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Abstract: We show that the probability distribution of the Greenberger-Horne-Zeilinger quantum state (GHZ) under local action of
independent von Neumann measurements follows a convex distribution of two distributions. The coefficients of the combination are
related to the equatorial parts of the measurements, and the distributions associated with those coefficients are associated with the real
parts of the measurements. One possible application of the result is that it allows one to split into two pieces the simulation of the GHZ
state. Simulating, in worst-case or in average case, a quantum state like the GHZ state with random resources, shared or private, as
well as with classical communication resources or even odd resources like nonlocal boxes is a very important in the theory of quantum
communication complexity.
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1. Introduction W) = 5|0") + J5]1") called the GHZ state in honor
of Greenberger, I-iGrne et Zeilinger, [6]. Each person owns

The starting point of the result was motivated by the simu-the description of a von Neumann measurement that he
lation of the Greenberger-Horne-Zeilinger (GHZ, [1], [2], €an apply to his part of GHZ. Call thesemeasurements
[3], [4], [5]) quantum state. We can think of this simula- AZ; for j € {1,...,n}. Itisimportantin what follows that
tion problem as a problem in which many people get thethei*™" person does not know/; for i # j. n persons ap-
description of a von Neumann measurement. Each partplying jointly and independently their measurements mean
does not know the description of any other measurementthey apply®”_, M; to |#). By applying these measure-
belonging to the other parties. Each party after having apments, they get random outpuis). The 15t gets|b, ), the
plied his measurement on the subsystem of the state that pd gets|b,), etc. Quantum mechanics asserts these ran-
shares with the others gets a classical outcome. The joinjom results are eigenvalues of thé . The joint distribu-
distribution of the outcomes of every parties follows the tion of the these results is what we are trying to simulate
distribution studied in this thesis in the case of the GHZ classically. Each local von Neumann measurement is rep-
state. The result indicates that in order to simulate the disresented by a point on the 3-dimensional sphere (called
tribution, we can first simulate the equatorial parts of thesometimes the Bloch sphere). A point on the sphere is rep-
measurements in order to know which distribution asso-resented by, ¢) € [0, 2x) x [0, ). The result says that
ciated to the real parts of the measurements to simulatehe probability distribution is a convex combination of two
Simulating GHZ means simulating the probability distri- distributions. The coefficients of the convex combination
bution of the quantum state, and, more specifically, simu-are related to thé; reprensenting the equatorial parts of
lating with shared or private random resources as well aghe M; and the two distributions are related to therep-
classical communication resources (a classical channelyesenting the real parts of;.

What does it mean? Intuitively, suppose that an entangled

quantum state is shared amongersons. A state is en-

tangled if it cannot be factored partially or completely into

tensor products. For instance, we are interested in the state
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For analyzing the structure of the probability distribution that we shall denote from n@y e will proceed slightly
differently, but in an equivalent way, by supposing thatthgersons transforri¥) by applying a unitary transormation
U; independently from each other. By doing this, the basis reprensenting the eigenvectors is then transformed into tr
canonical basis used in quantum computing. The eigenvectors aréathewith a; € {0,1}. Hence, then persons
measure in the standard basis of computation once they have appliedz?_,U; to the statg?¥). The distribution

obtained isP(a) with @ = a; - - - a,, € {0, 1}". More precisely, the result is about the structur®¢f) = |(a|U|¥)|?.

Being able of simulating classicallp was the subject of many articles. In fact, when saying "simulating GHZ" or
"simulating entanglement”, it means simulating classic&lyHow ? With shared random variables and classical com-
munication. For the concepts related to communication complexity like the definitions of worst-case or average cas
complexity and shared random variables, [7]. The result itself is about the structBramd not about communication
complexity. Originally, there were A. Einstein, B. Podolsky and N. Rosen (EPR trio, [8]) in 1935 who believed they
showed that quantum mechanics (of Copenhagen) is not complete because it is impossible to reproduce quantum corre
tions with hidden variables (shared random variables) obtained|ffowhenn = 2. These correlations are the moments
of the distribution ofP. In [9], it was shown that it is impossible to reproduce these correlations with only shared ran-
dom variables. Maudlin [10] proposed to add classical communication resource (classical channel) to reproduce thos
correlations. Maudlin made that suggestion without having the knowledge of the theory of complexity used by compute!
scientists. From that moment, the theory of communication complexity became important in order to try repr&ducing
A sequence of papers were then published on the simulati#hwith » = 2 andn = 3 with average and worst case
complexity with different types of measurements, [11-15].

