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Abstract: We propose a new strategy to determine the parameters of the binomial tree model, which avoids the existing models’
drawback of yielding a negative probability distributionp and avoids the restrictive conditions imposed on these models, such as
ud = 1. Specifically, by regarding the price states of the underlying asset (stock) in the binomial tree model at the end of the period
t = n∆t as an information system, we establish an entropy optimization model based on the maximum-entropy principle, from which
the probability density of the stock price distributionp, and consequently the up ratio,u, and down ratio,d, are derived. This model is
not only easy to solve but also has clear economic and physical meaning. In particular, the solution yielded may be applied to various
underlying asset price distribution types. Numerical comparisons with the classical binomial tree (CRR) model, the Black-Scholes
(B-S) model, the Jarrow and Rudd (JR) model, and the Trigeorgis (TRG) model show that new model produces more reasonable values
of p, u andd, and is easier to be used.
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1. Introduction

Financial derivative instruments play an important role in
the financial economy. Options, as representing one of the
financial derivative instruments, encompass many other der-
ivative securities though combination, and are used for both
investing and hedging. The advent of the Black-Scholes
[1] European option pricing formula, led to the emergence
of active research on option pricing in finance. Noting that
analytic solutions of American options and exotic options
are difficult to be derived, and that option prices are usually
not unique when the market is incomplete or when there
is an arbitrage opportunity, some numerical methods have
been proposed to compute option prices and have quickly
drawn attention in theory and practice. At present, there
are three popular numerical methods: the Monte Carlo met-
hod [2], the tree method [3], and the partial differential
equation method (also known as the finite-difference meth-
od [4]).

The classical binomial tree model [3] (CRR) is the
most fundamental of the tree models, but applying this
model presents some difficulties, such as balancing the
number of n-ary relationships, the convergence rate, the
accuracy of solutions and the computational intensity, the

determination of the model parametersp, u and d (with
u, d representing the up/down ratios, respectively, andp
representing the probability of going up), and so on. The
structure of the model often leads it to yield a probability
densityp < 0 (p > 1) or utilizes an imprecise condi-
tion, such asud = 1, when determiningu, d andp. Due
to these deficiencies, this model may not effectively de-
scribe the process underlying asset price changes. Jarrow
and Rudd [5] later adopted the strategy of lettingp = 1

2 ,
which leads to the formula (JR):

p =
1
2
, u = e((r− 1

2 σ2)∆t+σ
√

∆t), d = e((r− 1
2 σ2)∆t−σ

√
∆t).

Then, in 1992, to maintain algorithm stability for binomial
tree model in the short step time,Trigeorgis [6] proposed
the following formula (TRG) for the parameters, under the
condition thatud = 1:

p = 1
2 + 1

2

r∆t− 1
2 σ2∆t√

σ2∆t+(r∆t− 1
2 σ2∆t)2

,

u = e
√

σ2∆t+(r∆t− 1
2 σ2∆t)2 , d = e−

√
σ2∆t+(r∆t− 1

2 σ2∆)2 .

Clearly, the conditionsp = 1
2 andud = 1 imposed on the

model are too stringent, as in practice, the product of and
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does not necessarily equal1. Recently, Yisong [7], John-
son et al. [8], Diener et al. [9], and Benjamin et al. [10]
set the parameters of the tree model using higher moments
for return distribution of the underlying asset. However,
this setting not only renders it difficult to calculate higher
moments but also produces a model that is unsuitable for
computing the option price, which follows a different dis-
tributive form.

In this paper, to overcome the traditional classical prob-
lems mentioned above, we propose a novel strategy to de-
termine the parametersp, u andd based on the maximum-
entropy principle [11]. Specifically, we set as the objec-
tive function the maximum information entropy, and the
amount of different kinds of information, e.g., the expecta-
tion and variance of stock price change, as constraint con-
ditions to establish an entropy optimization model about
the probability densityp, up ratiou and down ratiod .
According to [11], this model may yield an unbiased and
objective probability densityp to uniformly approximate
the actual probability distribution. In particular, thisp is
always non-negative, and the parametersp, u andd have
a clear meaning. Numerical comparisons with those given
by the B-S model, the CRR model, and the JR model show
that the proposed method is effective.

