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1 Introduction

The concept of a 2-metric space is a natural generalization of a metric space. It has been
investigated initially by Gahler [4]. Iseki [5] studied the fixed point theorems in 2-metric
spaces. Sessa [17] defined weak commutativity and proved common fixed point theorem
for weakly commuting maps. In [7] Jungck introduced more generalized commuting map-
pings, called compatible mappings, which are more general than commuting and weakly
commuting mappings. This concept has been useful for obtaining more comprehensive
fixed point theorems. In [8,9] Jungck and Rhoades defined the concepts of J-compatible
and weakly compatible mappings, which extend the concept of compatible mappings in the
single-valued setting on metric spaces. Several authors used these concepts to prove some
common fixed point theorems (See, e.g., [13-16]). In this paper we generalized some def-
initions on 2- metric spaces and studied common fixed point theorems for four mappings
on 2- metric spaces.

2 Preliminaries

The concept of a 2-metric space is a natural generalization of a metric space by Gahler

as the following definition.
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Definition 2.1. [4] A 2-metric space is a set with a real-valued function on satisfying the

following conditions:
(1) For distinct points x,y € X, there exists a point ¢ € X such that d(z,y,c) # 0;
(2) d(z,y,c) = 0 if at least two of z,y and c are equal equal;
(3)d(z,y,c) =d(z,c,y) = d(e,y,x);
(4)d(z,y,c) <d(z,y,z) +d(z,z,¢) + d(z,y,¢) Vz,y,¢,z € X.

The function is called a 2-metric for the space X and the pair (X, d) (denotes a 2-
metric space. It has shown by Gahler that a 2-metric d is non-negative and although d is
a continuous function of any one of its three arguments, it need not be continuous in two
arguments. A 2-metric space d which is continuous in all of its arguments is said to be
continuous.

Geometrically a 2-metric d(z,y,c) represents the area of triangle with vertices
z,y and c.

Throughout this paper, let (X, d) be 2-metric space unless mentioned otherwise and
B(X) is the set of all nonempty bounded subset of X.

Definition 2.2. [12] A sequence {x,,} in (X, d) is said to be convergent to a point x in X,
denoted by lim wx, =z if lim d(xn,x,c) =0 forall cin X. The point x is called the
limit of the sequence {z,} in X.

Definition 2.3. [12] A sequence {x,} in (X,d) is said to be Cauchy sequence if lim
d(Tm, Tn,c) =0, forall cin X.

Definition 2.4. [12] The space (X, d) is said to be complete if every Cauchy sequence in

converges to an element in X.

Remark 1. We note that, in a metric space a convergent sequence is a Cauchy sequence
and in a 2-metric space a convergent sequence need not be a Cauchy sequence, but every

convergent sequence is a Cauchy sequence when the 2-metric d is continuous on X [11].

Forall A, B and C in B(X), let 6(A, B, C) be the functions defined by

§5(A,B,C) = sup{d(a,b,c):a€ A,be B,ce C},
d(a,b,C) inf{d(z,y,c) : c € C}.

If A consists of a single point a we write 6(A, B,C) = é(a, B,C), if B and C con-
sist of a single point b and ¢ respectively, we write 6(A, B,C) = d(a,b,c). It follows

immediately from the definition that



Common Fixed Point Theorems 187

d(A,B,C)=96(A,C,B)=06(C,B,A)=6(C,A,B)=4(B,C,A) =6(B,A,C) > 0.
(A, B,C) <6(A,B,E)+0(A, E,C)+(E,B,C). Forall A,B,C and E in B(X)

0(A,B,C) = 0. if at least two of A, B and C consist of equal single points.

Definition 2.5. A sequence A,, of subsets of X is said to be convergent to a subset A of X

if

(i) given a € A, there is a sequence a,, in X such that a,, € A, forn =1,2,3,.... {a,}

converges to a.