From the point of view of simulating the distributidp, the result gives a road to follow. In fact, it says that the
distribution P is a convex combination of two distributions denotedby andP-. In order to simulatéP, firstly one
has to to simulate a random bit allowing to decide whiciPefor P, to simulate. This bit is related to the coefficients
of the convex combination multiplying?; andP,. The combination being convex, the sum equals 1 and it defines a
Bernoulli distribution, biased in general. Secondly, one has to simHlat P, which are discrete distributions over the
set{0, 1}". The simulation of the Bernoulli distribution is related to the phases of the complex nhumbers defining the local
unitary transformation#/; of then persons. In an equivalent way, simulating the Bernoulli distritution is only related to
the equatorial parts of the local von Neumahh if we adopt that way of working. For the simulation Bf; or of Py,
it is related to the amplitudes of the complex numbers defining the local unitary transformi@fionshe n persons. In
an equivalent way, simulating; or P is related to the real parts of the local von Neumann measuremént3he
cost of simulation (worst-case or average) is then reduced to the sum of the costs for simulating the Bernoulli distributior
reprensented by the coefficients of the convex combination and the two distribBtjaorsP,. Section (2) of this article
contains the main result about the structuréPofSection (3) is about the equivalent correspondence between the two
ways of working and a small discussion about the simulatioB.of

2. Structure of the probability distribution

Inwhat follows,n € N, j =1,...,n,q; € {0,1} andU; € U(2), whereU (2) is the group of unitarg x 2 matrice. The
main result concerns the structure of the probability distribuRoover the se{0, 1}™ where
P(a) = [(a|U[P)?
(al = @) (a1
j=1
n
U=QU;
j=1
) = 2510") + HI17).
We remind the reader of the following lemma before proving our theorem.

Lemma 1Forall U € U(2), there existp € [0,2m), ¢ € [0,27), w € [0,27) andT € {0, 1} such that

U—( e¥cosw —1Te Wsinw )

e sinw  (—1)Te " cosw

The next remark gives some interesting cases of the preceding lemma. Only the first three cases will be useful i
proving the main result.

Remark. 1.If 7 = 0 in the preceding lemma (1), théh e SU(2).
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2If 7 =0, p = 0andy = 0in the preceding lemma (1), thénis a rotation.

3If 7 = 1 andy = 0 in the preceding lemma (1), thénis also hermitian that i& = UT. In that casel/ is an element
of order 2.

4.The Pauli matrixr; corresponds te = 5, ¢ = 0,9 = —5 andr = 1.

5.The Pauli matrixrs correspondstoy = %, p =0,9 =0 andT =1.

6.The Pauli matrixrs correspondstew =0, = 0,19 =0 andr =1.

7.The Hadamard matrix correspondsde= 7, ¢ = 0, ¢ = —F and7 = 1.

jus
2"
s
27

One more thing before stating the main result, forja#t 1,. .., n, definea; andg; as
o = €' cosw;
B = etV sinw.

Therefore every/; € U(2) can be represented as

(B
U] - (ZTJ/BJ' (_1)7}@]) .
The next theorem is the main result of this paper.

Theorem 1Letn € N players (persons) sharing the stdte) = |0” |1™). Every player receives a fix unitary
transformationl; for j = 1,..., n. Every player applies locally on hIS part\ﬂs unltary transformation and then measures
in the standard basis. The results (outputs) are randomdpits {0, 1} for j = 1,...,n. LetU; be given as in the lemma
(Dya=ar--a, €{0,1}", v =377, (p; + 1) € R/21Z, andk = § 2?21 Tj € R/Q’/TZ. The joint distributionP,
defined byP (a) = [(a|U|¥)|* with U = ®}_,|U;) is a convex combination of two distributions as follow

