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Abstract: In this paper a new test statistic for testing exponentiality against renewal new better than used in Laplace transform order

(RNBUL) based on goodness of fit is studied. selected critical values are tabulated for sample size 5(5)50. Pitman’s asymptotic

efficiencies of the test and Pitman’s asymptotic relative efficiencies (PARE) are calculated . The power of this test are estimated for

some famous alternatives distributions in reliability such as Wiebull, linear failure rate (LFR) and Gamma distributions. The problem

in case of right censored data is also handled. Finally, some applications to elucidate the usefulness of the proposed test in reliability

analysis are discussed.
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1 Introduction

Over the last few decades, classes of life distributions is a new branche of reliability which is established by developing
the measurments of success or failure concerning reliability. Many experts in statistics and reliability analysts have
shown great intrest in displying survival data using classification of life distributions based on different aspects of aging
cocepts that describe how population of units or systems improved or depreciates with age. Engineering,biological
science, maintenance and biometrics are some important applications of classes of life distributions that can be seen in
reliability.

It was noticed that the exponential distribution is a fundamental distribution of statistical reliability theory, see for
example [8, 32]. As stated for the common classes of life distributions that contains most of previously known classes
like increasing failure rate (IFR), increasing failure rate average (IFRA), new better than used (NBU), new better than
used in average (NBUA), new better than used in expectation (NBUE) and harmonic new better than used in expectation
(HNBUE). The implications between these classes are

IFR ⇒ IFRA ⇒ NBU ⇒ NBUA ⇒ NBUE ⇒ HNBUE

see [8].
Testing exponentiality against the above classes of life distributions has seen a good deal of attention. We refer to works

found in [3,7,9,29] for testing against IFR, among others. References is made to [4,6,10,21] for testing exponentiality
against IFRA. Testing exponentiality against NBU is discussed by [5,15,19], among others. However, testing against
NBUE is considered by [15,19], among others. Finally, testing against HNBUE can be found in work of [18,30]. Other
relevent aging criteria have been introduced by different authors.

Some authors took up testing exponentiality based on goodness of fit technique versus many classes of life
distributions; see [2,11,16,22,23,26].

Let X be a nonnegative random variable with distribution function F and survival function F̄ = 1−F . Assume that X

is continuous with probability density function f and has mean µ and variance σ2.
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Consider a device with life lenght X and life distribution F . The device is replaced instantly upon failure by sequance
of mutually independent devices. These devices are independent of the first unit and identically distributed with the same
life distribution F . When the renewal of the system is continued indefinitly, the stationary life distribution of a device in
operation at time t is

Wf (t) = µ−1
F

t
∫

0

F̄(u)du, 0 ≤ t < ∞,

the corresponding renewal survival function is

W̄f (t) = µ−1
F

∞
∫

t

F̄(u)du, 0 ≤ t < ∞,

where µ
F
= µ =

∞
∫

0

F̄(u)du.

For details, see [1,8].
Testing exponentiality against NBRUL is stadied by [24,25]. The class of life distribution RNBU is defined as follows:

Definition 1.(Abouammoh et al. [1]) If X is a random variable with survival function F̄(x); then X is said to have renewal

new better (worth) than used property, denoted by RNBU(RNWU); if:

W̄F(x+ t)≤ (≥)W̄F(x)W̄F(t), x ≥ 0, t ≥ 0.

Now, depending on Defination 1 we define a new class of life distributions called renewal new better (worth) than

used in Laplace transform order.

Definition 2.If X is a random variable with survival function F̄; then X is said to be renewal new better (worth) than used

in Laplace transform order, denoted by RNBUL (RNWUL); if:

∞
∫

0

e−sxW F(x+ t)dx ≤ (≥)W F(t)

∞
∫

0

e−sxW F(x)dx, x ≥ 0, t ≥ 0. (1)

2 Hypothesis Testing Against RNBUL Class for Non-censored Data

In this section, we test the null hypotheses H0 : F is exponential with mean µ against H1 : F is RNBUL and not exponential.
The following lemma is needed.

