (o)) e

VNeN

4 Definitions and Properties - 111

Below some basic properties of Caputo integral and derivatives are given.

Remark.Let fi : [a,b] — R such that f| € L. ([a,b]), xo € [a,b], 0 < o < 1, the left Caputo fractional derivative of order
o is defined as follows

(D8,5) () = g [ e ) (4

X0

where I" is the gamma function for all xg < x < b.
‘We observe that

[(0%,1) 0] = gy [ =07 It )] as

Ifille [* as Al =x0)"% Al (x—x0)'
Sr(1_oc)/xo(x*t) D=Fi-aw) (—a) ~ TC-a (35)
lLe.
a 1A e =x0)" % Al (b —x0)'
(P 0| < g — = Fa—e— < (36)
Y x € [xo,b].
‘We conclude
(DfxOfl) (x9) =0. (37

We define (D%, f1) (x) = 0, fora < x < x.
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Letn € N, we denote the iterated fractional derivative DY = DZ D%, ...DY  (n-times).
Let us suppose that

DX £ e C([xo,b]), k=0,1,...n+1;neN,0<a<l.

*X(

By [13], [14], pp. 156-158, we have the following generalized fractional Caputo type Taylor’s formula:

v (x—xo)ia
fl(x)—l;)m( 1) (o) + (38)
1 * _ (+Ha—1 (n+1)o
NI (P55 s)
V x € [x0,b].
Based on the above (37) and (38), we conclude
i) = filo) = 1 % (D 1) (o) + (39)

1 * n n
e o &0 ()
Vxex,b,0<a<l1.

In case of (D% fi) (x0) =0,i=2,3,...,n+ 1, we get

Sfi(x) = fi (x0) =

rf((nlw [ (0l V) (0= (05 V) o)) . (40)

V)CG[)Co,b],O<(X<1.
We have

Remark.Let fi : [a,b] — R such that f] € Le ([a,b]), xo € [a,b], 0 < a < 1, the right Caputo fractional derivative of order
o becomes

(D% 1) (x0) = = )./‘xo (z=x)"%fi () dz, (41)

I'l—o) Jx

V x € [a,x0].
We observe that

(041 0] = =g [ G0 A @]z

! X0 / _ a\l-a /
Uil (/g - Ll om0 Wil e )

'l-a (I—-a) (1-a) Ir2-—oa)
e T T
(D5 11) )] = gy =0 < Fs o —a) <o (43)
Y x € [a,xq] .
We conclude
(D% f1) (x0) =0. (@44

We define (D)‘%,fl) (x) =0, for xg < x < b.
For n € N, denote the iterated fractional derivative Dﬁ(‘f D%,D)%, Dﬁ)f (n-times).
In [15], we proved the following right generalized fractional Taylor’s formula: Assume that

D fieC(la,xo)), fork=0,1,...n+1,0<a <1
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Then |
_y M io
filx)= l.;)l"(ia—i- 0 (DI f) (x0)+ @5)
; 0 7x(n Da—1 (n+1)o
F((n—l—l)oc)/x (z=x)"" (on— fl)(z)dz,
Y x € [a,xo].

Based on (44) and (45), we conclude

n 1a

f f] xO Z x?l;j— 1 '(())C*fl) (XO) =+ (46)
i=2
! 0 o— n
m/x (Z*x)(rhtl) 1 ( xotl fl) (2)dz,

Vxelax],0<a<l.
In case of (DI*_f1) (xo) = 0, fori=2,3,...,n+1, we get

Ji(x) = fi(xo) =
1 X0
(e ha-1 (n+1)o (n+1)a
F((,hLl)a)/x (z—x) ((onf fl)( )— (onf f)(xo)) dz, 47)
Vxé€lax,0<a<]l.
We need
Definition 7.Let D)(czﬂ)aﬁ denote any ofDS:;(T])af D)((:)’fl f1, and 8 > 0. We have
[} ( (n+1)a “f, 5) max{wl ( *r};rl f, ) b],a) ( x:)’fl 11, 8) axo]}, (48)

where xo € [a,b]. Here the moduli of continuity are considered over [xo,b] and |a,xy), respectively.