P(a) = cos?(15%)P1(a) + sin® (152) Pa(a),

with
Pi(a) = 5 (11(0) + x(a)’,
Pa(a) = 5 (11(0) ~ x(a)”,

ProofLet the functionsz; : {0,1} — {p,,v;} forall j = 1,...,n be defined as

) N npjifaj:()
zj(a;) = {d)j ifa; =1

Moreover, defined the functions: {0,1}" — R/27Z, ¢ : {0,1}" — R/27Z and the constants € R/27Z, x € R/27Z
respectively by

n
a) =Y (),
j=1
n
T
= 5 ZTjaj7
j=1

n

v= Z(@fr%‘),

Jj=1
n

= gZTj.
j=1
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Since

P(a) = |(a \UIWW 1)
n 2
H (a|U;10) + H (a;|U;1) 2

we then have by the definitions of the functionsthat the complex arguments (phases) of the terms of the products of
the line (2) can be written as

™
arg (a;|U;|0) = @;j(ay) + 75055
™ Vs
arg<aj‘Uj|1>:_xj(aj@l)—FTjajE +Tj§. (3)

Now, the products of the line (2) are written as

H (a;|U;10) = fi(a exp( Zarg (a;|U; O> (4)
j=1
H (a;|U;]1) = fa(a exp( Zarg (a;|U; 1) (5)

Jj=1

Moreover, by definitions of the functionand the constant, we have that
(e = (st@) = 1) 4+ 2
D wiles) = (stw-3)+3 (6)

=D wila; ©1) = s(a) -

=(0-3)-3 "
Thanks to (6) and to (7), we have that
<a|U|LZ/) _ ez(t(a)-ﬁ-s(a)_%) <<f1(a)\_/|—>2f2(a)> cos (7 ; H) + Z(fl(a‘)\;ifé(a)> sin ('Y ; ﬁ)) ] (8)

Therefore, the distributio® over the se{0,1}" is written as follow

P(a) = cos® (%)Pl(a) + sin? (%)Pg(a). 9)

The only thing that remains to be shown is tRatandP, are probability distributions. It is clear thRt;, andP, are
positive for alla € {0,1}". Hence, it remains to show thaf P;(a) = 1. (The proof forPs is similar.) To show it, we
use the facts thdf andf? are distributions so thdtl/2)(f? + £3) is a distribution as well so that

1
5 2 (f@+8@)=1
a€{0,1}"
Moreover, we use the fact that
Z (_1)a1+...+a" — 0
ae{0,1}"
Hence,
> Pia)=1.
ac{0,1}n
[ |
(© 2012 NSP
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Remarkin addition to the lemma for representing a unitary transformation of 3ize2 by a quadruple, it is Worth

mentioning that we split the phase of the expres$m>U|LD> into two parts, the non-interesting part reé( )Fs(a)= )
and the rest. Shor uses the same technic in analyzing his famous algorithm.

RemarkThere is a computational advantage in space of using the formula we fouldifstead of using directly the

one given by the axioms of quantum mechanics. In fact, in the formula we found, there is no tensor product and therefore
we can comput® (a4, . .., a,) for largen given then unitary transformations (or von Neumann measurements). When
there are for instance 10 persons each havidga unitary matrix, then the tensor product of those unitary matrice is a
unitary matrix of sizel024 x 1024.

Theorem (1) shows that the distributiBhover{0, 1}" is a linear convex combination of the distributidAs andP,
that are caracterized by the products of the modules (amplitdidaggf,. The next corollary establishes a link between
the parameters of the unitary transformations Bnd

We remind of the definition of bbcal probability distribution (in the physical sense). We will use that definition only
to assert that certain distributions have that property.

Definition 1(local distribution). Let A be a random variable wittk possibles realizations; with non-zero probability
fori =1,...,k. Given fixed unitary transformatroriév with j = 1,...,n, adistributionQ : {0,1}"™ — [0, 1] is local
with respect to/l andU; if, for all a;as - € {0,1}™, the foIIowmg factorlsatlon holds

k n
Q{Uj};:l(ah---,an):ZH U, (aj)Prob(A = ;).

RemarkWithout entering into the details, simulating classically a local distribution does not cost anything from the point
of view of communication complexity.

Corollary 1 (Interesting statistical events, choice of interesting parameters, and probabilistic interpretationsyor
all j =1,...,n, letthe quadruplesw;, ¢;, ¢;, 7;) defining the specific following unitary transformatiois

1£} is the local probability distribution obtained when?_,V; is applied to the stat¢0™) and (w;,;, v, 7j) =
(w;,0,0,0) forall j =1,.

2f2 is the local probability distribution obtained when?_, V; is applied to the stat¢l™) and (w;, v, ¢;,7;) =
(w;,0,0,0) forall j =1,.

