
Applied Mathematics & Information Sciences 1(2)(2007), 173-183
— An International Journal
c©2007 Dixie W Publishing Corporation, U. S. A.

On a Problem of Large-Amplitude Oscillation of a Non-linear

Conservative System with Inertia and Static Non-linearity

G. M. Abd El-Latif

Mathematics Departement, Faculty of Science, Sohag, Egypt
Email Address: gamalm57@yahoo.com

Received 28 Nov. 2006; Accepted 1 Mar. 2007

In this paper we will study the non-linear oscillation of a conservative system hav-
ing inertia and static non-linearities. By combining the linearization of the governing
equation with the method of harmonic balance, we investigate analytical approximate
solutions for the non-linear oscillations of the system. Unlike the classical harmonic
balance method, linearization is performed prior to proceeding with harmonic balanc-
ing, thus resulting in a set of linear algebraic equations instead of one of non-linear
algebraic equations. Hence, we are able to establish analytical approximate formulas
for the exact frequency and periodic solution. These analytical approximate formulas
show excellent agreement with the exact solutions, and are valid for small as well as
large amplitudes of oscillation.
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1 Introduction:

Perturbation method [1-5] is one of the most widely applied analytic tools for non-
linear problem. The perturbation methods are, in principle, for solving problems with
small parameter. In that case, the solution is analytically expanded in a power series of the
parameter. The coefficients of the series are found as solutions of a set of linear problems.
However, in both science and engineering, there exist many non-lineare problems in which
parameters are not small. Also an analytical approximation given by perturbation method
has, in most cases, a small range of validity, but one is often interested in the large parameter
reoime of the theory under study.

The applications of the perturbation methods have been extended to oscillators with
strong non-linearity [6,7]. However, the algebraic manipulation of the perturbation pro-
cedures involves excessive labor. Recently, a power-series method has been developed
[8] and extended to the conservative oscillator with inertia and static non-linearities [9],
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which simulates the uni-modal large-amplitude free vibration of a cantilever beam carry-
ing an intermediate lumped mass with a rotary inertia [10]. The method may be used to
achieve numerical solutions in the regime of relatively large amplitude of oscillation where
the usual perturbation method fails. But the method cannot give analytical approximate
expressions for the exact frequency and periodic solution. There exist some approaches,
such as the method of harmonic balance [1,2, 5, 11-13], sometimes capable of producing
analytical approximations to the frequency and periodic solution of non-linear oscillation.
These approximate solution are valid even for rather large amplitude of oscillation. How-
ever, it is usually rather difficult to apply these methods to produce higher-order analytical
approximations to the exact frequency and periodic solution. This is due to the fact that,
for a given initial condition, a set of non-linear equations has to be nummerically solved
[13].

In this paper we have got an alternative approach to solving the above-mentioned non-
linear oscillator [9, 10]. The approach is a generalization of a recent work concerning with
the oscillation equation d2u/dt2 + f(u) = 0, where f(u) is an odd non-linear function
[14-17]. By combining the linearization of the governing equation with the method of har-
monic balance, we establish analytical approximate solution for the frequency and periodic
solution of the system. The most interesting features of this new approach are its simplicity
and its very good accuracy in a wide range of amplitude of oscillation.

2 Formulation and Solution Method

Consider the non-linear oscillator

..
u +u + αu4 ..

u +2α
.
u

2
u3 + βu5 = 0, (2.1)

subject to the initial conditions

u(0) = A,
.
u (0) = 0. (2.2)

The over-dot denotes differentiation with respect to time t. This system describes the uni-
modal large-amplitude free vibrsations of a slender inextensible cantilever beam carrying
an intermediate mass with a rotary inertia. The third and fourth terms in equation (2.1)
represent inertia type fifth non-linearity arising form the inextensibility assumption. The
last term is a static-type fifth nonlinearity associated with the potential energy stored in
bending. The modal constants α and β result from the discretization procedure and they
have specific values for each mode as described in [10].

Introduce a new independent variable, τ = ωt, then equations (2.1) and (2.2) become

ω2[(1 + αu4)u′′ + 2αu′2u3] + u + βu5 = 0 (2.3)
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and

u(0) = A, u′(0) = 0, (2.4)

where the prime denotes differentiation with respect to τ . The new independent variable
τ is chosen in such a way that solution of equation (2.3), which satisfies the assigned
initial conditions in equation (2.4), is a periodic function of τ , of period 2π. The period
of the corresponding non-linear oscillation is given by T = 2π/ω. Here, both the periodic
solution u(τ) and frequency ω (also with period T ) depend on A. Based on equation (2.3),
the periodic solution u(τ) has a Fourier series expansion:

u(τ) =
∞∑

n=0

g2n+1 cos[(2n + 1)]τ , (2.5)

which contains only odd multiples of τ .