We give
Theorem 7./16] Let 0 < a < 1, fi : [a,b] = R, f| € L([a,b]), xo € [a,b]. Suppose that D' fi € C([xo,b]),
k=01,...n+1; neN, and (D% fi)(x0) =0, i =2,3,...n+ 1. Suppose that D fi € C(la,x0]), for

*X()

k=0,1,...,n+1, and (Di‘é‘ffl) (x0) =0, fori=2,3,....,n+ 1. Then

w]( (n+1)o fh )
|f](X)*f](X0)|_ F((n—i—l)oc—i—l)

1) 1
(n+1)o |x X | (Dot

S(ntat)|’

(49)

=0

Vxé€la,b],d>0.

We will use
Theorem 8./16] Let — <a < 1,neN, fi :[a,b] = Ry, f' € L. ([a,b]), xo € [a,b]. Suppose z‘hatD*x(J f1 € C([xo,b]),
ki=0,1,...,n+1, and( '*x‘:fl) (x0)=0,i;=2,3,....,n+1. SupposethatDk'afl € C(la,xo]), forky =0,1,....n+1, and

(Di‘f)‘ff]) (x0) =0, foriy =2,3,....n+1.Let A = (n+ 1) > 1 and consider Ly : Cy ([a,b]) — C4 ([a,b]), VN € N, be
positive sublinear operators, fulfilling Ly (1) =1,V N € N. Thus,

a)( (n+a fh )

ILn (f1) (x0) — f1 (x0)| <

F'(A+1)
Ly (|- —xol* ") (x0)
LN <|'_x0|l) (X())+ ( (A+1)6) ) (50)
6>0VNeN.
© 2019 NSP
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We need
Theorem 9./16] Denote 0 < o < n+rl and consider n € N, fi : [a,b] = Ry, f| € Lw([a,b]), xo € [a,b]. Suppose that
DAY f € Cllxo b)) k1 =0,1,....n+1, and( *Xofl)( 0) =0, i1 =2,3,...,n+ L. Suppose that D f, € C(a,xo)), for
ki=0,1,...n+1, and( ”afl) (x0) =0, fori; =2,3,....n+1.Let A := (n+ 1) a < 1 and considering Ly : C+ ([a,b]) —
Cy ([a,b]), ¥ N € N, be positive sublinear operators, obeying Ly (| —xo|l+l) (x0) >0and Ly (1) =1,V N € N. Thus

M. (51)

Ly (f1) (x0) = f1 (x0)| < L(A+1)

2 oy A+1 X
(o (=)o 2L 0]

0>0,YNeN.

We need
Theorem 10./16] Consider 0 < o < +l’ neN, fi:la,b] > Ry, f| € Lo ([a,b]), xo € [a,b]. Suppose that Dfﬁ}oaf] €
C([x0,b]), ki = 0,1,..,n+ 1, and ( *xOfl) (¥0) = 0, i1 = 2,3,..,n+ L. Suppose that DA% f; € C([a,x0)), for ki =
0,1,...n+1, and (D‘afl) (x0) =0, for iy =2,3,....n+1. Let A := (n+1)a < 1 and consider Ly : Cy ([a,b]) —
C ([a,b]), V N € N, be positive sublinear operators, obeying Ly (| — x|t ) (x0) >0and Ly (1)=1,VNeN. As a

result we have 1
et 200n (D o (1 (1 0l*1) () 77

r(A+2)

OW(Lfmﬁ“)Qm)mT,VNGN.

L (f1) (x0) = fi (x0)| < (52)

Note: [16] From (52) we conclude: if Ly (| —xo|l+1) (x0) = 0,as N — oo, then Ly (f1) (x0) — fi1 (x0), as N — +oo.

5 Definitions and Properties - IV

We have
Definition 8./8] Let I = [0, 1], %) the 6-algebra of all Borel measurable subsets of I, (IN.y) ey ye; Will be the collection
of the family Iy , = {”N,k,y}g:()v of monotone, submodular and strictly positive set functions Uy k., on HBy.