3P is the local probabrlity drstrrbutron obtained when?_,V; is applied to the state?) and (w;, ¥;, ¢;,7;) =
(w;,0,0,0) forall j =1,.

4P, is the local probability distribution obtained when?_, V; is applied to the state¥) and (w;, ¥, ¢;,7;) =
(w;,0,0,0)forall j =1,...,n—2, (wj,¥;,9;,7) = (w;,0,0,1) for j = n — 1, n. (Only two of the parameters
must be equal to 1. We could have taken any other indices instead dfandn.)

5.P; can also be obtained when’!_, V; is applied to|¥) and (w;, 5, »;, 75)
= (wj,0,0,0) forall j = 1,...,n — 1, (w;,¥j,9;,7;) = (w;,0,—7,1) for j = n. It is equivalent to apply3
followed by a rotation over thet* subsystem.

6.5(f7 +f3) = 5(P1 + Py) is the probability distribution obtained by applying;_, V; to |#) and (w;, 1;, ¢;,7;) =
(w;,0,0,0)forall j =1,...,n—1and(wp, ¥n, ©n, Tn) = (wn, 0,0, 1). Itis interesting to notice that this distribution
is local.

7.The Bernoulii distribution with parameterss? ((y — x)/2) or sin® ((y — x)/2) corresponds to the distribution of
the sum(a; + ... + a,,) mod 2 (parity) obtained by applying’_,V; to [¥) whenthe anglesv; are restricted to
{m/4,3w /4,57 /4, 7w /4} which means that

_ e¥i cosw; —1Te” Wi sinw;
J 177 e gin wj 12TieT i coswj

) andw; € {n/4,3n /4,57 /4, Tr /4}.

ProofThe proofs of (1), (2), (3), (4), (5), (6) are immediate. To show (7), notice that & {7 /4,3x /4,57 /4, 7r/4}

then
1 ( 1n+
P(ai,...,a,) = on o Hsm (2w;) | cos(y — k).

© 2012 NSP
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Moreover, forallj = 1,...,n
sin(2w;) € {—1,41} = [[ sin(2w;) € {-1,+1}.
j=1

Since exactly half the elements {fi, 1}™ have an even parity and the other half have an odd parity, then we have

n—i—b n
Prob(z a; = b) == (2171 (H sin(2w; ) cos(y — ))
1 n+b n
5 <Hs1n (2w;) ) cos(y — k).

Therefore,

n+bisevenand[;_, sin(2w;) =1
cos? (155) if or
n n+ bis odd and['[,;Z 18in(2w;) = —1
PrOb( doaj= b) = n+ bis odd and[[_, sin(2w;) = 1
j sin? (Vf'{) if or
n+bisevenand[;_, sin(2w;) = —1

RemarkThe termscos? (35%) andsin? (15=) are the coefficients of the convex combination of the distribukoand
it explains why (7) is important. In the next section, we will briefly talk about the simulatioR,aind to know how

simulatingProb( E; 165 = b) will be important for branching i.e. in order to know whichBf or P, to simulate.

2.1. Marginal and conditional distribution for thet" bit
In this sectionyx > 2. Firstly, we will find the marginal distributio®(a;,, ..., a;,, ) wheni; € I, I € P({1,...,n}),

card(I) = m, j € {1,...,m}, I # 0, andl # {1,...,n}. Secondly, we will find the conditional distributiort" bit
givenay,...,a,_1.

Theorem 2Letn > 2,1 € P({1,...,n}), card() =m, I = {i1,...,im}, I #0,andI # {1,...,n}, we have that

P(ai,...,a,) (H cos (wz — gaij) + Hsirﬂ (wij — ;Taij)>.
j=

Prooflt is only necessary to look at the caée= {1,2,...,n — 1} i.e. whencard(I) = n — 1 andn ¢ I because, by
symmetry, we easily deduce other cases. We notice first that

P(ai,...,a,) = cos? (%)Pl(a) + sin? (%)Pg(a)

Hence using the definition the marginal distribution,
P(ah [N ,an,l) = 1:)(a]_7 ey Qn—1, 0) + P(al, ey Qp—1, 1)

n—1 n—1
1
=3 ( H cos? (o.)j — ga]) + H sin? (wj — gaj))
j=1 j=1

By symmetry, we have the desired result.