(ii) given € > 0, there exists a positive integer N such that A, C A, for n > N where

A is the union of all open spheres with centers in A and radius ¢.

Definition 2.6. The mappings F : X — B(X) and I : X — X are said to be weakly
commuting on X if [IFx € B(X) and

§(Flz,IFz,C) <max{é(Iz, Fx,C),6(IFx,I1Fx,C)} 2.1

Note that if F' is a single-valued mapping, and then the set I F'x consists of a single
point. Therefore, §(IFx,[Fz,C) = d(IFz,IFx,C) = 0 and condition (2.1) reduces to
the condition given by Khan [6] thatis §(F 1z, [Fx,C) < d(Iz, Fz,C). Two commuting
mapping F' and I clearly weakly commuting but the converse is false.

Definition 2.7. [10] Two single-valued mappings f and g of (X, d) into itself are compati-
bleif lim d(fgxn,gfxn,C) =0, whenever {x,} is a sequence in X such that lim fx,

= lim gz, =t, for some t in X.

It can be seen that two weakly commuting mappings are compatible but the converse is
false.

Definition 2.8. The mappings [ : X — X and F : X — B(X) are d-compatible if
lim 0(Flxy, [Fx,,C) = 0 whenever {x,} is a sequence in X such that, [IFx € B(X),

Fz, — {t} and Ix,, — t for some t in X.

Definition 2.9. The mappings I : X — X and F : X — B(X) are weakly compatible
if they commute at coincidence points. i.e. for each point u in X such that, Fu = {Iu},

we have FIu = [ Fu.

Not that the equation F'u = {Iu} implies that F'u is singleton. It can be seen that any

d-compatible pair { F, I} is weakly compatible but the converse is false.
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Definition 2.10. A set-valued mapping F of X into B(X) is said to be continuous at
x € X if the sequence {Fx,} in B(X) converges to Fx whenever {x,,} is a sequence in
X converging to x in X. F is said to be continuous on X. if it is continuous at every point
in X.

In [2], Fisher proved the following theorem:

Theorem 2.11. Let F, G be mappings of X into B(X) and I, J be mappings of X into
itself satisfying:

0(Fz,Gy) < cmax{d(Iz, Jy),(Iz, Fx),6(Jy,Gy)}, forall x,y € X

where 0 < ¢ < 1. If F' commutes with I and G commutes with J, G(x) C I(z), F(z) C
J(x) and I or J is continuous, then F, G, I and J have a unique common fixed point u in
X.

Also, Fisher [2] proved the following theorem on compact metric space:

Theorem 2.12. Let F', G be continuous mapping of a compact metric space (X,d) into
B(X) and I, J continuous mapping of X into itself satisfying the inequality:

§(Fz,Gy) < cmax{d(Iz, Jy),d(Iz, Fz),5(Jy, Gy)}, (22)

for all x,y € X for which the right hand side of the inequality (2.2) is positive. If the
mappings F and I commute, G and J commute and G(X) C I(X), F(X) C J(X), then
there is a unique point u in X such that Fu = Gu = {u} = {Iu} = {Ju}.

The main aim of the present paper is to prove common fixed point theorems on 2-metric
spaces.

3 Some Auxiliary Lemmas and the Main Theorems

Let I, J be mappings from 2-metric space (X, d) into itself and F, G : X — B(X)
set-valued mappings such that

G(z) CI(zx) and F(z)C J(z) 3.1)
Also, the mappings F, G, J and I satisfy the following inequality:
0(Fz,Gy,C) < kmax{d(Iz, Jy,C),é(Iz,Gy,C),5(Jy, Gy, C)}, (3.2)

forall z,yin X and 0 < k < 1.
Since F'(z) C J(x), for an arbitrary point o in X there exists a point z; in X such
that Jz1 € Fxo. Since G(x) C I(x), for this point z; there exist a point z3 in X such
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that x5 € Gxq and so on. Consequently, we can define a sequence {y,, } in X such that
Jxont1 € Fxo, = yon and Ixop 19 € GXopi1 = Yont1, foralln =1,2,3, ...

