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Abstract: We propose a new strategy to determine the parameters of the binomial tree model, which avoids the existing models’
drawback of yielding a negative probability distributipnand avoids the restrictive conditions imposed on these models, such as

ud = 1. Specifically, by regarding the price states of the underlying asset (stock) in the binomial tree model at the end of the period

t = nAt as an information system, we establish an entropy optimization model based on the maximum-entropy principle, from which
the probability density of the stock price distributipnand consequently the up rati@, and down ratiog, are derived. This model is

not only easy to solve but also has clear economic and physical meaning. In particular, the solution yielded may be applied to various
underlying asset price distribution types. Numerical comparisons with the classical binomial tree (CRR) model, the Black-Scholes
(B-S) model, the Jarrow and Rudd (JR) model, and the Trigeorgis (TRG) model show that new model produces more reasonable values
of p, w andd, and is easier to be used.

Keywords: Option pricing, maximum entropy principle, binomial tree model.

1. Introduction determination of the model parameters: andd (with
u, d representing the up/down ratios, respectively, and

Financial derivative instruments play an important role in representing the probability of going up), and so on. The

the financial economy. Options, as representing one of thetructure of the model often leads it to yield a probability

financial derivative instruments, encompass many other dedensityp < 0 (p > 1) or utilizes an imprecise condi-

ivative securities though combination, and are used for botkion, such as:d = 1, when determining:, d andp. Due

investing and hedging. The advent of the Black-Scholeso these deficiencies, this model may not effectively de-

[1] European option pricing formula, led to the emergencescribe the process underlying asset price changes. Jarrow

of active research on option pricing in finance. Noting thatand Rudd [5] later adopted the strategy of letting- 1,

analytic solutions of American options and exotic options which leads to the formula (JR):

are difficult to be derived, and that option prices are usually

not unigque when the market is incomplete or when there, _ 1 u = ((r=502)At+oVAY) g _ ((r—30%)At—0VAL)

is an arbitrage opportunity, some numerical methods have 2’ ’

been proposed to compute option prices and have qUiCId’i’hen, in 1992, to maintain algorithm stability for binomial

drawn attention in theory and practice. At present, there oo model in the short step time, Trigeorgis [6] proposed

are three popular numerical methods: the Monte Carlo Mety o following formula (TRG) for the parameters. under the
hod [2], the tree method [3], and the partial differential .o qition th%md -1 ( ) P '

equation method (also known as the finite-difference meth-
od [4]) p= 1 + 1 rAt7%¢72At

The classical binomial tree model [3] (CRR) is the 272 [o? At (rAt—Lo2 At)?’
most fundamental of the tree models, but applying thisy = e\/azﬂt+(7“ﬂt—%02ﬂt)27 d = e~ VoA (rAt—3024)2
model presents some difficulties, such as balancing the
number of n-ary relationships, the convergence rate, th&learly, the conditiong = % andud = 1 imposed on the
accuracy of solutions and the computational intensity, themodel are too stringent, as in practice, the product of and
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does not necessarily equial Recently, Yisong [7], John- Usually, one considers the change of the stock price
son et al. [8], Diener et al. [9], and Benjamin et al. [10] S; as governed by the Black-Scholes stochastic differen-
set the parameters of the tree model using higher momentgal equation, i.e. AS = SuAt + Soev/At, with £ being

for return distribution of the underlying asset. However, stochastic number of a standard Brownian motion. There-
this setting not only renders it difficult to calculate higher fore, overAt , the variance of the stock price change is:
moments but also produces a model that is unsuitable for

computing the option price, which follows a different dis- E[(S + AS)2] — (E[(S + AS)])? = S22 2t (e” 4t — 1)
tributive form.