Lemma 1.If F belongs to RNBUL class and X is a random varialble with distribution function F then

δ (γ) =
µ

γ(γ − 1)
ζ (γ)+

µ

γ − γ2
ζ (1)− 1

γ2
ζ (γ)− 1

γ2
ζ (1)+

1

γ2
ζ (1)ζ (γ)+

1

γ2
, (2)

where ζ (γ) =
∞
∫

0

e−γx dF(x).

Proof.Since F is RNBUL, recall Def.2 and multiplying both sides by e−t , and integrating over [0,∞) with respect to t, we
get

∞
∫

0

∞
∫

0

e−te−γxW F(x+ t)dxdt ≤
∞
∫

0

e−tW F(t)

∞
∫

0

e−γxW F(x)dxdt. (3)

Setting

I =

∞
∫

0

∞
∫

0

e−te−γxW F(x+ t)dxdt,

take u = x+ t,v = t ⇒ |J|= 1,where J is called the Jacobian of the transformation. Hence

I =

∞
∫

0

v
∫

0

e−ve−γ(v−u)W F(v)dudv,
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then

I =
1

1− γ
[

∞
∫

0

e−γvW F(v)dv−
∞
∫

0

e−vW F(v)dv],

where
∞
∫

0

e−γvW F(v)dv =
1

γµ
[µ − 1

γ
(1− ζ (γ))],

then, we get

I =
1

1− γ
[
1

γ
− 1

γ2µ
(1− ζ (γ))+

1

µ
(1− ζ (1))− 1]. (4)

Put

II =

∞
∫

0

e−tW F(t)

∞
∫

0

e−γxW F(x)dxdt =
1

γµ2
[µ2 − µ

γ
(1− ζ (γ))− µ(1− ζ (1))+

1

γ
(1− ζ (γ))(1− ζ (1))]. (5)

From (4) and (5), we get

1

1− γ
[
1

γ
− 1

γ2µ
(1− ζ (γ))+

1

µ
(1− ζ (1))− 1]≤ 1

γµ2
[µ2 − µ

γ
(1− ζ (γ))− µ(1− ζ (1))+

1

γ
(1− ζ (γ))(1− ζ (1))]. (6)

To estimate the measure of departure from exponentiality δ (γ), let X1,X2,...Xn, be a random sample from a population
with distribution function F ∈ RNBUL class. From (6) we get Eq. (2).

Not that under H0 : δ (γ) = 0, and H1 : δ (γ) is positive.

2.1 Empirical Test Statistic for RNBUL Alternative

The empirical estimate of δ (γ), can be rewrritten as

Λ(γ) =
1

n2

n

∑
i=1

n

∑
j=1

[
Xi

γ(γ − 1)
e−γX j +

Xi

γ − γ2
e−X j − 1

γ2
e−γXi − 1

γ2
e−Xi +

1

γ2
e−X j e−γX j +

1

γ2
].

To make the test scale invariant under H0, we use Λ̂ (γ) = Λ(γ)

X
, where X = 1

n ∑n
i=1 Xi is the sample mean. Then

Λ̂(γ) =
1

n2X

n

∑
i=1

n

∑
j=1

[
Xi

γ(γ − 1)
e−γX j +

Xi

γ − γ2
e−X j − 1

γ2
e−γXi − 1

γ2
e−Xi +

1

γ2
e−X j e−γX j +

1

γ2
]. (7)

Setting

φ(X1,X2) =
X1

γ(γ − 1)
e−γX2 +

X1

γ − γ2
e−X2 − 1

γ2
eγX1 − 1

γ2
e−X1 +

1

γ2
e−X1e−γX2 +

1

γ2
, (8)

and defining symmetric kernel

ψ(X1,X2) =
1

2!
∑φ(X1,X2),

where the summation is over all arrangements of X1,X2,...Xn, then Λ̂(γ) is equivalent to U-statistic

Un =
1

(

n

2

) ∑φ(X1,X2).

the following theorem summarize the asymptotic properties of the test.
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Theorem 1.As n → ∞ ,
√

n[Λ̂(γ)−Λ(γ)] is asymptotically normal with mean zero and variance

σ2(s) =Var{ζ (γ)[
X

γ(γ − 1)
+

e−X

γ2
− 1

γ2
]+ζ (1)[

e−γX

γ2
+

X

γ − γ2
− 1

γ2
]+e−γX [

µ

γ(γ − 1)
− 1

γ2
]+e−X [

µ

γ − γ2
− 1

γ2
]+

2

γ2
},

(9)
under H0 the variance tends to

σ2
0 (γ) =

(γ − 1)2

6(γ + 2)(2γ + 1)(γ2 − 1)2
. (10)