In the following we introduce some auxiliary lemmas are useful in the sequel.

Lemma 3.1. Suppose that I, J be mappings from (X,d) into itself and F,G : X —
B(X) set-valued mappings such that conditions (3.1) and (3.2) are satisfying. Then for
everyn € N, we have 6(yn7 Yn+1, yn+2) =0.

Proof. Since d(Yan+2,Y2nt1,Y2n) = 0(FTani2, GTani1,y2,) and by using (3.2), we
have

6(y2n+27 Yon+1, y2n)

0(Fxont2, GTanit, Yon)

IN

¢ max{d(Izant2, [Zont1,Y2n), 0 ([T2nt2, FTont2, Yon), 6(JTont1, GTont1,Y2n)}

IN

c maX{5(y2n+1 y Yon, Y2n ) , 5(yzn+1 y Yoan+-2, y2n) , 5(y2m Yoan+1, an) },

Thus, we have (1 — C)5<y2n+27y2n+17y2n> S 0. Then 5(y2n+27y2n+17y2n) = 0.
Similarly, we have 6(y2n+1, Y2n+2, Yon+s) = 0. Hence 6(yn, Ynt1, Ynt2) = 0. O

Lemma 3.2. If{A,,} and {B,,} are sequences in B(X) converging to A and B in B(X),
respectively. Then the sequence {0(A,,, B,,,C)} converges to 6(A, B, C).

Proof. Since A,, — A, B,, — B and
d(apn, by, c) < d(an,a,c) + d(ap, by, a) + d(a,b,c) + d(b, by, c) + d(a, b,, b)

we have d(ay,, by, c) < d(a,b,c), | supd(an, by, c) —supd(a,b,c) |=0.

Since §(A,, By, C) = sup{d(an,bn,c) : an € Ap, by € Bp,c € C}, (A, B,C) =
sup{d(a,b,c) : a € A,b € B,c € C}. Then the sequence {6(A,, By, C)} converges to
5(4,B,C). O

Now we can introduce the main theorems:

Theorem 3.3. Let F, G be mappings of X into B(X) and I, J be mappings of X into itself
satisfying:
Glx) C I(2), P(x) C J(x) (3:3)

0(Fz,Gy,C) < kmax{d(Iz,Jy,C),6(Iz, Fx,C),5(Jy, Gy, C)}, (3.4)

forall x,y € X where 0 < k < 1. If both pairs {F, I} and {G, J} are weakly compatible
and one of I(X) or J(X) is complete. Then F,G,I and J have a unique common fixed
point u in X.
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Proof. Let x( be an arbitrary point in X. By (3.3), we chose a point 1 in X such that
Jx1 € Fxy. For this point z; there exist a point x5 in X such that [xo € Gz1 and so on.
Inductively, we can define a sequence {y,, } in X such that

JTont1 € Fron = Yon, [Tont2 € GTony1 = Yont1 (3.9

foralln = 0,1,2,... . For simplicity, we put V,, = 6(yn, yn+1,C), By using (3.4), we

have
Vo = 8(yan, Y2n+1,C) = §(Frapn, Grapi1, C)
< k max{d(Izan, Jxoni1,C),0(Ixapn, Fro,, C),(Jxoni1, Gxoani1,C)}
<k max{d(Gron—1, Fxo,,C),0(Gxon_1, Fropn,C),(Frapn, GTapni1,C)}
<k max{d(y2n—1,Y2n, C),8(Y2n, Y2n+1,C)}
<k max{Va, 1, Vo, }.