Let fi : [0,1] = Ry be a Bj-measurable function which is bounded, and swfine py j (y) = (1127) (1 - y)ka, for any
y€10,1].

The formula of the Bernstein-Kantorovich-Choquet operators reads as

k+1

(C)f‘”+ f()duzvk,>()

P (P

If in ky = W, for all N, y,k, we will denote Ky 1y, , (f1) := K u (f1)-

We have

Ky i, (1) ( Zka , Vyelo1]. (53)
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Theorem 11./8] Suppose that Uy i, = U := VM, for all N,k and y in such a way that M denotes the Lebesgue measure
on [0,1]. Thus,

Ky (1) (0) = f1 ()] < 200 <f1 , % + %) , (54)

VN eN, ye|0,1], fi € C+(]0,1]), above @y is over [0,1].
We make

Remark.From [8] we recall that

T—y) 1
KN,M(|'_)’|)()’)S%+N, VNeN. (55)

Let m > 1, recall that |- — y|" ' < 1, so

=y ==y =" < =y,
thus
Knp (|- =" ) <Kvu (I =5 (),
that is
y(1-y) 1
Kvu(l—y™ ) <X —Z 4 — vyel0,1], NeN, m> 1. 56
v (|- =y[") () < ;s N Vyelo] (56)

Notice that Ky, (1) =1,V N € N.
K, operators are positive sublinear operators from Cy ([0, 1]) into itself.

‘We mention

Definition 9./5] Below we discuss measures of possibility. Let py j (y) = <IZ> yE(1— y)ka and we define

k(1 \N—k
A () == Pk (1) _ (-9 k=0,....N. (57)

NN (N — k)N * (N) KKN=N (N — k)N

k

Assume that 0° = 1 in such a way that cases k = 0, and k = N make sense. We notice that % of p;\,.k (y), then we report
that '

max{py (t) 11 € [0,1]} = *NN (N —k)V* (IZ) ,

which implies that each Ay represents a possibility distribution on [0,1].
Py, , represents the possibility measure induced by Ay j and I,y = Iy := {PANk}kN:o (that is I'y is independent of y),
we define the nonlinear Bernstein-Durrmeyer-Choquet polynomial operators with respect to the set functions in Iy as

N C) o FO) k(1 =)V *ap,, (t
Dy, (f1) (v) = k:ZOPN,k () ( ch())f(;(f")(l(f)N)deAN,k (})( ) (58)
Vye0,1, NeN, fi eC. ([0,1]).
We have
Theorem 12./5] For every fi € Cs ([0,1]), v € [0, 1] and N € N— {1}, we have
(1+ﬁ) WA= +vV25
Dy, (1) ) = f ()] < 2001 | fi, + (59

VN N

where @y is on [0,1].
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We make

Remark.Using [5] we conclude

(14V2) T3 +V25 4

Dy (|- =) (») < N +5 YNeN-{1}. (60)

|mfl

For m > 1 we conclude that |- —y < 1, therefore

|m o | |mfl

|- —y =Y =y" <=yl

Dyry (|- =" () <Dwp (|- =) (),

(14V2) WT=0+V25

Dy (|- =" () < N + 5 ©1)

which means that

VNeN—{1},m>1,Vyel0,1].
We conclude

Remark.When y € [0, 1], then the max (y(1 —y)) = 1, at y = . Thus, we have

y(l y) 1 1 1
—<—+=, 62
VN NS 2N N (62)
Vyel0,1],VN eN.
We get
(V) VTD+VEE 1 1433
VN N~ 2N N
Vyel0,1],VNeN-{1}.
Corollary 1.(to Theorem 11) We conclude
IR ()~ il <201 (F b 3 ). (64
' < 2N N
VNEeN, fieCy([0,1]).
Corollary 2.(to Theorem 12) We have
1+3v2 1
D — <2w ,——+ =, 65
DNy (f1) = fill < 1<f1 Wi ) (65)

VNeN—{1}, fi € C,([0,1]).

