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1 Introduction

The concept of a 2-metric space is a natural generalization of a metric space. It has been
investigated initially by Gähler [4]. Iseki [5] studied the fixed point theorems in 2-metric
spaces. Sessa [17] defined weak commutativity and proved common fixed point theorem
for weakly commuting maps. In [7] Jungck introduced more generalized commuting map-
pings, called compatible mappings, which are more general than commuting and weakly
commuting mappings. This concept has been useful for obtaining more comprehensive
fixed point theorems. In [8,9] Jungck and Rhoades defined the concepts of δ-compatible
and weakly compatible mappings, which extend the concept of compatible mappings in the
single-valued setting on metric spaces. Several authors used these concepts to prove some
common fixed point theorems (See, e.g., [13-16]). In this paper we generalized some def-
initions on 2- metric spaces and studied common fixed point theorems for four mappings
on 2- metric spaces.

2 Preliminaries

The concept of a 2-metric space is a natural generalization of a metric space by Gähler
as the following definition.
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Definition 2.1. [4] A 2-metric space is a set with a real-valued function on satisfying the
following conditions:

(1) For distinct points x, y ∈ X , there exists a point c ∈ X such that d(x, y, c) 6= 0;

(2) d(x, y, c) = 0 if at least two of x, y and c are equal equal;

(3) d(x, y, c) = d(x, c, y) = d(c, y, x);

(4) d(x, y, c) ≤ d(x, y, z) + d(x, z, c) + d(z, y, c) ∀ x, y, c, z ∈ X .

The function is called a 2-metric for the space X and the pair (X, d) (denotes a 2-
metric space. It has shown by Gähler that a 2-metric d is non-negative and although d is
a continuous function of any one of its three arguments, it need not be continuous in two
arguments. A 2-metric space d which is continuous in all of its arguments is said to be
continuous.

Geometrically a 2-metric d(x, y, c) represents the area of triangle with vertices
x, y and c.

Throughout this paper, let (X, d) be 2-metric space unless mentioned otherwise and
B(X) is the set of all nonempty bounded subset of X .

Definition 2.2. [12] A sequence {xn} in (X, d) is said to be convergent to a point x in X ,
denoted by lim

n→∞ xn = x if lim
n→∞ d(xn, x, c) = 0 for all c in X . The point x is called the

limit of the sequence {xn} in X .

Definition 2.3. [12] A sequence {xn} in (X, d) is said to be Cauchy sequence if lim
n→∞

d(xm, xn, c) = 0, for all c in X .

Definition 2.4. [12] The space (X, d) is said to be complete if every Cauchy sequence in
converges to an element in X .

Remark 1. We note that, in a metric space a convergent sequence is a Cauchy sequence
and in a 2-metric space a convergent sequence need not be a Cauchy sequence, but every
convergent sequence is a Cauchy sequence when the 2-metric d is continuous on X [11].

For all A, B and C in B(X), let δ(A,B, C) be the functions defined by

δ(A,B, C) = sup{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C},
d(a, b, C) = inf{d(x, y, c) : c ∈ C}.

If A consists of a single point a we write δ(A,B, C) = δ(a,B, C), if B and C con-
sist of a single point b and c respectively, we write δ(A,B,C) = δ(a, b, c). It follows
immediately from the definition that
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δ(A,B, C) = δ(A,C,B) = δ(C, B, A) = δ(C, A,B) = δ(B,C, A) = δ(B, A,C) ≥ 0.

δ(A,B, C) ≤ δ(A,B, E) + δ(A,E, C) + δ(E,B,C). For all A,B, C and E in B(X)

δ(A,B, C) = 0. if at least two of A, B and C consist of equal single points.

Definition 2.5. A sequence An of subsets of X is said to be convergent to a subset A of X

if

(i) given a ∈ A, there is a sequence an in X such that an ∈ An for n = 1, 2, 3, .... {an}
converges to a.

(ii) given ε > 0, there exists a positive integer N such that An ⊆ Aε for n > N where
Aε is the union of all open spheres with centers in A and radius ε.