If Vo1 < Vay, thus (1 — k)Va, < 0. Since 0 < k < 1, thus Vo, < 0, this is a
contradiction implies
V2n S k‘/2n—1; (36)

Vant1 = 6(y2n+1,Y2nt2, C) = 6(Frant1, Granta, O)

k max{d(Izony1, JTont2, C),0(ITonp, Fxonie, C),d(Jxanto, GTonie, C)}
< k max{6(y2n, y2n+1,C), 0(Y2n+1,Y2n+2, C) }

< k max{Vap, Vant1}-

IA

N

Similarly, we obtain that
Vang1 < kVay, 3.7

foralln = 0,1,2,---. By (3.6) and (3.7), we have V;,, < kV,,_1 < k?V,,_o < --- < k"V},.
Then
lim V,, = lim 6(yn,Ynt1,C) =0. (3.8)

n—oo

For all n < m, we have that

6(yn7 Ym, C) S 6(yn7 Yn+1, yn+2) + 6(yn+17 Yn+2, yn+3) + -
+  0(Um—2,Ym—1,Ym) + 6(Ym—1,Ym, C).

By taking the limit as n, m — oo and using Lemma 3.1 and (3.8), we obtain that
lim 6(yn, ym,C) = 0.

Then {y,} is Cauchy sequence in X. Suppose that J(X) is complete. Let {z,} be the
sequence defined by Jxo, 11 € Fxa, = yop, foralln =0,1,2,---.
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Since  lim d(Jromy1, JTom11,C) < lim_ §(Jwop,, Jo2,, C) = 0, the sequence

n,m—

{Jx2n+1} is Cauchy and hence Jra,41 — p = Jv € J(X), for some v € X. But
Jxon € Gxopn_1 = Yon_1, SO We obtain

lim d(1x2na JTont1, O) < nILH;o 5(2/271—1, Yan, C) =0.

n,m— o0

Consequently, Ix3,, — p. Moreover, we obtain
6(F$2n7p7 C) S 5(F$2n7 IxQny C) + 5([3327“]7, C) + 5(Fx2n,p, I$2n)-
Therefore, we have that lim §(Fxap,, p, C) = 0. Similarly, we have

lim 6(Gzop—1,p,C) =0

n—oo

Since 6(Fxzap,, Gv,C) <  kmax{d(Ixe,, Jv,C),8(Izan, Frao,, C),6(Jv,Gu,C)},
d(Izap,Gv,C) — §(p,Gv,C). When, [z, — p, we get as n — oo, (1 —
k)o(p, Gv,C) < 0. Hence Gv = {p} = {Jv}.

Since G(x) C I(x), so u € X exists such that {Iu} = Gv = {Jv}.

Now if F'u # G, this implies that 6(F'u, Gv, C') # 0, so that we have

§(Fu,Gu,C) < kmax{d(Iu, Jv,C),0(ITu, Fu,C),d(Jv, Gv,C)}.

Then Fu = {p} = Gv = {Iu} = {Jv}. Since Fu = {Iu} and the pair {F, I} is weakly
compatible, we obtain Fip = FIu = I Fu = {Ip}. By using (3.2), we obtain

8(Fp,p,C) < 6(Fp,Gv,C)
< kmax{d(Ip, Jv,C),5(Ip, Fp,C),6(Jv,Gv,C)}

A

Then Fp = {p} = {Ip}. Similarly, Gp = {p} = {Jp} if the pair {G, J} is weakly
compatible, we obtain {p} = {Ip} = {Jp} = Fp = Gp. Similarly, if I(X) is complete.

Now, we prove the uniqueness. To see the point p is unique, suppose that w is another
common fixed point of F, G, J and I with w # p. Then we have

d(p,w,C) < §(Fp,Guw,C)
< kwmax{d(Ip, Jw,C),5(Ip, Fp,C),é(Jw, Gw,C)}
< kd(p,w,C).
This implies that w = p. O

Theorem 3.4. Let I, J be function of a compact 2-metric space (x, d) into itself and F, G :
X — B(X) two set-valued functions with G(x) C I(x), F(x) C J(x). Suppose that the
inequality:

0(Fz,Gy,C) < max{d(Iz, Jy,C),é(Iz, Fz,C),§(Jy, Gy, C)}, (3.9
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forall x,y € X holds whenever the right hand side of the inequality (3.9) is positive. If the
pairs {F, I} and {G, J} are weakly compatible, and if the function F and I are continuous,
then there is a unique point u in X such that

Fu=Gu={u} = {Iu} = {Ju}.