Proof.Using standard U-statistics theory, see [20], and by direct calculations we can find the mean and the variance as
follows

σ2 = var{E
[

φ (1)(X1 ,X2)]
]

+E
[

φ (2)(X1 ,X2)
]

}, (11)

recall definition of φ(X1,X2) in Eq. (8), thus it is easy to show that

E
[

φ (1)(X1 ,X2)
]

=
X

γ(γ − 1)
ζ (γ)+

X

γ − γ2
ζ (1)− 1

γ2
e−γX − 1

γ2
e−X +

1

γ2
e−X ζ (γ)+

1

γ2
, (12)

and

E
[

φ (2)(X1 ,X2)
]

=
µ

γ(γ − 1)
e−γX +

µ

γ − γ2
e−X − 1

γ2
ζ (γ)− 1

γ2
ζ (1)+

1

γ2
ζ (1)e−γX +

1

γ2
. (13)

Upon using (11),(12) and (13), Eq. (9) is obtained.
Under H0, (10) is obtained.
When γ = 0.2, σ0 = 0.193851 .

2.2 The Pitman Asymptotic Relative Efficiency

To access the quality of the test, Pitman asymptotic efficiencies (PAEs) are computed and compared with some other tests
for the following alternative:

(i) The Weibull Family:

F1(x) = e−xθ
x ≥ 0,θ ≥ 1

(ii) The Linear Failure Rate Family:

F2(x) = e−x− θ
2 x2

, x ≥ 0,θ ≥ 0

(iii) The Makeham Family:

F3(x) = e[−x−θ(x+e−x+1)], x ≥ 0,θ ≥ 0

Note that for θ = 1,F1 goes to exponential distribution and for θ = 0,F2 and F3 reduce to the exponential
distributions. The PAE is defined by

PAE(Λ̂(γ)) =
1

σ0

[

d

dθ
δ (γ)

]

θ→θ0

,

Table 1. gives the efficiencies of our proposed test Λ̂ (0.2) comparing with the tests; δ(3) given by [27] and δ
(2)
Fn given

by [22].

Table 1. comparison between The PAE of our test and some other tests

Distribution Λ̂ (0.2) δ(3) δ
(2)
Fn

Linear failure rate 0.89395 0.408 0.217
Makeham 3.48567 0.039 0.144
Weibull 0.5891 0.170 0.05

Also, the Pitman asymptotic relative efficiency (PARE) of our test Λ̂(0.2) comparing to δ(3) and δ
(2)
Fn is calculated

where

PARE(T1,T2) =
PAE(T1)

PAE(T2)
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Table 2. show that the asymptotic relative efficiences for our test

Distribution PARE(Λ̂ (0.2), δ (3)) PARE(Λ̂(0.2), δ
(2)
Fn)

Linear failure rate 2.191 4.1196
Makeham 89.376 24.206

Weibull 3.4653 11.782

We can see from Tables 1 and 2. that our test statistic Λ̂ (γ) for RNBUL is more efficiency than the other cases.

3 Monte Carlo Null Distribution Critical Points

In this section, the upper percentile points of Λ̂(γ) for 90%, 95%, 98% and 99% are calculated based on 5000 simulated
samples of sizes n = 5(5)50 and tabulated in Table 3.

Table 3.The upper percentile of Λ̂ (γ) with 5000 replications at γ = 0.2

n 90% 95% 98% 99%

5 0.0937502 0.123805 0.164215 0.185003
10 0.0645106 0.0812811 0.102429 0.120486
15 0.0508777 0.0639841 0.0804773 0.0906853
20 0.0460578 0.0564048 0.0686507 0.0790545
25 0.0408935 0.0504019 0.061637 0.0679614
30 0.0377786 0.045507 0.0557467 0.0636555
35 0.0346345 0.0415154 0.0498707 0.0562549
40 0.032289 0.0390438 0.0457184 0.0521619
45 0.0317921 0.0377462 0.0457831 0.0504754
50 0.0307952 0.0358238 0.0422963 0.0469997