Definition 2.6. The mappings F : X −→ B(X) and I : X −→ X are said to be weakly
commuting on X if IFx ∈ B(X) and

δ(FIx, IFx,C) ≤ max{δ(Ix, Fx, C), δ(IFx, IFx, C)} (2.1)

Note that if F is a single-valued mapping, and then the set IFx consists of a single
point. Therefore, δ(IFx, IFx, C) = d(IFx, IFx, C) = 0 and condition (2.1) reduces to
the condition given by Khan [6] that is δ(FIx, IFx,C) ≤ d(Ix, Fx, C). Two commuting
mapping F and I clearly weakly commuting but the converse is false.

Definition 2.7. [10] Two single-valued mappings f and g of (X, d) into itself are compati-
ble if lim

n→∞ d(fgxn, gfxn, C) = 0, whenever {xn} is a sequence in X such that lim
n→∞ fxn

= lim
n→∞ gxn = t, for some t in X .

It can be seen that two weakly commuting mappings are compatible but the converse is
false.

Definition 2.8. The mappings I : X −→ X and F : X −→ B(X) are δ-compatible if
lim

n→∞ δ(FIxn, IFxn, C) = 0 whenever {xn} is a sequence in X such that, IFx ∈ B(X),
Fxn −→ {t} and Ixn −→ t for some t in X .

Definition 2.9. The mappings I : X −→ X and F : X −→ B(X) are weakly compatible
if they commute at coincidence points. i.e. for each point u in X such that, Fu = {Iu},
we have FIu = IFu.

Not that the equation Fu = {Iu} implies that Fu is singleton. It can be seen that any
δ-compatible pair {F, I} is weakly compatible but the converse is false.
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Definition 2.10. A set-valued mapping F of X into B(X) is said to be continuous at
x ∈ X if the sequence {Fxn} in B(X) converges to Fx whenever {xn} is a sequence in
X converging to x in X . F is said to be continuous on X . if it is continuous at every point
in X .

In [2], Fisher proved the following theorem:

Theorem 2.11. Let F , G be mappings of X into B(X) and I, J be mappings of X into
itself satisfying:

δ(Fx,Gy) ≤ c max{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)}, for all x, y ∈ X

where 0 ≤ c < 1. If F commutes with I and G commutes with J , G(x) ⊆ I(x), F (x) ⊆
J(x) and I or J is continuous, then F,G, I and J have a unique common fixed point u in
X .

Also, Fisher [2] proved the following theorem on compact metric space:

Theorem 2.12. Let F , G be continuous mapping of a compact metric space (X, d) into
B(X) and I, J continuous mapping of X into itself satisfying the inequality:

δ(Fx, Gy) < c max{d(Ix, Jy), δ(Ix, Fx), δ(Jy, Gy)}, (2.2)

for all x, y ∈ X for which the right hand side of the inequality (2.2) is positive. If the
mappings F and I commute, G and J commute and G(X) ⊂ I(X), F (X) ⊂ J(X), then
there is a unique point u in X such that Fu = Gu = {u} = {Iu} = {Ju}.

The main aim of the present paper is to prove common fixed point theorems on 2-metric
spaces.

3 Some Auxiliary Lemmas and the Main Theorems

Let I , J be mappings from 2-metric space (X, d) into itself and F, G : X −→ B(X)
set-valued mappings such that

G(x) ⊆ I(x) and F (x) ⊆ J(x) (3.1)

Also, the mappings F, G, J and I satisfy the following inequality:

δ(Fx, Gy, C) ≤ k max{d(Ix, Jy, C), δ(Ix,Gy, C), δ(Jy,Gy, C)}, (3.2)

for all x, y in X and 0 ≤ k < 1.
Since F (x) ⊆ J(x), for an arbitrary point x0 in X there exists a point x1 in X such

that Jx1 ∈ Fx0. Since G(x) ⊆ I(x), for this point x1 there exist a point x2 in X such
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that Ix2 ∈ Gx1 and so on. Consequently, we can define a sequence {yn} in X such that
Jx2n+1 ∈ Fx2n = y2n and Ix2n+2 ∈ Gx2n+1 = y2n+1, for all n = 1, 2, 3, ... .

In the following we introduce some auxiliary lemmas are useful in the sequel.

