
Applied Mathematics & Information Sciences 1(2)(2007), 195-202
— An International Journal
c©2007 Dixie W Publishing Corporation, U. S. A.

A Partial Correctness Proof for Programs with Decided

Specifications

A. A. Darwish

Mathematics Department, Faculty of Science, Helwan University, Cairo, Egypt

Email Address: amodarwish@yahoo.com

Received 2 September 2006; Accepted 20 January 2007

This paper provides the method and complete proof for programs written in Pascal pro-
gramming language with decided specifications for programs which reverse the digits
of an integer from [5]. The author of this paper describes a new concept of partial
correctness of programs better suited to specification purposes than the classical one.
Partial correctness specifications are pairs of assertions, preconditions and postcondi-
tions. As an application of partial correctness specifications, the paper presents the
correctness method for some of the programs which have been written in procedural
programming language. Moreover, this method is suitable for all procedural programs.

Keywords: Partial correctness, axiomatic semantics, loop invariant, precondition, post-
condition.

1 Introduction

It was Hoare’s paper [9] that introduced the now well known notation for partial cor-
rectness of programs on the form P{Q}R, where P and R are predicates specifying the
preconditions and postconditions (desired result), respectively, for program Q. That is, if
the assertion P is true before the initiation of a program Q, then assertion R will be true
when it completes execution. This paper is based on an earlier work of Floyd [8] where
the technique was applied to flowcharts rather than to programming language text. Hoare’s
axiomatic semantics was also fundamental to the development of sequential systems [1]
and for the real time specification language, called ASTRAL [4]. From the practical point
of view, it is suitable to combine loop invariants with termination constraints to keep the
distinction between partial and total correctness. [2] gives an operational and axiomatic
framework for both partial and total correctness of probabilistic and demonic sequential
programs; among other aspects, that provide the theory to support the practical publica-
tions on probabilistic demonic loops [3]. Assembler programs contain unstructured jumps

196 A. A. Darwish

and previous formalisms have modeled these by using continuations. [12] provides an
approach, which uses techniques from the compiler theory.

This paper begins with introducing the notion of assertion proofs for the program cor-
rectness. Then, it introduces some examples of annotation of programs. As an illustration,
an application is made to one of the programs written in Pascal language; therefore, the
following sections are concerned with proving the partial correctness of programs.

2 Some Elementary Examples of Assertion Proofs about Program
Correctness

2.1 Verification of complex programs versus simple programs

In programming of various problems, it is possible to allocate some consecutive stages
in which the process of programming can be divided into the following: 1) problem formal-
ization; 2) refinement (specification) of formalized problem; 3) construction of programs;
4) debugging; 5) program improvement. The last item can be repeated many times. The
correct annotating of programs presents the original theoretical program debugging.

To annotate programs [8, 9], the help of approval of programs, which will be in vari-
ous locations of the program (encompassed by curly bracket), is suggested. The program
annotation is correct if before the execution the next step and after the assertion operator is
supposed, the program can execute this assertion. Following are some simple examples of
the annotation of programs:

(x := 0{x = 0}), (< x = 0 > x := x + 2 ; {x = 2}),

condition x = 0 is precondition and x = 2 is postcondition for the last assertion.
The annotation for more complicated programs is available from annotation for simple

programs. For example, from issued higher annotated programs obtain

(x := {x = 0}, x := x + 2 ; {x = 2}).

The program is considered to be correctly annotated if it is correctly annotated every time
during the execution, since the step of the program is directly carried out after the assertion
of any comment, can be considered as condition, and is supposed before the next step of
the program.

We will consider that the correct annotation (P ; (AQ)) is equivalent to the correct
annotation of (P{A}) and (AQ). Here and in the following P, Q, and R are fragments of
a program while A, B, and C are verifications (annotations).

Another example, from

(< x = 2&x ≥ 0 > y := 0; {y = 0}), (< x = 2&¬(x ≥ 0) > {y = 0})

A Partial Correctness Proof for Programs with Decided Specifications 197

(the last expression is equivalent to the verification x = 2&¬(x ≥ 0) ⊃ y = 0) to get

(< x = 2 > IF x ≥ 0 THEN y := 0; FI{y = 0}).

Let us write the used method in the following generalized form:
For correct annotation

(< B&A > PQ), (< B&¬A > Q).

Equivalence of correct annotation

(< B > IF A THEN P FI; Q).

An additional example: from

< T&x ≥ 0 > y := x; {y = |x|}, (< T&¬(x ≥ 0) > y := −x; {y = |x|}),

to get

(< T > IF x ≥ 0 THEN y := x; ELSE y := −x; FI{y = |x|}).

Here T refers to the logical constant: true. The same method in the generalization form:
Correct annotation programs

(< A&B > QP), (< A&¬B > R; P).