In this paper, to overcome the traditional classical prob-where
lems mentioned above, we propose a novel strategy to de- .5 9, A1, o2As 9 9 9 19
termine the parametetsu andd based on the maximum- 57 e B l)Sj pS*u” + (1 ;5)5 d
entropy principle [11]. Specifically, we set as the objec- , . . . [pu+ (12_p) I
tive function the maximum information entropy, and the ¢ = pu” + (1 —p)d~. (2)
e e, & e expeci Forconvenience of calcation,on usualyimposes an
ditions to establish an entropy optimizétion model aboutaOIOIItlonal conditiorud = 1. Then, from Eq. (1), Eq. (2)

> ; . . andud = 1, one may obtain the parameter formula of the
the probability density, up ratiou and down ratiod . CRR model:
According to [11], this model may yield an unbiased and '
objective probability density to uniformly approximate erAt _ " .
the actual probability distribution. In particular, thisis p==—g > v=° VAL 4= emoVAL 3)
always non-negative, and the parameters andd have
a clear meaning. Numerical comparisons with those given  Itis notdifficult to see that the imposed conditio =
by the B-S model, the CRR model, and the JR model showt lacks practically economic meaning, and in particular,
that the proposed method is effective. wheno < /At , the parametep in (3) may be negative

This paper is organized as follows. In Section 2, we or p larger tharl. Therefore, itis necessary to study how to
introduce the classical binomial tree model and its defi-obtain well-founded and more precise parameter formula
ciencies. In Section 3, we propose a model based on théor the binomial tree model. Note that Eq. (1) and Eq. (2)
maximum-entropy principle. In Section 4, the performanceboth concern moments of stock price change and that pa-
of the new method is compared with that of existing meth-rameterp represents the probability distribution of stock
ods. Finally, we conclude this paper. price change. Then, one naturally asks what the probability

Some words about our notations. Throughout this padistribution is like? Motivated by the maximum-entropy
per, Sy denotes the initiative price of a share of stosk, Principle, in the next section we propose a new strategy to
represents the current price of a share of stécklenotes ~ determine the parametepsu andd of the binomial tree
the option strike pricey is the expectation of stock return, model.
ando is the volatility of stock price. In addition, we use
andT to denote the riskless interest rate and option expi-
ration, respectively. 3. Entropy optimization model of parameters

We implement these models in Matlab 7 on a standard
office PC, and perform a comparison among the four mod-3.1. Entropy optimization model
els.

It is known that future stock price change correspond to a
certain probability distribution. Then, how do we predict
the probability distribution? The maximum-entropy prin-
2. CRR model ciple [11] states that "in making inference on the basis
of partial information one must use that probability dis-
We consider stock option prices without dividend in a risk- tribution which has maximum entropy subject to what-
neutral market and begin by setting the parameteisand  ever is known. This is the only unbiased assignment one
d. In a binomial tree, every node of the tree has two pos-can make; to use any other would amount to arbitrary as-
sible future states at next time. That is, if the current stocksumption of information which by hypothesis one does not

price isS, then the future stock price will beS with prob-  have.” In light of this, we propose the following entropy
ability p or dS with probability1 — p after At time, where  optimization model:

u>1,0<d<1l,d<1l+r<u. max —plop— (1 —p)In(1 —p)
sit. pu+ (1 —p)d=e4t
Because the market is risk-neutral, the expectation of the pu? + (1 —p)d® = p2rAt+o’ At 4
stock price change iSe"4*, for which we obtain that: u>1 (4)
0<d<1
Sem A = pSu + (1 — p)Sd,e™ = pu + (1 — p)d. (1) 0<p<1.
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To determine the probability distribution of the stock price _ ‘ ‘ ‘
change in the binomial tree model at the end of the pe- [0.5.0.6931]
riod t = At, provided that the expectation and variance
are known. In model (4)p, v andd are unknown quan-
tities, andr, o and At are known quantities. The objec-
tive function of (4) is the probability distribution of the
stock price change at the end of the periog At, and

the information (such as expectation, variance) is the con-
straints, with the first two constraints describing the first
two-order moments of the stock price change by the no-
arbitrage principle and the risk neutral principle and last
three constraints reflecting the practical economic reality:
p, which denotes the probability density of the stock price
going up;u, which denotes the up ratio of the stock price Figure 1 The mathematical programming (PL).
in the next period; and, which denotes the down ratio of

the stock price in the next period.