The form of the Bernstein-Kantorovich-Choquet operators Ky ;,, where {1 := V/M, with M the Lebesgue measure on
[0, 1] becomes

Z (C) / (<Nk*')) fi(t)du(t)
Knu (fi)( pni(y : (66)
u {(Nil) ) ((1]\(11]1) D

Vye[0,1],VNeN, f; € C+([0,1]).
Below we discuss about representations of positive sublinear operators by Choquet integrals:
We have
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Definition 10.Let Q be a set, and let f1,g1 : 2 — R be bounded functions. We claim that fi and g, are comonotonic, if

forevery 0,0 € Q,
(fi (@)= fi(0")) (g1 (@) — g1 (@) > 0. (67)
Schmeidler’s Representation Theorem (Schmeidler 1986) is given below:

Theorem 13./1] Consider 4., (<) be the vector space of </ -measurable bounded real valued functions on Q, where
o/ C 2% is a 6-algebra. Given a real functional T : L., (/) — R, suppose that for f1,81 € Lo ():

()T (cfi) =cI (f1), V>0,

(2) fr < g implies I (fi) < T (81),

and
() I (fi+ gl) I (fi)+T (g1), for any comonotonic fi,g1.
Asaresult y(A) =T (14), V A € o, defines a finite monotone set function on <f, and I is the Choquet integral with
respect to v, i.e.
~(0) /Q A@ YD), Y fi € La(ed). 68)
We recall that 14 denotes the characteristic function on A.

We have

Remark.Suppose Ly (1) = 1,V N € N. Thus, Z. (%) D C; ([a,b]). We consider Ly|c, ((4,5))» denoted by Ly, ¥V N € N.
Thus, Ly (+) (v) : Zw (%) — Ris a functional, V N € N. The properties are given below:
ey

Ly (cf)(v) =cLn (f1))(y), V>0,V fi € Zu(2), (69)
(2)
fi < g, implies Ly (f1) (y) < Ly (1) (y), where f1,81 € Z (%), (70)
and
(3)
Ly(F+8) () <Lv(f) ) +Ln (1) (), V1,81 € Ze(H). (1)
For comonotonic f1, g € % (#), we further suppose that
Ly (fi+81) (y) =Ly (f1) () +Ln (g1) (v)- (72)

In that case Ly is called comonotonic.
Using the Theorem 13 we conclude:
Wy(A):=Ly(14)(y), VA€ B, VNEN, (73)

defines a finite monotone set function on %, and

Ly (£) (y / Ay (1), (74)

VfeLo(B),YNeN.
In particular (74) is valid for any f; € C; ([a,b]). Y,y is normalized, which means that Y, ([a,b]) =1,V N € N.
A different type of general operators appears:

Remark.We suppose that all uy, are normalized, which means that py , ([a,b]) = 1, and submodular. We discuss the
operators Ty : C+ ([a,b]) = C+ (|a,b]) described as

T 0) = () [ A6y ). 5)

VNeN,Vy¢€la,b].
In fact here iy, are chosen in such a way that Ty (C ([a,b])) € C4 ([a,b]).
We report that:
(1)
Tv(af) (v) = aln (f1) (v), ¥V & =0, (76)
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2)
fi < gu, implies Ty (f1) (v) < Tw (g1) (),

and
(3)
T (fi+21) () < Tv (fi) ) +Tv (g1) (),

VNGN,V)JE [avb]avflvgl €C+ ([aabb

6 Main Results

In this section we present our main results.
We start with the following result

Theorem 14.Consider o € (n,n+1), n €N, and f; € "1 ([0,1],R ), x € [0,1] and £* (x) = 0,k

o] (xTafh (ﬁ + %) a]“)
)} < n—1 '

[T (a—j)

J=0

| Ky (f1) (x) = fi (x

[(a]—n) (ﬁ*%)Jrﬁ(ﬁJr%)o&

We notice that Al/im Knu (f1) (x) = fi (x).
300

, VNeN.

Proof.Using (29) we conclude that (6 > 0) :
wl (XTOtf] ) 8) .