It is equivalent to a correctness of the annotation of the program

(< A > IF B THEN Q ELSE R FI; P).

Finally, consider a much more complex example: from

(< x ≥ 0&x = v&y = 1& 6= (x ≥ 1) > {y = 2[ν]&[x] = 0})

(it is not executing any step of the loop),

(< 0 ≤ x&x = v&y = 1&x ≥ 1 > x := x− 1; y := y ∗ 2; {x ≥ 0&y = 2[ν]−[x]})

(execute the first step of the loop),

(< x ≥ 1&x ≥ 0&y = 2[ν]−[x] > x := x− 1; y := y ∗ 2; {x ≥ 0&y = 2[ν]−[x]})

(multiple execution of the loop),

(< ¬(x ≥ 1)&x ≥ 0&y = 2[ν]−[x] > {y = 2[ν]&[x] = 0})

198 A. A. Darwish

(output of the loop) is received

(< x ≥ 0 &x = v&y = 1 > WHILE x ≥ 1, DO

x := x− 1; y := y ∗ 2; {x ≥ 0&y = 2[ν]−[x]} OD; {y = 2[ν]&[x] = 0}).

The same rule in the generalization form: a correctness of the annotation of programs [11].

(< A&¬B > Q), (< A&B > P{C}),

(< C&B > P{C}), (< C&¬B > Q),

which equivalent to the correct annotation of the program

(< A > WHILE B DO P{C} OD; Q).

2.2 Loop invariant

Discovering the loop invariant requires insight. Consider the following program frag-
ment that calculates factorial, as indicated by the final assertion.

(< N ≥ 0 >

k := N ; f := 1;

While k > 0 do

f := f ∗ k; k := k − 1; {loop invariant}
end while

{f = N !})

The loop invariant involves a relationship between variables that remains the same regard-
less of how many times the loop executes. The loop invariant also involves the while loop
condition k > 0 in the example above, modified to include the exit case, which is k = 0 in
this case. Combining these conditions, we have k ≥ 0 as part of the loop invariant. Now
we have our loop invariant: {f ∗ k! = N ! and k ≥ 0}
Some principles to construct loop invariant

Constructing loop invariants in programs provides the main challenge when proving
correctness. Several general principles can assist in analyzing the logic of the loop when
finding an invariant [10].

• A loop invariant describes a relationship among the variables that does not change
as the loop is executed. The variables may change their values, but the relationship
stays constant.

A Partial Correctness Proof for Programs with Decided Specifications 199

• Constructing a table of values for the variables that change often reveals a property
among variables that does not change.

• Combining what has already been computed at some stage in the loop with what has
yet to be computed may yield a constant of some type.

• An expression related to the test A for the loop can usually be combined with the
assertion {not A} to produce part of the postcondition.

• A possible loop invariant can be assembled to carry out the proof.

In this paper, the author provides proof of the correctness of program which can reverse
the digits of an integer from [5]. To perform this task, the proof is divided into many steps
and each time we will prove the partial correctness of the step as a separate program to
obtain a partially correct program. The proof depends on Hoare’s axiomatic semantics
with the loop invariant [9].

3 Program: Reversing the Digits of an Integer

Problem
Design an algorithm that accepts a positive integer and reverses the order of its digits.

Algorithm description
1- Establish n, the positive integer to be reversed.

2- Set the initial condition for the reversed integer dreverse.

3- While the integer being reversed is greater than zero do (a) use the remainder function to
extract the rightmost digit of the number being reversed; (b) increase the previous reversed
integer by a factor of 10 and add to it the most recently extracted digit to give the current
drivers value; (c) use integer division by 10 to remove the rightmost digit from the number
being reversed.

This algorithm is most suitably implemented as a function which accepts the integer to
be reversed as input and returns the integer with its digits reversed as output.

Pascal Implementation

function dreverse (n: integer): integer;

var reverse: integer;

{
n Â 0&n =

[
64∑

i=0

(10i ∗ a[i])

]
&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0) >

}

200 A. A. Darwish

begin {reverse the order of the digits of a positive integer}

n =

[
64∑

i=0

(10i ∗ a[i]

]
&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0)&∃k′(0 ≤ k′ ≤ 64

&a[k′] Â 0&∀j(j Â k′ ⇒ a[j] = 0))

reverse: =0;

invariant:

∃k′(n =

k′−j∑

i=0

(10i ∗ a[i]

 &n ≥ 0&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0)&0 ≤ k′ ≤ 64&

reverse =
[∑j−1

i=0 (10i ∗ a[k − i]
]
&∀j(j > k′ ⇒ a[j] = 0)&a[k′] > 0)

while n Â 0 do
begin
reverse: = reverse* 10 + n mod 10;
n: = n div 10{invariant}
end;

conclusion: ∃k′ (0 ≤ k′ ≤ 64 & reverse =

k′∑

i=0

(10i ∗ a[k′ − i]