This paper is organized as follows. In Section 2, we
introduce the classical binomial tree model and its defi-
ciencies. In Section 3, we propose a model based on the
maximum-entropy principle. In Section 4, the performance
of the new method is compared with that of existing meth-
ods. Finally, we conclude this paper.

Some words about our notations. Throughout this pa-
per,S0 denotes the initiative price of a share of stock,S
represents the current price of a share of stock,K denotes
the option strike price,µ is the expectation of stock return,
andσ is the volatility of stock price. In addition, we user
andT to denote the riskless interest rate and option expi-
ration, respectively.

We implement these models in Matlab 7 on a standard
office PC, and perform a comparison among the four mod-
els.

2. CRR model

We consider stock option prices without dividend in a risk-
neutral market and begin by setting the parametersp, u and
d. In a binomial tree, every node of the tree has two pos-
sible future states at next time. That is, if the current stock
price isS, then the future stock price will beuS with prob-
ability p or dS with probability1− p after∆t time, where

u > 1, 0 < d ≤ 1, d < 1 + r < u.

Because the market is risk-neutral, the expectation of the
stock price change isSer∆t, for which we obtain that:

Ser∆t = pSu + (1− p)Sd, er∆t = pu + (1− p)d. (1)

Usually, one considers the change of the stock price
St as governed by the Black-Scholes stochastic differen-
tial equation, i.e.,∆S = Sµ∆t + Sσε

√
∆t, with ε being

stochastic number of a standard Brownian motion. There-
fore, over∆t , the variance of the stock price change is:

E[(S + ∆S)2]− (E[(S + ∆S)])2 = S2e2r∆t(eσ2∆t− 1)

where

S2e2r∆t(eσ2∆t − 1) = pS2u2 + (1− p)S2d2

−S2[pu + (1− p)d]2,
e2r∆t+σ2∆t = pu2 + (1− p)d2. (2)

For convenience of calculation, one usually imposes an
additional conditionud = 1. Then, from Eq. (1), Eq. (2)
andud = 1, one may obtain the parameter formula of the
CRR model:

p =
er∆t − d

u− d
, u = eσ

√
∆t, d = e−σ

√
∆t. (3)

It is not difficult to see that the imposed conditionud =
1 lacks practically economic meaning, and in particular,
whenσ < r

√
∆t , the parameterp in (3) may be negative

orp larger than1. Therefore, it is necessary to study how to
obtain well-founded and more precise parameter formula
for the binomial tree model. Note that Eq. (1) and Eq. (2)
both concern moments of stock price change and that pa-
rameterp represents the probability distribution of stock
price change. Then, one naturally asks what the probability
distribution is like? Motivated by the maximum-entropy
principle, in the next section we propose a new strategy to
determine the parametersp, u andd of the binomial tree
model.

3. Entropy optimization model of parameters

3.1. Entropy optimization model

It is known that future stock price change correspond to a
certain probability distribution. Then, how do we predict
the probability distribution? The maximum-entropy prin-
ciple [11] states that ”in making inference on the basis
of partial information one must use that probability dis-
tribution which has maximum entropy subject to what-
ever is known. This is the only unbiased assignment one
can make; to use any other would amount to arbitrary as-
sumption of information which by hypothesis one does not
have.” In light of this, we propose the following entropy
optimization model:

max −p ln p− (1− p) ln(1− p)
s.t. pu + (1− p)d = er∆t

pu2 + (1− p)d2 = e2r∆t+σ2∆t

u > 1
0 < d ≤ 1
0 ≤ p ≤ 1 .