Lemma 3.1. Suppose that I , J be mappings from (X, d) into itself and F, G : X −→
B(X) set-valued mappings such that conditions (3.1) and (3.2) are satisfying. Then for
every n ∈ N , we have δ(yn, yn+1, yn+2) = 0.

Proof. Since δ(y2n+2, y2n+1, y2n) = δ(Fx2n+2, Gx2n+1, y2n) and by using (3.2), we
have

δ(y2n+2, y2n+1, y2n)

= δ(Fx2n+2, Gx2n+1, y2n)

≤ c max{d(Ix2n+2, Ix2n+1, y2n), δ(Ix2n+2, Fx2n+2, y2n), δ(Jx2n+1, Gx2n+1, y2n)}
≤ c max{δ(y2n+1, y2n, y2n), δ(y2n+1, y2n+2, y2n), δ(y2n, y2n+1, y2n)},

Thus, we have (1 − c)δ(y2n+2, y2n+1, y2n) ≤ 0. Then δ(y2n+2, y2n+1, y2n) = 0.
Similarly, we have δ(y2n+1, y2n+2, y2n+3) = 0. Hence δ(yn, yn+1, yn+2) = 0.

Lemma 3.2. If {An} and {Bn} are sequences in B(X) converging to A and B in B(X),
respectively. Then the sequence {δ(An, Bn, C)} converges to δ(A,B, C).

Proof. Since An −→ A, Bn −→ B and

d(an, bn, c) ≤ d(an, a, c) + d(an, bn, a) + d(a, b, c) + d(b, bn, c) + d(a, bn, b)

we have d(an, bn, c) ≤ d(a, b, c), | sup d(an, bn, c)− sup d(a, b, c) |= 0.
Since δ(An, Bn, C) = sup{d(an, bn, c) : an ∈ An, bn ∈ Bn, c ∈ C}, δ(A,B,C) =

sup{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C}. Then the sequence {δ(An, Bn, C)} converges to
δ(A,B, C).

Now we can introduce the main theorems:

Theorem 3.3. Let F,G be mappings of X into B(X) and I, J be mappings of X into itself
satisfying:

G(x) ⊆ I(x), F (x) ⊆ J(x) (3.3)

δ(Fx, Gy, C) ≤ k max{d(Ix, Jy, C), δ(Ix, Fx,C), δ(Jy, Gy,C)}, (3.4)

for all x, y ∈ X where 0 ≤ k < 1. If both pairs {F, I} and {G, J} are weakly compatible
and one of I(X) or J(X) is complete. Then F, G, I and J have a unique common fixed
point u in X .
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Proof. Let x0 be an arbitrary point in X . By (3.3), we chose a point x1 in X such that
Jx1 ∈ Fx0. For this point x1 there exist a point x2 in X such that Ix2 ∈ Gx1 and so on.
Inductively, we can define a sequence {yn} in X such that

Jx2n+1 ∈ Fx2n = y2n, Ix2n+2 ∈ Gx2n+1 = y2n+1 (3.5)

for all n = 0, 1, 2, ... . For simplicity, we put Vn = δ(yn, yn+1, C), By using (3.4), we
have

V2n = δ(y2n, y2n+1, C) = δ(Fx2n, Gx2n+1, C)

≤ k max{d(Ix2n, Jx2n+1, C), δ(Ix2n, Fx2n, C), δ(Jx2n+1, Gx2n+1, C)}
≤ k max{δ(Gx2n−1, Fx2n, C), δ(Gx2n−1, Fx2n, C), δ(Fx2n, Gx2n+1, C)}
≤ k max{δ(y2n−1, y2n, C), δ(y2n, y2n+1, C)}
≤ k max{V2n−1, V2n}.

If V2n−1 ≤ V2n, thus (1 − k)V2n ≤ 0. Since 0 ≤ k < 1, thus V2n ≤ 0, this is a
contradiction implies

V2n ≤ kV2n−1, (3.6)

V2n+1 = δ(y2n+1, y2n+2, C) = δ(Fx2n+1, Gx2n+2, C)

≤ k max{d(Ix2n+1, Jx2n+2, C), δ(Ix2n+1, Fx2n+2, C), δ(Jx2n+2, Gx2n+2, C)}
≤ k max{δ(y2n, y2n+1, C), δ(y2n+1, y2n+2, C)}
≤ k max{V2n, V2n+1}.