M (- j)

j=0

Ky (I —x%) (x) KN,#(|'*X|O{H)(X) (56)
[ “(Oc—n) T a1 =

@) (“Taf1,0) 1 x(l—x) 1 1 x(l=x) 1
P [(a-@( N +N>+(a+1)5< N *ﬁ)

T 12t )]

j=0

|Knp (f1) (x) = fi(x)] <

(62)
<

o

1
(1 1) erT atl _ _1 1 a_ (_1 RN
(f0r6—<m+ﬁ) ,then5 —m+ﬁ,and3 —(m-ﬁ-n) )

_1
()} (XTafh (ﬁ +#) 06+1)
n—1 ’

I1 (o)

ending the proof.

77

(78)

=1,...,n. Then

(79)

(80)

81)
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We also give

Theorem 15.[f 0. € (n,n+ 1), n €N, and f; € C"+1([0,1],R ), x € [0,1] and £ (x) = 0,k; = 1, ...,

on(1on (538+))
n—1 '

I1 (o—j)

J=0

1 14+3v2 1 1 1+3v2 1 @it
[mn)<z¢ﬁ +ﬁ>+@xu)<z¢ﬁ +ﬁ> ]’
VNeN-—-{1}.

We notice that ,\l,im Dnp, (fi)(x) = f1(x).
—yo0

IDy iy (f1) (x) = fi ()] <

Proof.Using (29) we conclude that (6 > 0) :

(Y} (XTOCfl ) 8) .
1

(o= j)
0

IDw.1, (f1) (x) = f1 ()] <

n

J

[DN,rN (=) ) Oy (=) <x>] o

(a—n) (a+1)5

+
VN N

(o —n) N

wl(xTafl,S) |: 1 [<1+\/§)«/x(1x)+\/2_x 1]+

CEDE N N
1 1+3v2 1 1 1+3v2 1
(an)( 2N +N>+(a+1)8< 2v/N +N>

. o
(choosing & := (IH‘/E + 1) “T then §9! = 1£3v2 4 L 1, and §% = ( 143v2 4 %) “hy

! [(l+ﬁ)¢x—<l—x>+m 1”

1 (XTO!fha)
n—1
I1 (a—))

j=0

2/JN ' N 2VN 2V/N
1
on (1 (538 1))
— — )
[1 (a—))
j=0

1 1+&f 1 1+af @i
(ot —n) 2\/_ +(oc+1 2\/_ ’

V' N € N— {1}, proving the claim.

We have

n, then we have

(82)

(83)

(84)
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Theorem 16.Consider — <o <1,neN, fi :[0,1] = Ry, f{ € L ([0,1]), xo € [0, 1]. Suppose that D*Xof € C([xo, 1)),
k= 0,1'7 ,n+1, and (Dﬂgof)( 0)=0,i=2,3,...,n+ 1. Also, suppose that Dko‘ f1 €C([0,x0)), for k=0,1,....n+1,
and (va‘é‘,fl) (x0) =0, fori=2,3,....,n+ 1. Consider A = (n+1)a > 1.

o ([ prhe ap L1 nT
|[Kivu (1) (x0) = fi (x0)| < 1( l(x(j/l—) ) )

, VNeN. (85)

(i 3) i (i 8)

We notice that Al/im Kn.u (f1) (x0) = fi (x0).
3o

Proof:By (50) we conclude

o (D)((erl)af],S)
) r(a+1)

1 (by (56), (62))
|:KN,;1 (|~7x0|l) (x0)+mKN,u (|~fxo|l+l (XO):| <

)
n+1
o ) [ s ()]

1
. T+
choosing & := (L + #) ! then §4! = L ¢ ]\l, and 8% = (ﬁ + ]\l,) Hl)

|Kn.u (f1) (x0) = f1 (x0

(86)

(v %) e aw x)

proving the claim.