Fig. 1: Relation between critical values, sample size and confidence levels

It can be noticed from Table 3. and Fig.1 that the critical values are increasing as confidence level increasing and
decreasing as the sample size increasing.
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3.1 The Power Estimates

The power of proposed test will be estimated at (1-α)% confidence level α = 0.05 with suitable parameters values of θ
at n = 10,20 and 30 for three commonly used distributions such as Weibull, linear failure rate and Gamma distributions
based on 5000 simulated samples tabulated in Table 4.

Table 4. Power Estimates of the Statistic Λ̂(γ) at γ = 0.2

Distribution Parameter θ Sample size
n=10 n=20 n=30

2 1.0000 1.0000 1.0000
LFR family 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000
Wiebull family 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 0.9708 0.9818 0.989
Gamma family 3 0.9928 0.9988 0.9998

4 0.999 1.0000 1.0000

From Table 4., we see that our test Λ̂(γ) has a good power for all alternatives.

3.2 Applications Using Complete (Uncensored) Data

Here, we present some of a good real examples to illustrate the use of our test statistics Λ̂ (γ) in the case of complete data
at 95% confidence level.

Data-set #1.
Concider the data set given in [13]. These data gives the times between arrivals of 25 customers at a facility. It is

easy to show that Λ̂ (γ) = 0.630055 which is greater than the critical value of Table 3. Then we accept H1 the alternative
hypotheses which show that the data set has RNBUL property but not exponential.

Data-set #2.
Consider the data-set given in [12] which represent failure times in hours, for a specific type of electrical insulation

in an experiment in which the insulation was subjected to a continuously increasing voltage stress. In this case, we get

Λ̂(γ) = 0.0378995 which is less than the critical value of the Table 3. Hence we accept the null hypothesis H0 and reject
H1. This means that this kind of data doesn’t fit with RNBUL property.

Data-set #3.
Concider the data set given in [14]. These data gives the daily average wind speed from 1/3/2015 to 30/3/2015 for

Cairo city in Egypt. It is easy to show that Λ̂(γ) = 0.75122 which is greater than the critical value of Table 3. Then we
reject the null hypotheses H0 and data set has RNBUL property.

4 Testing Against RNBUL Class for Censored Data

A test statistic is proposed to test H0 versus H1 in case of randomly right-censored (RR-C) data in many practical
expriments, the censored data are the only information available in a life-testing model or in a clinical study where
patients may be lost (censored) before the completion of a study. This experimental situation can formally be modeled as
follows: Suppose n units are put on test, and X1,X2, ...,Xn denote there true life time which are independent, identically
distributed (i.i.d.) according to continuous life distribution F . Let Y1,Y2, ...,Yn be (i.i.d.) according to continuous life
distribution G. X’s and Y ’s are assumedto be independent. In the RR-C model, we observe the pairs (Z j,δ j), j = 1, ...,n,
where Z j = min(X j,Yj) and

δ j = {.1 i f Z j = X j ( j− th observation is uncensored).0 i f Z j = Yj ( j− th observation is censored).

Let Z(0) = 0< Z(1) < Z(2) < ... < Z(n) denote the ordered Z’s and δ( j) is δ j corresponding to Z( j). Using the censored

data (Z j,δ j), j = 1, ...,n.[17] proposed the product limit estimator,
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F̄n(X) = ∏
[ j:Z( j)≤X ]

{(n− j)/(n− j+ 1)}δ( j), X ∈ [0,Z(n)]

Now, for testing H0 : δ (γ) = 0 against H1 : δ (γ) > 0,using randomly right censored data, we propose the following
test statistic

Λ̂c(γ) = ζ (γ)[
µ

γ(γ − 1)
− 1

γ2
]+ ζ (1)[

µ

γ − γ2
− 1

γ2
]+

1

γ2
ζ (γ)ζ (1)+

1

γ2
.