Following the lowest order harmonic balance method [5,13], a reasonable and simple
initial approximation satisfying initial conditions in equation (2.4) can be taken as

u0(τ) = A cos τ . (2.6)

Here, u0(τ) is a periodic function of τ , of period 2π. Using equation (2.6) leads to the
following Fourier series expansions:

(1+αu4
0)u

′′
0 +2αu3

0u
′2
0 = −(A+

3
8
αA5) cos τ − 7

16
αA5 cos 3τ − 3

16
αA5 cos 5τ , (2.7)

u0 + βu5
0 = (A +

5
8
βA5) cos τ +

5
16

βA5 cos 3τ +
1
16

βA5 cos 5τ . (2.8)

Substituting equation (2.6) into equation (2.3), making use of equations (2.7) and (2.8),
and setting the coefficient of the resulting term cos τ equal to zero give

(A +
5
8
βA5)− (A +

3
8
αA5)ω2 = 0, (2.9)

which can be solved for the first analytical approximate frequency ω0 as a function of A :

ω0(A) =

√
8 + 5βA4

8 + 3αA4
. (2.10)

Therefore, the first analytical approximate periodic solution is given by

u0(τ) = A cos τ , τ = ω0(A)t. (2.11)

Next, we express the periodic solution to equation (2.3) with assigned conditions in
equation (2.4) in the form of u0(τ) + v(τ) which is composed of the harmonic of the
motion. Here, u0(τ) is the main part satisfying initial conditions in equation (2.4), and



176 G. M. Abd El-Latif

v(τ) is the correction part. Making linearization of the governing equations (2.3) and (2.4)
with respect to the correction v(τ) at u(τ) = u0(τ) leads to

ω2[(1 + αu4
0)u

′′
0 + 2αu3

0u
′2
0 ] + u0 + u5

0 + ω2
[
(1 + αu4

0)v
′′

+ 4αu3
0u
′
0v
′ + (4αu3

0u
′′
0 + 6αu′20 u2

0)v
]
+ (1 + 5βu4

0)v = 0 (2.12)

and

v′(0) = 0, (2.13)

where v(τ) is a periodic function of τ ,of period 2π, to be determined later. Solving the
resulting linear equations (2.12) and (2.13) in v(τ) by the method of harmonic balance may
achieve the approximate frequency and periodic solution.

Making use of equation (2.6), we have the following Fourier series expansions:

1 + αu4
0 = (1 +

3
8
αA4) +

1
2
αA4 cos 2τ +

1
8
αA4 cos 4τ , (2.14)

4αu3
0u
′
0 = −αA4 sin 2τ − 1

2
αA4 sin 4τ , (2.15)

4αu3
0u
′′
0 + 6αu′2u2

0 = −3
4
αA4 − 2αA4 cos 2τ − 5

4
αA4 cos 4τ , (2.16)

1 + 5βu4
0 = 1 +

15
8

βA4 +
5
2
βA4 cos 2τ +

5
8
βA4 cos 4τ . (2.17)

To obtain the second approximation to the exact solution, v(τ) in equation (2.12), which
must satisfy the initial conditions in equation (2.13), takes the form

v(τ) = x1(cos τ − cos 3τ). (2.18)

Substituting equations (2.7), (2.8) and (2.14)-(2.18) into equation (2.12), expanding the
expression in a trigonometeric series and setting the coefficients of the resulting items cos τ

and cos 3τ equal to zeros, respectively, yield

(A +
5
8
βA5)− (A +

3
8
αA5)ω2 + [1 +

25
16

βA4 + (−1 +
5
16

αA4)ω2]x1 = 0, (2.19)

5
16

βA5 − (
7
16

αA5)ω2 + [(9 +
31
16

αA4)ω2 − 1− 5
16

βA4]x1 = 0. (2.20)

Eliminating x1 from equations (2.19) and (2.20), we get

∼
A ω4+

∼
B ω2+

∼
C= 0, (2.21)
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where
∼
A= 144A + 92αA5 +

151
16

α2A9, (2.22)

∼
B= −160A− 44αA5 − 100βA5 − 245

8
αβA9, (2.23)