Proof. Letn = in);f {6(Ix,Fx,C)}. Since X is a compact 2-metric space, there is a con-
xXE
vergent sequence {x,, } with limit 2 in X such that

0(Izy, Fa,,C) — n as n — oo.
Since

5(I$O,F$0,C)

IN

d(Izg, [2,,C) + §(Izp, Fxo,C) + 6(Ix0, Fxo, I1)
d(Izg, Iz, C) + 6(Ixy, Fry, C) + 0(Fry, Fxg, C)
+ 0(Ixg, Fxo, Fxy) + 0(Ixg, Fxo, Ixy,)

A

by the continuity of /" and I and lim ,, = xo, we get (Ixo, Fxg,C) < 1 and thus
0(Izg, Fxg,C) =n.

Since F(X) C J(X), there exists a point yo in X with Jyg € Fao and §(1zg, Jyo, C) <
n. If n > 0. By (3.9), we obtain
5(Jy0, Gyo, C) S d(Fxo, Gyo, C)
< max{d(Izg, Jyo,C),0(Izg, Fxo,C),5(Jx0, Gyo, C)}
maX{% 6(']1:07 Gy07 C)}7

A

which implies that 6 (Jyo, Gyo, C) < 1.
Since G(X) C I(X), there exists a point zq in X with Izg € Gyg and 6(1 29, Jyo, C) < .
Hence

IN

US(S(IZO,FZO,C) (5(F20,Gy0,0)
max{d(Izg, Jyo,C), (120, F20,C), 5(Jyo, Gyo, C)}

5(IZO,FZO,C).

N

A

This contradiction demands that = 0. Therefore, we have Gyo = {Jyo} = Fxo =
{Izo} = {Iz0}. Since F and I are weakly compatible and Fzg = {Ixo}, we obtain
F22y = Flxg = [Fxg = {I%x0}. If I?x¢ # Ix(, then we have

§(IPx, I20,C) = 6(F?%x0,Gyo,C)
max{d(IFxq, Jyo,C), (I Fxq, F*zo,C),(Jyo, Gyo, C)}
§(Ixq, Ixg, C).

N



Common Fixed Point Theorems 193

So we have I?zg = Ixg, and hence Flzg = {Izg} = {I?z0}. Similarly, we have
GJyo = {Jyo} = {J?yo}. Letu = Ixg = Jyo, thus Fu = {u} = {Iu} = {Ju} = Gu.
Suppose that the point ¥ in X is a common fixed point of F,G,J and I. If either
d(y, Fy,C) # 0or (y, Gy, C) # 0, then we have that

§(y, Fy,C) < O6(Fy,Gy,C)
< max{d(ly,Jy,C),é(ly, F'y,C),6(Jy, Gy,C)}
< max{d(y, Fy,C),d(y,Gy,C)}.

This implies that 6(y, Fy, C) < é(y, Gy, C). By symmetry, we have that 6(y, Gy, C) <
d(y, Fy, C), which is impossible. So é(y, F'y, C) = é(y, Gy, C), and Fy = Gy = {y}.

Now, we prove the uniqueness. Let y, v in X are two common fixed points of F', G, J
and [ with y # w. On using (3.9), we have that

d(y,u,C) = 6(Fy,Gu,C)
< max{d(ly, Ju,C),é(1y, Fu,C),6(Ju, Gu,C)}
< d(y,u,C).

This implies that y = w. Then F, G, J and I have a unique common fixed pointin X. [
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