Similarly, we obtain that
V2n+1 ≤ kV2n, (3.7)

for all n = 0, 1, 2, · · · . By (3.6) and (3.7), we have Vn ≤ kVn−1 ≤ k2Vn−2 ≤ · · · ≤ knV0.
Then

lim
n→∞

Vn = lim
n→∞

δ(yn, yn+1, C) = 0. (3.8)

For all n < m, we have that

δ(yn, ym, C) ≤ δ(yn, yn+1, yn+2) + δ(yn+1, yn+2, yn+3) + · · ·
+ δ(ym−2, ym−1, ym) + δ(ym−1, ym, C).

By taking the limit as n,m −→∞ and using Lemma 3.1 and (3.8), we obtain that

lim
n→∞

δ(yn, ym, C) = 0.

Then {yn} is Cauchy sequence in X . Suppose that J(X) is complete. Let {xn} be the
sequence defined by Jx2n+1 ∈ Fx2n = y2n, for all n = 0, 1, 2, · · · .
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Since lim
n,m→∞ d(Jx2m+1, Jx2n+1, C) ≤ lim

n,m→∞ δ(Jx2m, Jx2n, C) = 0, the sequence
{Jx2n+1} is Cauchy and hence Jx2n+1 −→ p = Jv ∈ J(X), for some v ∈ X . But
Jx2n ∈ Gx2n−1 = y2n−1, so we obtain

lim
n,m→∞

d(Ix2n, Jx2n+1, C) ≤ lim
n→∞

δ(y2n−1, y2n, C) = 0.

Consequently, Ix2n −→ p. Moreover, we obtain

δ(Fx2n, p, C) ≤ δ(Fx2n, Ix2n, C) + δ(Ix2n, p, C) + δ(Fx2n, p, Ix2n).

Therefore, we have that lim
n→∞ δ(Fx2n, p, C) = 0. Similarly, we have

lim
n→∞

δ(Gx2n−1, p, C) = 0

Since δ(Fx2n, Gv,C) ≤ k max{d(Ix2n, Jv, C), δ(Ix2n, Fx2n, C), δ(Jv,Gv, C)},
δ(Ix2n, Gv, C) −→ δ(p, Gv,C). When, Ixn −→ p, we get as n −→ ∞, (1 −
k)δ(p,Gv, C) ≤ 0. Hence Gv = {p} = {Jv}.

Since G(x) ⊆ I(x), so u ∈ X exists such that {Iu} = Gv = {Jv}.
Now if Fu 6= Gv, this implies that δ(Fu,Gv, C) 6= 0, so that we have

δ(Fu, Gv,C) ≤ k max{d(Iu, Jv, C), δ(Iu, Fu,C), δ(Jv, Gv, C)}.

Then Fu = {p} = Gv = {Iu} = {Jv}. Since Fu = {Iu} and the pair {F, I} is weakly
compatible, we obtain Fp = FIu = IFu = {Ip}. By using (3.2), we obtain

δ(Fp, p, C) ≤ δ(Fp,Gv, C)

≤ k max{d(Ip, Jv, C), δ(Ip, Fp, C), δ(Jv, Gv,C)}

Then Fp = {p} = {Ip}. Similarly, Gp = {p} = {Jp} if the pair {G, J} is weakly
compatible, we obtain {p} = {Ip} = {Jp} = Fp = Gp. Similarly, if I(X) is complete.

Now, we prove the uniqueness. To see the point p is unique, suppose that w is another
common fixed point of F,G, J and I with w 6= p. Then we have

d(p, w, C) ≤ δ(Fp,Gw, C)

≤ k max{d(Ip, Jw, C), δ(Ip, Fp, C), δ(Jw,Gw, C)}
≤ kd(p, w, C).

This implies that w = p.