(4)
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To determine the probability distribution of the stock price
change in the binomial tree model at the end of the pe-
riod t = ∆t, provided that the expectation and variance
are known. In model (4),p, u andd are unknown quan-
tities, andr, σ and∆t are known quantities. The objec-
tive function of (4) is the probability distribution of the
stock price change at the end of the periodt = ∆t, and
the information (such as expectation, variance) is the con-
straints, with the first two constraints describing the first
two-order moments of the stock price change by the no-
arbitrage principle and the risk neutral principle and last
three constraints reflecting the practical economic reality:
p, which denotes the probability density of the stock price
going up;u, which denotes the up ratio of the stock price
in the next period; andd, which denotes the down ratio of
the stock price in the next period.

3.2. Solving model (4)

First,u andd are computed byp :




u = er∆t +
√

1−p
p (e2r∆t+σ2∆t − e2r∆t)

d = er∆t −
√

p
1−p (e2r∆t+σ2∆t − e2r∆t)

or




u = er∆t −
√

1−p
p (e2r∆t+σ2∆t − e2r∆t)

d = er∆t +
√

p
1−p (e2r∆t+σ2∆t − e2r∆t)

,

if d = er∆t +
√

p
1−p (e2r∆t+σ2∆t − e2r∆t) in the second

group expression, it is triviallyd > 1 and is not consistent
with the constraint ond. Therefore,





u = er∆t +
√

1−p
p (e2r∆t+σ2∆t − e2r∆t)

d = er∆t −
√

p
1−p (e2r∆t+σ2∆t − e2r∆t) .

(5)

We substitute Eq. (5) into Eq. (4):

max −p ln p− (1− p) ln(1− p)
s.t. 0 ≤ p ≤ 1

er∆t +
√

1−p
p (e2r∆t+σ2∆t − e2r∆t) > 1

0 < er∆t −
√

p
1−p (e2r∆t+σ2∆t − e2r∆t) ≤ 1 .

(6)
The second constraint in Eq. (6) always holds, and Eq. (6)
become:

max −p ln p− (1− p) ln(1− p)
s.t. (er∆t−1)2

e2r∆t+σ2∆t−2er∆t+1
≤ p < e−σ2∆t .

(7)

Second, we know that the figure of mathematical program-
ming (PL):

max −p ln p− (1− p) ln(1− p)
s.t. 0 ≤ p ≤ 1.

(PL)
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Figure 1 The mathematical programming (PL).

is as follows:
Figure 1 shows that the mathematical programming

(PL) is a nonempty upper convex function and produces
the maximum value at the point[0.5, 0.6931]. Because
the feasible region of the mathematical programming (PL)
contains that of Eq. (7), the figures produced by Eq. (7) and
those produced by the mathematical programming (PL)
are similar. Note that Eq. (7) has a nonempty and com-
pact constraint set. Therefore, by Weierstrass’ Theorem
(see [12, Prop. A.8]), Eq. (7) has optimal solutions, and
consequently the original entropy model (4) has optimal
solutions. The optimal solution of Eq. (4) is as follows:

1) if (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
< e−σ2∆t < 1

2 , the optimal

solution isp = e−σ2∆t;

2) if (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
≤ 1

2 , e−σ2∆t ≥ 1
2 , the

optimal solution isp = 1
2 ;

3) if 1
2 < (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
< e−σ2∆t, the optimal

solution isp = (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
.

Lastly, combined with Eq. (5), then,p, u, d are as fol-
lows:

a) if (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
< e−σ2∆t < 1

2 , then





p = e−σ2∆t

u = er∆t+σ2∆t

d = 0 ;

b) if (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
≤ 1

2 , e−σ2∆t ≥ 1
2 , then





p = 1
2

u = er∆t +
√

e2r∆t+σ2∆t − e2r∆t

d = er∆t −
√

e2r∆t+σ2∆t − e2r∆t ;

c) if 1
2 < (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t
< e−σ2∆t, then





p = (er∆t−1)2

1−2er∆t+e2r∆t+σ2∆t

u = e2r∆t+σ2∆t−er∆t

er∆t−1
d = 1 .
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Therefore, the values ofp, u, d of model (4) are com-
puted by the three group expressions above a), b), c).