∼
C= 16A + 20βA5 +

175
16

β2A9. (2.24)

Equation (2.21) can be solved for the second analytical approximate frequency ω1 as a
function of A :

ω1(A) =
1√
2

√
2560 + 704αA4 + 1600βA4 + 490αβA8 +

√
∆

2304 + 1472αA4 + 151α2A8
, (2.25)

where

∆ = (2560 + 704αA4 + 1600βA4 + 490αβA8)2

−4(2304 + 1472αA4 + 151α2A8)(256 + 320βA4 + 175β2A8). (2.26)

Here the root of ω2with “ − ” sign preceding
√

∆ has been dropped by inserting the limit
limA→0ω1(A) = 1. Furthermore, x1 in equation (2.18) can be obtained by using either
equation (2.19) or equation (2.20), i. e.

x1(A) = − (16A + 10βA5)− (16A + 6αA5)ω2

(16 + 25βA4) + (−16 + 5αA4)ω2
(2.27)

and the corresponding second analytical approximate periodic solution is given by

u1(τ) = u0(τ) + v(τ) = [A + x1(A)] cos τ − x1(A) cos 3τ , (2.28)

τ = ω1(A)t.

To construct the next approximate solution, we replace v(τ) in equation (2.18) by

v(τ) = y1[cos τ − cos 3τ ] + y2[cos 3τ − cos 5τ ], (2.29)

which satisfies the initial conditions in equation (2.13) at the outset. Substituting equa-
tions (2.7), (2.8), (2.14)-(2.17) and (2.29) into equation (2.12), expanding the expression in
trigonometric series and setting the coefficients of the resulting items [cos τ , cos 3τ , cos 5τ ]
to zeros, respectiviely, give three relations for y1, y2, ω. These can be solved to obtain ω

as a function of A. It should be clear how the procedure works for constructing further
approximate solutions. Since we wish to calculate manually the analytical approximations
to the exact solutions, the number of harmonics as those in equation (2.29) has to be small.
The major reason is the complexity of algebra involved. However, this is not a major re-
striction because, as we will show in the next section, formulas (2.25)-(2.28) are capable
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of providing excellent analytical approximate representations to the exact frequency and
periodic solution for small as well as large amplitudes of oscillation.

Other alternative techniques like the method of harmonic balance my give the first
approximation as those in equations (2.10) and (2.11). However, when the method of
harmonic balance is used to determine higher-order approximations, a set of algebraic
equations with third-order non-linearity has to be solved for each given amplitude A of
oscillation [5,11,13]. The corresponding numerical computation is rather involved and
complicated. In contrast, formulas (2.25)-(2.28) are simple analytical approximate formu-
las and easy to be implemented, and they allow the explicit discussion of the influence of
parameters and initial conditions on the frequency and the corresponding periodic solution.

3 Results and Discussion

In this section, we illustrate the applicability, accuracy and effectiveness of the proposed
approach by comparing the analytical approximate frequency and periodic solution with the
exact solutions.

The non-linear oscillator described in equation (2.1) and (2.2) is a conservative system.
By integrating equation (2.1) and using the initial conditions in equation (2.2), we arrive at

1
2
(1 + αu4)(

du

dt
)2 +

1
2
u2 +

1
6
βu6 =

1
2
A2 +

1
6
βA6, for all t º 0. (3.1)

From the representation above, we have

du

dt
= ±

[
3(A2 − u2) + β(A6 − u6)

3(1 + αu4)

]1/2

. (3.2)

The time required for u to change from 0 to A is one-sixth of the exact period Te(A).
Hence

Te(A) = 4
∫ A

0

[
3(1 + αu4)

3(A2 − u2) + β(A6 − u6)

]1/2

du. (3.3)

Letting u = A cos θ in equation (3.3) leads to

Te(A) = 4
∫ π

2

0

[
3(1 + αA4 cos4 θ) sin2 θ

3 sin2 θ + βA4(1− cos6 θ)

]1/2

dθ, (3.4)

ωe(A) =
2π

Te(A)

=
π

2
∫ π

2

0

[
3(1 + αA4 cos4 θ) sin2 θ

(3 sin2 θ + βA4(1− cos6 θ))

]1/2

dθ

. (3.5)
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Figure 3.1: Dependence of the exact and the analytical approximate frequencies on the amplitude of
oscillation for α = 0.1, β = 0.2.

Figure 3.2: Dependence of the exact and the analytical approximate frequencies on the amplitude of
oscillation for α = 1, β = 2.