Theorem 3.4. Let I, J be function of a compact 2-metric space (x, d) into itself and F, G :
X −→ B(X) two set-valued functions with G(x) ⊆ I(x), F (x) ⊆ J(x). Suppose that the
inequality:

δ(Fx, Gy, C) < max{d(Ix, Jy, C), δ(Ix, Fx,C), δ(Jy, Gy,C)}, (3.9)
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for all x, y ∈ X holds whenever the right hand side of the inequality (3.9) is positive. If the
pairs {F, I} and {G, J} are weakly compatible, and if the function F and I are continuous,
then there is a unique point u in X such that

Fu = Gu = {u} = {Iu} = {Ju}.

Proof. Let η = inf
x∈X

{δ(Ix,Fx, C)}. Since X is a compact 2-metric space, there is a con-
vergent sequence {xn} with limit x0 in X such that

δ(Ixn, Fxn, C) −→ η as n −→∞.

Since

δ(Ix0, Fx0, C) ≤ d(Ix0, Ixn, C) + δ(Ixn, Fx0, C) + δ(Ix0, Fx0, Ixn)

≤ d(Ix0, Ixn, C) + δ(Ixn, Fxn, C) + δ(Fxn, Fx0, C)

+ δ(Ix0, Fx0, Fxn) + δ(Ix0, Fx0, Ixn)

by the continuity of F and I and lim
n→∞ xn = x0, we get δ(Ix0, Fx0, C) ≤ η and thus

δ(Ix0, Fx0, C) = η.

Since F (X) ⊂ J(X), there exists a point y0 in X with Jy0 ∈ Fx0 and δ(Ix0, Jy0, C) ≤
η. If η > 0. By (3.9), we obtain

δ(Jy0, Gy0, C) ≤ d(Fx0, Gy0, C)

< max{d(Ix0, Jy0, C), δ(Ix0, Fx0, C), δ(Jx0, Gy0, C)}
< max{η, δ(Jx0, Gy0, C)},

which implies that δ(Jy0, Gy0, C) ≤ η.
Since G(X) ⊂ I(X), there exists a point z0 in X with Iz0 ∈ Gy0 and δ(Iz0, Jy0, C) ≤ η.
Hence

η ≤ δ(Iz0, F z0, C) ≤ δ(Fz0, Gy0, C)

< max{d(Iz0, Jy0, C), δ(Iz0, F z0, C), δ(Jy0, Gy0, C)}
< δ(Iz0, F z0, C).

This contradiction demands that η = 0. Therefore, we have Gy0 = {Jy0} = Fx0 =
{Ix0} = {Iz0}. Since F and I are weakly compatible and Fx0 = {Ix0}, we obtain
F 2x0 = FIx0 = IFx0 = {I2x0}. If I2x0 6= Ix0, then we have

δ(I2x0, Ix0, C) = δ(F 2x0, Gy0, C)

< max{d(IFx0, Jy0, C), δ(IFx0, F
2x0, C), δ(Jy0, Gy0, C)}

= δ(I2x0, Ix0, C).
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So we have I2x0 = Ix0, and hence FIx0 = {Ix0} = {I2x0}. Similarly, we have
GJy0 = {Jy0} = {J2y0}. Let u = Ix0 = Jy0, thus Fu = {u} = {Iu} = {Ju} = Gu.
Suppose that the point y in X is a common fixed point of F, G, J and I . If either
δ(y, Fy, C) 6= 0 or δ(y, Gy,C) 6= 0, then we have that

δ(y, Fy, C) ≤ δ(Fy,Gy, C)

< max{d(Iy, Jy, C), δ(Iy, Fy, C), δ(Jy, Gy, C)}
< max{d(y, Fy, C), δ(y, Gy, C)}.

This implies that δ(y, Fy, C) < δ(y, Gy, C). By symmetry, we have that δ(y, Gy,C) <

δ(y, Fy, C), which is impossible. So δ(y, Fy, C) = δ(y, Gy,C), and Fy = Gy = {y}.
Now, we prove the uniqueness. Let y, u in X are two common fixed points of F,G, J

and I with y 6= u. On using (3.9), we have that

d(y, u, C) = δ(Fy, Gu,C)

< max{d(Iy, Ju, C), δ(Iy, Fu, C), δ(Ju,Gu, C)}
< d(y, u, C).

This implies that y = u. Then F, G, J and I have a unique common fixed point in X .
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