If we have more information, e.g., higher moments in
the constraints of (4), the probability distributionp ob-
tained will better approximate the real distribution. As a
matter of fact, as soon as the expectation and variance of
the stock price change are known, or if other higher mo-
ments of the stock price change that obey the probabil-
ity distribution are known, the probability density value
p can be obtained by solving the optimization problem
(4). Therefore, the model does not require specific kind
of underlying asset (stock) price change. Furthermore, this
model always yields an unbiased nonnegative parameter
p, and the constraints aboutu andd have practical clear
economic meaning.

After obtaining the parametersp, u andd, the rest steps
of calculating option price are the same as those of [3]. The
prices of European options and American options without
dividend can be calculated using model (4). In addition,
after making suitable adjustments for Eq. (1), (2) and (4)
in terms of specific situation of the options with dividend
and exotic options [13], we may obtain the corresponding
parametersp, u andd and then determine the option prices.

4. Numerical examples

Example 1.Consider European put option pricing without
dividend at the expiration, givenS0 = 8, K = 8.75, r =
0.12, σ = 0.01 and the expirations of1, 3, 6, 9 and12
months, with different time step∆t = T/n atn = 8, 16, 32,
64, Tables 1 and 2 report the parametersp, u, d and option
prices under B-S model, CRR model, JR model and MEB
model (the new model).

Table 1 clearly shows that parameterp in the CRR
model is often greater than1, which leads to1 − p < 0
and violates the meaning ofp as a probability measure;
compared with the other three models, the option price in
the JR model approaches the option price of B-S, but the
JR model setsp = 1

2 and usually produces a value ofd
larger than1, which violates the meaning ofd in the bi-
nomial model. In addition, whenp = 1

2 , the results of
the MEB model coincide with those obtained by the JR
model. The parametersp, u, d of the TRG model fit their
practical meaning, but at long expirations, option prices
calculated by the TRG model have low accuracy. The pa-
rametersp, u, d in the MEB model can have unbiased, def-
inite meaning under the maximum-entropy principle, and
the MEB model produces the segmented analytic solution
and coincides with the JR model in the some cases.

Table 2, which describes European put option prices
show that the MEB model has higher accuracy withn in-
crease. For the samen, the calculation precision of the
MEB model is not lower than the other methods’. When
T is short, the MEB model is more effective. However, for
the longT , the MEB model is slightly unstable when given
the different steps. And it will be researched problem in the

future, which is how the rest steps are found according to
the MEB model parameters for option pricing.

To further analyze the performance of the MEB model,
we consider the influence of volatility, expiration, out-of-
the-money, at-the-money and in-the-money etc. on the MEB
model. We thus compare the error of the three methods
(JR, TRG, MEB) for American call (put) options. The er-
ror formula iserrori = ci−cCRR

cCRR
, i = JR, TRG, MEB,

wherecCRR is the option price of the CRR model when
n = 1000.
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Figure 2 For American call options, influence of option ex-
piration T on the MEB model (whereS0 = 120, K =
100, r = 0.07, σ = 0.30, T = 0.5, 1, 1.5, 2, 2.5, 3, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).
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Figure 3 For American put options, influence of option ex-
piration T on the MEB model (whereS0 = 80, K =
100, r = 0.07, σ = 0.30, T = 0.5, 1, 1.5, 2, 2.5, 3, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

Figure 2 and Figure 3 show that the MEB model pro-
duces slightly unstable option prices for the long option
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Figure 4 For American call options, influence of volatilityσ
on the MEB model (whereS0 = 120, K = 100, r =
0.07, σ = 0.05, 0.25, 0.45, 0.65, 0.85, 0.95, T = 1, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).
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Figure 5 For American put options, influence of volatilityσ
on the MEB model (whereS0 = 80, K = 100, r =
0.07, σ = 0.05, 0.25, 0.45, 0.65, 0.85, 0.95, T = 1, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

expiration T , but produces stable American call option
prices. Figure 4 and Figure 5 show that with the volatility
σ increasing, the error in the MEB model becomes larger,
especially for American put options. There are two expla-
nations for the findings shown in figures 2-5: one is the de-
ficiency of the CRR model in choosing parameters, which
may result in negative option prices, and increases the er-
ror, and the other one is that the MEB model cannot effec-
tively control the position of strike price in the final layer
nodes of the tree, which increases the error.