For α = 0.1 and β = 0.2, the comparison of the exact frequency ωe , obtained by
integrating equation (3.5), with the first and second analytical approximate frequencies ω0

and ω1 computed, respectively, using equations (2.10) and (2.25), is illustrated in Figure
3.1. In Figure 3.1 indicates that the formula (2.25) is more accurate than the formula (2.10),
and the former provides excellent approximation to the exact frequency for small as well
as large values of amplitude of oscillation. The comparison of the corresponding analytical
approximate frequencies with exact one for α = 1 and β = 1 is shown in Figure 3.2.
Again, similar agreement is observed. Furthermore, for any α > 0, β > 0, we have

lim
A→∞

ω0(A) =

√
5β

3α
, (3.6)

lim
A→∞

ω1(A) =

√√√√
(

490 + 80
√

21
151

)(
β

α

)
, (3.7)

lim
A→∞

ωe(A) =
π
√

3(β/α)

6
∫ π

2

0

cos2 t sin t√
1− cos6 t

dt

, (3.8)
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lim
A→∞

ω0(A)
ωe(A)

=
2
√

5
π

∫ π
2

0

cos2 t sin t√
1− cos6 t

dt ≈ 0.74536, (3.9)

lim
A→∞

ω1(A)
ωe(A)

=
2
√

3
π

√
(
490 + 80

√
21

151
)
∫ π

2

0

cos2 t sin t√
1− cos6 t

dt ≈ 0.89393 (3.10)

Due to the increased significance of non-linear effects, the simple-mode harmonic ap-
proximation becomes insufficient. In contrast, the proposed formula (2.25) provides very
accurate approximation. We can conclude that formula (2.25) is valid for the whole range
of values of amplitude of oscillation and its maximum relative error<10.607%, as obtained
from equation (3.10).

Figure 3.3: : Comparison of the analytical approximate periodic solution with exact solution for
α = 0.1, β = 0.2, and A = 1.

Figure 3.4: Comparison of the analytical approximate periodic solution with exact solution for α =

0.1, β = 0.2, and A = 5.

For α = 0.1, β = 0.2, the exact periodic solution ue(t) achieved by integrating equa-
tions (2.1) and (2.2), the first and the second analytical approximate periodic solutions
u0(t) and u1(t) computed, respectively, by equations (2.11) and (2.28), are plotted in Fig-
ures 3.3-3.5. The corresponding three solution are shown in Figures 3.6-3.8 for the case
α = 1, β = 1.
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Figure 3.5: : Comparison of the analytical approximate periodic solution with exact solution for
α = 0.1, β = 0.2, and A = 10.

Figure 3.6: Comparison of the analytical approximate periodic solution with exact solution for α = 1,
β = 2, and A = 1.

These figures represent, respectively, three different amplitudes A = 1, 5 and 10. They
show that the second analytical approximate periodic solutions provide the most excellent
approximations to the exact periodic solutions for small as well as large amplitude of os-
cillation, but the first analytical approximate periodic solutions are generally acceptable
only for small values of amplitude of oscillation. These figures also indicate that discrep-
ancy of solutions widens as the modal constants α and β become larger. The above facts
demonstrate that, unlike perturbation approximations, the present analytical approximate
frequencies and periodic solutions apply well to small as well as large values of amplitude
of oscillation.

4 Conclusions

The aims of the present work are to provide the combination of linearization of gov-
erning equation with the method of harmonic balance, a new approach has been proposed
to solve the non-linear oscillation of a conservative system having inertia and static non-
linearities. Unlike the classical harmonic balance method, linearization is performed perior
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Figure 3.7: Comparison of the analytical approximate periodic solution with exact solution for α = 1,
β = 2, and A = 5.

Figure 3.8: Comparison of the analytical approximate periodic solution with exact solution for α = 1,
β = 2, and A = 10.

to proceeding with harmonic balancing. As a result, we obtain a set of linear algebraic
equations instead of one of non-linear algebraic equations, which enables us to establish
analytical approximate formulas for the frequency and periodic solution. The method pre-
sented here is very simple in its principle, and is very easy to be applied. The analytical
approximate formula shows excellent agreement with the exact solutions has been demon-
strated and discussed. The most interesting features of this new approach are its simplicity
and its very good accuracy in a wide range of amplitude of oscillation.

For any positive modal constants, the discrepancy of the second analytical approximate
frequency with respect to the exact one will never exceed 10.607 %. The method proposed
in this paper can also be used to find analytical approximate solution to other conservative
oscillators.
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