 &

∀j((j > k′) ⇒ (a[j] = 0)) & a[k′] > 0)

dreverse: = reverse
end

To describe the complete proof of correctness for this program, we need to divide this
program into many subprograms (fragments and then prove the correctness of each one as
a separate program). So we have preconditions and postconditions as follows:

Case 1
Precondition:

{
n Â 0&n =

[
64∑

i=0

(10i ∗ a[i])

]
&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0) >

}

Postcondition:

n =

[
64∑

i=0

(10i ∗ a[i]

]
&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0)&∃k′(0 ≤ k′ ≤ 64

&a[k′] Â 0&∀j(j Â k′ ⇒ a[j] = 0))

Statement: empty statement

A Partial Correctness Proof for Programs with Decided Specifications 201

Case 2
Precondition:

n =

[
64∑

i=0

(10i ∗ a[i]

]
&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0)&∃k′(0 ≤ k′ ≤ 64

&a[k′] Â 0&∀j(j Â k′ ⇒ a[j] = 0))

Statement: reverse := 0;
Postcondition:

invariant:

∃k′(n =

k′−j∑

i=0

(10i ∗ a[i]

 &n ≥ 0&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0)&0 ≤ k′ ≤ 64&

reverse =
[∑j−1

i=0 (10i ∗ a[k − i]
]
&∀j(j > k′ ⇒ a[j] = 0)&a[k′] > 0)

Case 3
Precondition:

assert:

∃k′(n =

k′−j∑

i=0

(10i ∗ a[i]

 &n ≥ 0&∀i(0 ≤ i ≤ 64 ⇒ a[i] ≥ 0)&0 ≤ k′ ≤ 64&

reverse =
[∑j−1

i=0 (10i ∗ a[k − i]
]
&∀j(j > k′ ⇒ a[j] = 0)&a[k′] > 0)&n Â 0

Program: reverse := reverse ∗ 10 + nmod 10; n := n div 10
Postcondition:

{invariant}

Case 4
Precondition:

{invariant &¬ (n Â 0)}
Postcondition:

conclusion: ∃k′ (0 ≤ k′ ≤ 64 & reverse =

k′∑

i=0

(10i ∗ a[k′ − i]

 &

∀j((j > k′) ⇒ (a[j] = 0)) & a[k′] > 0)

All cases are correct programs with preconditions and postcondition. So the main pro-
gram is correct. This example refines the example from [3]. One way to relate partial
and total correctness is by the informal equation partial correctness + termination = total
correctness.

For more details of such specification, see [6, 7].

202 A. A. Darwish

References

[1] B. Auernheimer and R. A. Kemmerer, RT-ASLAN: A specification language for real-
time systems, IEEE Transactions on Software Engineering, 12(1986), 879-889.

[2] A. K. McIver and C. Morgan, Partial correctness for probabilistic demonic programs,
Theoretical Computer Science, 266(2001), 513-541.

[3] C. C. Morgan, Proof rules for probabilistic loops, in: Proc. BCS-FACS Seventh Re-
finement Workshop, Workshops in Computing, Springer, Berlin, 1996.

[4] A. Coen-Porisini, C. Ghezzi, and R. A. Kemmerer, Specification of realtime systems
using ASTRAL, IEEE Transactions on Software Engineering, 23(1997), 572-598.

[5] R. G. Dromey, How To Solve It By Computer, Prentice Hall International Series in
Computer Science, London, 1982.

[6] E. C. R. Hehner, A Partial Theory of Programming, Springer, 1993.

[7] E. C. R. Hehner, Specifications, Programs, and Total Correctness, Science of Com-
puter Programming (Sci. comput. program.), 34, No. 3, Elsevier, 1999.

[8] R. W. Floyd, Mathematical aspects of computer science, Proceedings of Symposia in
Applied Mathematics, 19-32, 1967.

[9] C. A. R. Hoare, An axiomatic basis for computer programming, Communications of
the ACM 12(1967), 576-583.

[10] K. Slonneger and B. L. Kurtz, Formal Syntax and Semantics of Programming Lan-
guages, Addison-Wesley Publishing Company, USA, 1995.

[11] N. K. Kossovski, Elements of Mathematical Logic and its Application to the Theory of
Sub-recursive Algorithms, Saint Petersburg State University, Saint Petersburg, 1981
(in Russian).

[12] G. Watson and C. Fidge, A partial-correctness semantics for modeling assembler pro-
grams, Software Engineering and Formal Methods Proceeding, 82-90, IEEE, 2003.