Theorem 17.Same assumptions as in Theorem 16. As a result we get

< (n+1)a fl,(

|DN7FN (fl)(x())_fl ()C())| )L )

A

2+1
(1+3f >+( 1 <1+3ﬁ+%> , VNeN—{1}. (87)
I

2|—

~—
I
N———

2V/N A+1)\ 2vN
We report that 1\¥im Dy i, (f1) (x0) = fi (x0).
m D,
Proof.By (50) we conclude

(O] n+1 fa
Dy, (i) (x0) = fi (x0)] < ( (7L+1)l )'

1 (by (61), (63))
[DN,FN (| —xol’l) (x0) + mDN,FN (| —xol’H]) (xo)] ’ < (88)
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n+1
o (D4 £1,5) 143v2 1), 1 (1+3/3 1
r'(A+1) 2N NJ) (A+1)6\ 2N N
1 A
(Let 6 := (13\3/]%2 + ﬁ) M then 841 = l;% + % and 8* = ];3%2 + ﬁ) M])
1
n+1 2+1
o (0177, (53 ) ™)
B I'(A+1)

14+3v2 1 1 1+3v2 1 o
( 2UN +ﬁ>+(x+1)< 2N +ﬁ> |

Below we are considering the results of Theorem (13).
‘We have

V' N € N— {1}, ending the proof.

Theorem 18.Consider o € (n,n+1), n €N, and f; € C"*! ([a,b],R.), x € [a,b] andfl(kl) (x) =0,k = 1,...,n. Consider
Ly : %w(%(a,b])) — Cy ([a,b]), VN € N, be positive sublinear comonotonic operators, such that Ly (1) =1, VN € N.
Then

L (1) () — fi ()] < 2LTaf1:9), (89)
(@)
!

s (© [ an o)+ os (© [ - ana o) |
6 >0.

Proof By using the Theorem 3.

Theorem 19.Consider f; € C' (Ja,b],Ry), a € (0,1), and let Ly : L (% ([a,b])) — Cy ([a,b]), V N € N, be positive
sublinear comonotonic operators obeying Ly (1) =1,V N € N. Thus

Ly (f1) (x) = fi (X)| < o1 ("Taf1,6)-

[é ((C) /ab|t—x|°‘dyN,x (t)) + m ((C) /a‘b|t—x|a+1dy;v,x (t))] : (90)
0>0,YNeN, Vxea,b].

Proof.By using the Theorem 5.

Theorem 20.Consider f; € C' ([a,b],Ry), o € (0,1), x € [a,b]. Let Ly : %~ (%(|a,b])) — C+ ([a,b]), ¥ N € N, be
positive sublinear comonotonic operators, such that Ly (1) = 1, ¥ N € N, and (C) [ |t —x|* ' dyy . (t) > 0, Y N € N. As
a result we get

b =
IR0~ 0] < o (J‘Tafl,<<c> [ st o) )

b T
((C)/a |tx|a+ldyN7x(t)) ,VNeN. 91)

If (C) [P 1t — x| dy.. (1) = O, then Ly (1) (x) = f1 (x), as N — oo.
Proof.Due to the Theorem 6.

We have

© 2019 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 5, No. 2, 79-97 (2019) / www.naturalspublishing.com/Journals.asp N S 95

Theorem 21.Consider -~ ] <oa<lLneN, fi:la,b| >Ry, f] € L ([a,b]), xo € [a,b]. Suppose thatD*fol € C([xo,b]),
k=0,1,...,n+1, and( *xofl) (x0) =0,i; =2,3,....n+ 1. Assume that D 'afl € C(la,x0)), forky =0,1,...,n+1, and
(Di‘oif) (x0) =0, foriy =2,3,...,n+ 1. Consider A = (n+1)a > 1 and Ly : Lo (% ([a,b])) = Cy ([a,b]), VN €N, be

X0

positive sublinear comonotonic operators, such that Ly (1) = 1, V N € N. Thus

w1< (n+1)a fl,)
ra+1

(0 [ 1=t amn )+ s (© [ - amn 0) .

Proof.By using the Theorem 8.

ILn (f1) (x0) = f1 (x0)| < (92)

6>0,YNeN.

Note: When 0 < o < # the Theorem 21 is true.