For computational purposes, Λ̂c(γ) may be rewritten as

Λ̂c(γ) =Θ [
Φ

γ(γ − 1)
− 1

γ2
]+Ω [

Φ

γ − γ2
− 1

γ2
]+

1

γ2
ΘΩ +

1

γ2
,

where

Φ =
n

∑
k=1

[
k−1

∏
m=1

C
δ (m)
m (Z(k)−Z(k−1))],

Θ =
n

∑
j=1

e
−γz( j) [

j−2

∏
p=1

C
δ (p)
p −

j−1

∏
p=1

C
δ (p)
p ],

Ω =
n

∑
j=1

e
−z( j) [

j−2

∏
p=1

C
δ (p)
p −

j−1

∏
p=1

C
δ (p)
p ],

and

dx = (Z( j)−Z( j−1)), Ck = [n− k][n− k+ 1]−1.

Table 5. below gives the critical values percentiles of Λ̂c(γ) test for sample size n = 5(5)30(10)70,81,86.

Table 5. The upper percentile of Λ̂c(γ) with 5000 replications at γ = 0.2

n 90% 95% 98% 99%

5 13.5698 15.6251 21.4884 22.853
10 9.39547 11.6982 14.5646 16.1048
15 6.8184 8.77395 11.1652 12.7648
20 5.40007 7.0327 9.33557 10.7836
25 4.3512 5.88305 7.65831 9.22072
30 3.55056 4.97609 6.43102 7.3819
40 2.38012 3.61256 5.13749 6.08144
50 1.81253 2.97982 4.30084 5.24347
60 1.03287 2.07022 3.36469 4.17644
70 0.648289 1.64264 2.81515 3.51092
81 0.357731 1.28685 2.47333 3.18287
86 0.083661 0.95329 1.93505 2.77149

From Table 5.and Fig 2. It can be observed that the critical values are increasing as confidence level increasing and
decreasing as the sample size increasing.

4.1 The Power Estimates for Λ̂c(γ)

The power of the statistic Λ̂c(γ) is considered at the significant level α = 0.05 with suitable parameters values of θ at
n = 10,20 and 30 for three commonly used distributions such as Weibull, linear failure rate and Gamma distributions
based on 5000 simulated samples tabulated in Table 6.
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Fig. 2: Relation between critical values,sample size and confidence levels

Table 6. Power Estimates of the Statistic Λ̂c(γ)

Distribution Parameter θ Sample size
n=10 n=20 n=30

2 0.9698 0.9928 0.9998
LFR family 3 0.9637 0.999 1.0000

4 0.979 0.999 1.0000

2 0.9642 0.9822 0.9906
Wiebull family 3 0.9736 0.987 0.9952

4 0.9794 0.9912 0.9958

2 0.9878 0.9896 0.9892
Gamma family 3 0.9996 1.0000 0.9998

4 1.0000 1.0000 1.0000

From Table 6., we see that our test Λ̂c(γ) at γ = 0.2 has a good power for all alternatives.

4.2 Applications for Censored Data

We present two good real examples to illustrate the use of our test statistics Λ̂c(γ) in case of censored data at 95%
confidence level.

Data-set #4.
Consider the data-set in [31]. These data represents 81 survival times of patients of melanoma. Out of these 46

represents whole times (non-censored data). We get Λ̂c(γ) = 3.41488× 10−101 which is less than the tabulated value
in Table 5. It is evident at the significant level α = 0.05. This means that this kind of data doesn’t fit with RNBUL
property.

Data-set #5.
Consider the data-set given in [28] for lung cancer patients. These data consists of 86 survival times (in month) with

22 right censored. In this case, we get Λ̂c(γ) = 7.08527−11 which is less than the tabulated value in Table 5. Then, we
accept H0 the null hypotheses which show that the data set has exponential property.

5 conclusion

The RNBUL is defined and a test statistic based on goodness of fit for is presented. The Pitman asymptotic relative
efficiences (PARE) are calculated and it is noticed that the PAEs of our new test are better than some old tests for all
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used alternatives. Monte Carlo null distribution critical points are simulated for sample size n = 5(5)50 and the power
estimates of this test are also calculated for some common alternatives distribution followed by some numerical examples.
The problem in case of right censored data is also handled and selected critical values are tabulated, the power estimates
for censor data of this test are tabulated also we discuss some applications to elucate the usefullness of the proposed test
in reliability analysis for censored data.
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