(© 2012 NSP
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Remarlor all 7 € P({1,...,n}) such thatl # @ andl # {1,...,n}, the marginal distribution associated to the set of
indiceslI is local.

Now, we look more closely to the conditional distributi®ia,,|a1, ..., a,—1), which is possible since we know the
marginal distributiorP (a1, ..., an—1).

Theorem 3Let

u= Hcos ffa])

J=1
n—1 .
v = —sin(w; — —a;)
5 2
Jj=1
v
t = arctan (—)
u
Being given the firstn — 1) bitsa, .. ., a,,_1, the conditional distribution of the'" bit is given by

P(aylai,...,a,_1) = cos? (wn - gan - t) cos? (%) + cos? (wn - 2an + t) sin (7 ; H).

Proof By definition,

P(ai,...,an)

P<a‘n|a‘1a"'7an—1): P(al a 1)'

Hence, fixing the firstn — 1) bitsay, ..., a,_1, letting

U—HCOS a;)

n—1
v = —sin(w; —
1

v
t = arctan (7>
U

and using the fact that for gll, ¢ € R andz € [0, 27),

pcos(x )+q81n =p?+q2 cos x—i—h

_ 0ifp<0
arctan( ) {wifp>0

h
,_.

5%)

<.
Il

we therefore have that
P(aylat,...,an-1) = cos? (%) cos? (wn — gan — t) + sin? <%) cos? (wn — gan + t).

Itis not necessary to add to ¢t whenu > 0 since we square the cosinus.
RemarkP (a,|a1,...,a,—1) iS @ convex combination of two distributions.

3. From general von Neumann measurements to equatorial and real measurements

3.1. Correspondences between speeific2 unitary transformations and measurements on the
3-dimensional sphere

We remind that a measure over a qubit is a hermitian operator represented by @triple) € R? such that

z

r—1y 2 2 2 _
sty —z ) and z° +y“ + 2 = 1.

M$01+y02+203<

© 2012 NSP
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and therefore using using the spherical coordinates, thefai) can be used for representing a measure over a qubit.
We have thatr = cosfcos¢, y = sinfcos¢ andz = sing 0 (6,¢) € [0,27) x [0,7). A measure over a qubit
M = zoi + yos + zos isreal if y = 0. A measure over a qubl = zo + yoo + 203 is equatorialif z = 0.

The next corollary explains the meaning, in terms of equatorial and real measurements, of the convextpaets of
the coefficients (Bernoulli distribution) and the two distributidhsandPs. In fact, we give an equivalent picture in terms
of von Neumann measurements of the unitary transformations involved in the corollary (1). In fact, a player may insteac
of applying a unitary transformation on his part followed by measurement in the standard basis apply a von Neuman
measurement directely getting eigenvaldsls In fact, here—1 replacesl in the standard basis of computation antl
replaced) since the eigenvectof8) = |+ 1) and—|1) = | —1). In general, the spectrum (set of eigenvalues) of a measure
M = zoy + yoa + zo3 such thate? + y? + 22 = 1is {—1,+1}. A unitary transformatio/ is given by

U= (faﬂ (_6?5) anda = e’ cosw, 3 = €' sinw

Doing a change of basis, we have tfidt= Udiag(1, —1)UT. Hence, denoting) = z + 1y,
(z w\ _(a-B\[{1 O afB
e (o 2)=(570) G ) (52)

2z = |al? - |B|?> = cos2w and
w= 2"af =¥ ¥ gin2w.

gives

To represent a measuié, the spherical coordinaté8, ¢) € [0, 27) x [0, 7) may be used to obtain a geometric interpre-

tation. Sincer = sin ¢ = cos 2w, we havep = Z + 2w, and sincev = €'Y ~#*+7%) sin(2w), we haved = ¢ — o + 7.

Corollary 2. 1.A unitary matrixU represented byw, 0, 0,0) corresponds to a real measurement.
2.A unitary matrixU represented byw, ¢, v, 7) andw €{n/4,3n /4,57 /4, 7w /4} corresponds to an equatorial mea-
surement.
3By denotingy; € {—1,+1} for j € {1,...,n} we have the following correspondence between the outputs

ai+...+a,=0 mod2<« b;---b, =+1
a1 +...+a,=1 mod2<by---b,=—1.