Theorem 22.We consider 0 < o < ”i], neN, fi:lab — Ry, f| € Lu([a,b]), xo € [a,b]. Suppose that

]i}g‘fl € C([xo,b]), k1 =0,1,...,n+ 1, and (D’“ f1) (x0) =0, i1 =2,3,...,n+ 1. Suppose that D 'afl € C([a,xo)), for

*X()
ki = 0,1,...n + 1, and (D;‘é‘ff) (xo) = 0, for ii = 23,.,n+ 1 Let A = (n+l)a < 1. Let
Ly : %o (A ([a,b])) = C+ ([a,b]), ¥ N €N, be positive sublinear comonotonic operators, such that Ly (1) =1, VN €N,
and (C) fab |t — xo[* ! dyny, (1) >0,V N € N. Then, we have

o, (D)(Cerl)af],S)
) r(a+1

(© /ab|t—xo|“'dmxo<t>)‘l t s (© [ s an, o)) |

Proof. The results arise from Theorem 9.

Iy (f1) (x0) — f1 (x0 93)

6>0,YNeN.

Theorem 23.All as in Theorem 22. Then

A+2) o (Diﬁ“)“fh (€112 1= o+ A W“)
r(A+2)

ILy (f1) (x0) = f1 (x0)| <

A
b 7+
((C)/ |l‘*xo|l+1d'}/N,x0 (t)> ' , VNeN. (94)

IF(C) 2 |t —xo/*  dyw sy (1) = O, then Ly (1) (x0) = f1 (x0), as N — oo,
Proof.Using the help of the Theorem 10.

We have
Theorem 24.Use the Theorem 3 with Ly = Ty, V N € N. As a result

1Ty () () fi ()] < 2 Tel0),

I1 (o—j)

J=0

[(aln) ((C) /ablt—xladuzv,x (t)) + m ((C) /L;b|t—x|“+' diy x (I))} : (95)

6§>0,VNeN.

© 2019 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

96 N S B G. A. Anastassiou: Mixed conformable and iterated fractional ...

Proof.Using the Theorem 3 we will obtained the result.
Theorem 25.A!l as in Theorem 5, such that Ly = Ty, V N € N. Thus

1T (f1) (x) = fi (%) < o1 (T f1,6) -

2 (0 i)+ ot (© [l a0

VNeN,Vxela,b],d>0.

Proof.Theorem 5 is used in this proof.

Theorem 26.All as in Theorem 6, with Ly = Ty, with (C) fab |t —x|“™ duy . (1) > 0,V N € N. Thus, we have

a(a+1)

K a+l @i
(© [ s am0) ™
VNeN.

I (C) 2|t —x|“ duw . (£) = 0, then Ty (f1) (x) = fi (x), as N — oo
Proof.By using the Theorem 6.

We have
Theorem 27.All conditions are as in the Theorem 8, such Ly = Ty, ¥V N € N. Thus,

w( Hlf7)

r'(A+1)

|TN (fl)( ) fl( )| M W <xTaf], ((C)/ab|tX|a+lduN,x(t))0HI>

| Tv (f1) (x0) = f1 (x0)| <

b A 1 b A+1
(©) [ =0l vy 1)+ 575 ) [ e =l v )]
6>0,YNeN

Proof.By making use of the Theorem 8.
Note: When 0 < o < n—}rl the Theorem 27 is also true.

Theorem 28.All as in Theorem 9, with Ly = Ty, with (C) fab It —xo[*H! dpn x, (1) >0,V N € N. Then we get

a)( (n+)a f], )

r'(A+1)
(€ [ =20 i 0) ™+ ot (0 [ - a0
6>0,VYNeN.

Proof.Proofs looks similar as in the Theorem 9.

| Ty (f1) (x0) — f1 (x0)| <

Theorem 29.All as presented Theorem 28. Then we have

(7L+2)w1( iy, (( flt—xol“lduw,xo(t))llﬂ)

T (f1) (x0) = fi (x0)| < T(A+2)

A
b T
. <(C) / |t7xO|)L+1d[JN7xO (l‘)) , VNeN.

IF(C) [2 1t —xo*  dn 1y (1) = O, then Ty (f1) (x0) = fi (xo), as N — oo
Proof.Utilize the Theorem 10.

(96)

o7

(98)

99)

(100)
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