=pinp=(1-p)in(1-p)

P

is as follows:

. Figure 1 shows that the mathematical programming
3.2. Solving model (4) (PL) is a nonempty upper convex function and produces

the maximum value at the poif®.5, 0.6931]. Because
the feasible region of the mathematical programming (PL)
_ At 1=p [ 2rAtto2At _ 21 At contains that of Eq. (7), the figures produced by Eq. (7) and
u=eTt \/ o (e e?rat) those produced by the mathematical programming (PL)
d = erAt _ \/%@Mtw?m — e2rat) are similar. Note that Eq. (7) has a nonempty and com-
b pact constraint set. Therefore, by Weierstrass’ Theorem
or (see [12, Prop. A.8)]), Eqg. (7) has optimal solutions, and
consequently the original entropy model (4) has optimal

u = et — \/%(eQTAHUQAt — e2rat) solutions. The optimal solution of Eq. (4) is as follows:

. rAt_1)2 .
d = erat o \/%(emﬂt-ﬁﬁm — e2rat) 1) if (e”—1) < e oA ¢ 1, the optimal

1,26rAt+62rAt+52 At

First,u andd are computed by :

. . 2
solution isp = e~ 4*;
R . . TAt _1\2
if d=erat + \/%(eQT‘AHUzN — €274t) in the second 2) if 1_26r(:t+e2T1A)f+02At <5 >

group expression, it is trivially > 1 and is not consistent optimal solution i = %;

i i . rAt_1\2 .
with the constraint oml. Therefore, 3) if % < l_ger(fureari)t“mt < 9t the optimal
— oraAt 1-p( 2rAt+o2 At _ ,2rAt ion sy — Gl Vs
u=e"+ > (e e ) solution isp o ATz ar YA
d = At _ \/L(egrmﬂ,mi e (5) Lastly, combined with Eq. (5), thep, u, d are as fol-
1=p lows: a
. . i (em2'-1) —o?At _ 1
We substitute Eqg. (5) into Eq. (4): a) if 1—2eraiqerrariatar <€ 770 < 3. then
max —plnp— (1 —p)In(1 —p) p=e Al
st. 0<p<1 u = 67’At+02At
erAt 4 \/1;71)(62rAt+02At — e2raty > d=0;
rAt _ p 2rAt+02 At _ o2rAt) < . T At 1)2 52
0 <¢ \/171) (e € ) - 1 .(6) b) If 1_2er(A€t+e2r1A)t+02At S %7 € oAl Z %' then
The second constraint in Eq. (6) always holds, and Eq. (6) p= %
become: U= At 4 \[e2rAtto? At _ o2rAt
max —plnp — (1 —p)In(l—p) d = eradt — \/e2ratia? Al _ 2rat
s.t (GTAt—l)z < D < e—UQAt (7) Ab R
.. — < . . rAL_ s
Q2 At+o2 At _gorAt 4] c) if % < 17267‘(A€t+62T1A)t+02m < et then

Second, we know that the figure of mathematical program- IV
ming (PL): (77 —1)

b= 1,26rAt,+62rAt+a2At
e2rat+o? At _ rAt
max —plip—(1-p)h(l-p)  (pp u= A e
st. 0<p<l1. d=1.
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Therefore, the values of u, d of model (4) are com-  future, which is how the rest steps are found according to
puted by the three group expressions above a), b), ¢).  the MEB model parameters for option pricing.

If we have more information, e.g., higher moments in ~ To further analyze the performance of the MEB model,
the constraints of (4), the probability distributipnob-  we consider the influence of volatility, expiration, out-of-
tained will better approximate the real distribution. As a the-money, at-the-money and in-the-money etc. on the MEB
matter of fact, as soon as the expectation and variance ghodel. We thus compare the error of the three methods
the stock price change are known, or if other higher mo-(JR, TRG, MEB) for American call (put) options. The er-
ments of the stock price change that obey the probabilvor formulaiserror; = <-=¢if 4 = JR, TRG, MEB,
ity distribution are known, the probability density value whereccrr is the option price of the CRR model when
p can be obtained by solving the optimization problem n = 1000.