For out-of-the-money options, Figure 6 and Figure 7
show that the MEB model is closer to the JR model and
more accurate than the TRG model. The error of the MEB
model declines slowly, with step numbers increasing, es-
pecially for at-the-money call options (e.g., Figure 8). The
change in the error of the MEB model for in-the-money
options is smaller than that for out-of-the-money, and at-
the-money options (e.g. Figure 10 and Figure 11). When
n > 600, the error under the MEB is approximately±0.5.
As shown in figures 6 to 11, because the MEB model choos-
es unbiased, objective values forp, u andd, it produces the
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Figure 6 Out-of-the-money American call option prices un-
der the JR, TRG and MEB models (whereS0 = 90, K =
100, r = 0.07, σ = 0.30, T = 0.5, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).
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Figure 7 Out-of-the-money American put option prices under
the JR, TRG and MEB models (whereS0 = 100, K =
100, r = 0.07, σ = 0.30, T = 0.5, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

more reasonable option price. In particular, whenp = 1
2 ,

the MEB model effectively produces the same results as
the JR model.

5. Conclusion

In this paper, we propose a new strategy to determine the
parametersp, u andd of the binomial tree for option pric-
ing based on the maximum-entropy principle. This method
yields an unbiased and objective probability densityp via
optimization problem (4), which both effectively overcomes
the CRR model’s shortcoming of yielding negative proba-
bility and avoids the imposed some restrictive conditions.
Numerical examples demonstrate that the new model can
yield a more accurate solution and is easier to operate. Fur-
ther research into its stability is needed in the future.
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the JR, TRG and MEB models (whereS0 = 100, K =
100, r = 0.07, σ = 0.30, T = 0.5, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

¶þ²æÊ÷²½³¤ÊýÄ¿n

Îó
²îe

rro
r

JR
TRG
MEB
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Table 2 Comparisons of European put option prices between five models

Step Model
Option pricec at the expirationT

Month1 Months3 Months6 Months9 Months12

n=8

B-S 0.662936 0.491398 0.2404398 0.026111 2.62E-05
CRR 0.662936 0.491398 0.2404397 -0.003102 -0.239446

JR 0.662936 0.491398 0.2404397 0.025623 0
TRG 0.662936 0.491398 0.2404407 0.022106 0.001042
MEB 0.662936 0.491398 0.2404397 0.028819 0.000619

n=16

B-S 0.662936 0.491398 0.2404398 0.026111 2.62E-05
CRR 0.662936 0.491398 0.2404397 -0.003102 -0.239446

JR 0.662936 0.491398 0.2404397 0.025935 0.00001
TRG 0.662936 0.491398 0.2404402 0.028536 0.000682
MEB 0.662936 0.491398 0.2404397 0.025947 0.000203

n=32

B-S 0.662936 0.491398 0.2404398 0.026111 2.62E-05
CRR 0.662936 0.491398 0.2404397 -0.003102 -0.239455

JR 0.662936 0.491398 0.2404397 0.026069 0.000021
TRG 0.662936 0.491398 0.2404399 0.025089 0.00024
MEB 0.662936 0.491398 0.2404397 0.026431 0.000087

n=64

B-S 0.662936 0.491398 0.2404398 0.026111 2.62E-05
CRR 0.662936 0.491398 0.2404397 -0.003102 -0.239297

JR 0.662936 0.491398 0.2404397 0.026119 0.000022
TRG 0.662936 0.491398 0.2404397 0.026253 0.000107
MEB 0.662936 0.491398 0.2404397 0.026018 0.00004
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