3.2. A small section on the classical simulatiorPgfh)

In this section, we will establish a road map for the simulation in terms of von Neumann measurements instead of unitar
transformations. Thanks to the corollary (1), if there were protocols for simulating classically with communication, in
worst-case or average case complexity, and with shared random variables BetfooP ;) and the Bernoulli distribution
involved in the convex coefficients &, then it would be possible to simulake The next corollary (3) is equivalent to

the corollary (1) with the difference that it is expressed in terms of von Neumann measurements. The corollary (3) asser
that the problem of simulatin@® under applying locally von Neumann measurements can be split into two problems,
the one of simulating equatorial measurements (coefficients of the convex combination) and the one of simulating rez
measurementd; or P5).

Corollary 3.Let Pguz_r be a protocol simulating?; or P,. Moreover, letPguz_g be a protocol simulating the
Bernoulli distribution with parametecos? ((~y —K) /2). If Pauz_g andPgnuz_r exist with worst-case or average case
complexity, then we can create a protocol, denoteB &y, for simulatingP such that CostPor~) < Cos{ Parz—_g)+
Cos(Porz—r) + n.

ProofFirst, the inputs and outputs &fcyz are respectively the parameters describing the unitary transformations i.e.
{(¢j,j,wj,75)}}—; and an element € {0, 1}". The inputs and outputs &fcuz - are respectively (v, ¥, 7;) -1
and a bitc € {0,1} such thatProb(c = 0) = cos? ((v — )/2). The inputs and outputs Gfcuz_r are respectively
{(wj,75)}—, and an element € {0, 1}" such thafrob(alc = 0) = P (a).

We creaté’ gy as follow :

1Pgnz callsPguz_g as a subroutine with input§(¢;, ¥;,7;)} for j = 1,...,n. Pquz_g returnsc and, ifc = 0,
thenPgnyz goes to (2) otherwisBguz goes to (3).

(© 2012 NSP
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2.Pguy callsPguz—_r as a subroutine with inputw;,0)} for j = 1,...,n. Pguz returnsa = az - - - ay,.
3.Pguy callsPguz—_r as a subroutine with inpuf§w;,0)} forj =1,...,n —2and{(w;,1)} for j = n—1,n. Pouz
returnsa = aq - - Gp_10an-
ClearlyP(a) is the probability of the value returned By; iz and CostPerz) < Cos{Porz—r)+Cos{Porz—r)+n.
Then extra bits are necessary for simulating the equatorial part consisting of the distribution of the parity i.e.

Prob(zyzl a; = c). Without loss of generality, the players can restigt= /4 for simulating the equatorial part.

The (n — 1) first players send their bit to thé" player, and thex'" player simulates on his part the bithat he returns
to the other players for a total afbits.

|

3.3. Locality of the marginal and conditional distributionf* bit
In this section, using the fact th®(a4,...,a,) = P(a1,...,an—1)P(aslas,...,a,—1), we look at the simulation of
P(ay,...,a,). Infact, as it was shown before, all the marginal distributions are local, and, hence it does not cost anything
for simulatingP (ay, . .., a,_1). It seems therefore that the big difficulty for simulatiBga, . . . , a,,) "belongs” then'®
person whem > 2. The conditional distributio® (a,,|a1, . . ., a,—1) iS given by

- 2u) 2( _r ,) 2(@) w2( T )
P(aylar,...,an-1) cos ( 5 cos” | wy, 5 n t) +sin ) cos” (wy, 2an+t .
with

v
t = arctan (7),
U

n—1 -
u= cos(w; — §aj),

<
—

n—1

<.
Il
Ja

Having an idea of the discrete distributiontadver {0, 1}"~! and how simulating it would be useful.

4. Conclusion

In this paper, we showed that the discrete probability distribuBois a convex combination of two distributionB;

andPs. The coefficients of the combination are associated with the phases of the complex numbers defining the unitary
transformations. The distribution®,; andP-, are related to the modules of the complex numbers defining the unitary
transformations. From the point of view commmunication complexity, the usefulness of the result is that we can split
the simulation of the distributiol® of the GHZ quantum state into two simulations. Among open questions, we wonder
whether or noP; andP are local? IfP, andP; are local, then it would follow that the entanglement of GHZ, which is

a maximally entangled state, would be contained in the coefficients multipRjrendP,?
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