(4). Therefore, the model does not require specific kind

of underlying asset (stock) price change. Furthermore, this
model always yields an unbiased nonnegative parameter

p, and the constraints aboutandd have practical clear
economic meaning. s

After obtaining the parametepsu andd, the rest steps
of calculating option price are the same as those of [3]. The
prices of European options and American options without
dividend can be calculated using model (4). In addition,
after making suitable adjustments for Eq. (1), (2) and (4)
in terms of specific situation of the options with dividend
and exotic options [13], we may obtain the corresponding
parameterg, v andd and then determine the option prices.

1000

400
step numbers n

4. Numerical examples

. . - . Figure 2 For American call options, influence of option ex-
Example 1.Consider European put option pricing without piration 7' on the MEB model (whereSy = 120, K =

dividend at the expiration, givefy = 8, K = 8.75, r = 100. r = 007. 0 = 030. T — 05. 1. 1.5. 2. 2.5. 3. n —
0.12, ¢ = 0.01 and the expirations of,3,6,9 and 12 100: 200, 300, 400, 500 600. 700. 800. 900 ’1000’). ’
months, with different time stedt = T'/n atn = 8, 16, 32, o
64, Tables 1 and 2 report the parameters, d and option
prices under B-S model, CRR model, JR model and MEB
model (the new model).
Table 1 clearly shows that parametelin the CRR
model is often greater thah which leads tol — p < 0
and violates the meaning @f as a probability measure;
compared with the other three models, the option price in
the JR model approaches the option price of B-S, but the
JR model setp = % and usually produces a value éf 2
larger thanl, which violates the meaning af in the bi- .
nomial model. In addition, whep = % , the results of
the MEB model coincide with those obtained by the JR
model. The parameteys u, d of the TRG model fit their -4
practical meaning, but at long expirations, option prices
calculated by the TRG model have low accuracy. The pa- .
rameter®, u, d in the MEB model can have unbiased, def- opion expraion T
inite meaning under the maximum-entropy principle, and
the MEB model produces the segmented analytic solution
and coincides V\_"th the ‘]R model in the some ca§es. . Figure 3 For American put options, influence of option ex-
Table 2, which describes European put option pricesyiration 7 on the MEB model (whereSy = 80, K =
show that the MEB model has higher accuracy witi- 100, 7 = 0.07, ¢ = 0.30, T = 0.5, 1, 1.5, 2, 2.5, 3, n
crease. For the same the calculation precision of the 100, 200, 300’/ 400, 500, 600, 700, 800, 900, 1000 ).
MEB model is not lower than the other methods’. When
T is short, the MEB model is more effective. However, for
the longT’, the MEB model is slightly unstable when given Figure 2 and Figure 3 show that the MEB model pro-
the different steps. And it will be researched problem in theduces slightly unstable option prices for the long option

1000

600

400
step numbers n
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Figure 4 For American call options, influence of volatility Figure 6 Out-of-the-money American call option prices un-

on the MEB model (whereS, = 120, K = 100, r = der the JR, TRG and MEB models (whefg = 90, K =
0.07, ¢ = 0.05, 0.25, 0.45, 0.65, 0.85, 0.95, T" =1, n = 100, » = 007, ¢ = 030, T' = 05, n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ). 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

—- TRG
o wEB

error
o S S T VY
error
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Figure 5 For American put options, influence of volatility
on the MEB model (whereS, = 80, K = 100, » =
0.07, o = 0.05, 0.25, 0.45, 0.65, 0.85, 0.95, T' =1, n =

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ). Figure 7 Out-of-the-money American put option prices under
the JR, TRG and MEB models (wher®, = 100, K =
100, » = 007, ¢ = 030, T" = 05, n =

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

expirationT’, but produces stable American call option
prices. Figure 4 and Figure 5 show that with the volatility
o increasing, the error in the MEB model becomes larger,
especially for American put options. There are two expla-more reasonable option price. In particular, whes: 3,
nations for the findings shown in figures 2-5: one is the dethe MEB model effectively produces the same results as
ficiency of the CRR model in choosing parameters, whichthe JR model.
may result in negative option prices, and increases the er-
ror, and the other one is that the MEB model cannot effec-
tively control the position of strike price in the final layer .
nodes of the tree, which increases the error. 5. Conclusion

For out-of-the-money options, Figure 6 and Figure 7
show that the MEB model is closer to the JR model andin this paper, we propose a new strategy to determine the
more accurate than the TRG model. The error of the MEBparameterg, v andd of the binomial tree for option pric-
model declines slowly, with step numbers increasing, esing based on the maximum-entropy principle. This method
pecially for at-the-money call options (e.qg., Figure 8). Theyields an unbiased and objective probability dengityia
change in the error of the MEB model for in-the-money optimization problem (4), which both effectively overcomes
options is smaller than that for out-of-the-money, and at-the CRR model’s shortcoming of yielding negative proba-
the-money options (e.g. Figure 10 and Figure 11). Wherbility and avoids the imposed some restrictive conditions.
n > 600, the error under the MEB is approximatehy.5. Numerical examples demonstrate that the new model can
As shown in figures 6 to 11, because the MEB model choog#eld a more accurate solution and is easier to operate. Fur-
es unbiased, objective values fon. andd, it produces the ther research into its stability is needed in the future.
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error
oterror

~ VY \/ N S

Figure 8 At-the-money American call option prices under

the JR, TRG and MEB models (whe, = 100, K = Figure 10 In-the-money American call option prices under
100, » = 007, ¢ = 030, T = 05 n = the JR, TRG and MEB models (wher®y, = 110, K =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ). 100, - = 007, 0 = 030, T = 05 n =

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).

T T
AR
> TRG
o MEB
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Figure 9 At-the-money American put option prices under the

JR, TRG and MEB models (wher&, = 100, K = . . . .

100, r = 007, ¢ = 030, T = 05 n = Figure 11 In-the-money American put option prices under

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ). the JR, TRG and MEB models (wher&, = 100, K =
110, » = 007, 0 = 030, T = 05 n =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ).
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Table 2 Comparisons of European put option prices between five models

Step

Model

Option pricec at the expiratiory”

Month1

Months3

Months6

Months9

Months12

n=8

B-S
CRR
JR
TRG
MEB

0.662936
0.662936
0.662936
0.662936
0.662936

0.491398
0.491398
0.491398
0.491398
0.491398

0.2404398
0.2404397
0.2404397
0.2404407
0.2404397

0.026111
-0.003102
0.025623
0.022106
0.028819

2.62E-05
-0.239446
0
0.001042
0.000619

B-S
CRR
JR
TRG
MEB

0.662936
0.662936
0.662936
0.662936
0.662936

0.491398
0.491398
0.491398
0.491398
0.491398

0.2404398
0.2404397
0.2404397
0.2404402
0.2404397

0.026111
-0.003102
0.025935
0.028536
0.025947

2.62E-05
-0.239446
0.00001
0.000682
0.000203

n=32

B-S
CRR
JR
TRG
MEB

0.662936
0.662936
0.662936
0.662936
0.662936

0.491398
0.491398
0.491398
0.491398
0.491398

0.2404398
0.2404397
0.2404397
0.2404399
0.2404397

0.026111
-0.003102
0.026069
0.025089
0.026431

2.62E-05
-0.239455
0.000021
0.00024
0.000087

n=64

B-S
CRR
JR
TRG
MEB

0.662936
0.662936
0.662936
0.662936
0.662936

0.491398
0.491398
0.491398
0.491398
0.491398

0.2404398
0.2404397
0.2404397
0.2404397
0.2404397

0.026111
-0.003102
0.026119
0.026253
0.026018

2.62E-05
-0.239297
0.000022
0.000107
0.00004
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