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1 Introduction

It is known [7] that the theory of quadratic stochastic operators frequently arises in
many models of physics, biology and so on. Let us briefly mention how such kind of oper-
ators appears in population genetics. Consider biological population, that is, a community
of organisms closed with respect to reproduction [1]. Assume that every individual in this
population belongs to one of the species 1,2, ..., m. Species of parents ¢ and j uniquely
determine the probability %k of their direct descendant. We denote this probability (the
heredity coefficient) via p;; ;, and ZZ’:l Dijr = 1forall i, j. Assume that the population is
so large that frequency fluctuations can be neglected. Then the state of the population can
be described by the tuple © = (21,2, ...,z,,) of species probabilities, that is, x; is the
fraction of the species ¢ in the population. In the case of panmixia (random interbreeding),
the parent pairs ¢ and j arise for a fixed state z = (x1, %2, . .., &,,) with probability z;z;.

Hence
m

/
Ty = E Pij kil j
i,j=1

is the total probability of the species in the first generation of direct descendants. Note that

the concept of quadratic stochastic operator was first introduced by Bernstein in [1]. A lot of
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papers were devoted to study such operators (see for example, [3], [7], [6], [15], [11], [13]).
One of the central problem in this theory is the study limit behavior and ergodic properties
of trajectories of quadratic operators ( [2], [9], [10], [13]). Note that the studying of a such
properties of quadratic stochastic operators is very difficult. Even in the two-dimensional
simplex the problem is still unsolved. This problem is well studied for Volterra quadratic
stochastic operators ( [3], [5]).

In [4] a class of quadratic operators, called bistochastic, is outlined. Such operators are
characterized by a property Vo < x for all x € S™~1 (see next section for notations).
There it was showed that such operators form convex set and studied its extremal points.

The aim of this paper is to study some limiting behavior of nonlinear operators satis-
fying the condition Vz = z for every z € S™~!, which will be called dissipative. Here
we will restrict ourself to the case of quadratic. Note that intersection of the classes of bis-
tochastic and dissipative operators consist of only permutation operators. It will be shown
that quadratic dissipative operators are not Volterra.

This paper is organized as follows. In section 2 we give some preliminaries on quadratic
stochastic operators. There we show that the set of dissipative operators does not form
a convex set, while the class of bistochastic operators is convex. In section 3 we study
certain limit properties of dissipative ones. Moreover, we describe all such operators in
small dimensions. In section 4 we prove that every dissipative stochastic operator satisfies
an ergodic theorem. Finally, in section 5 we give a conclusion of obtained results.

2 Preliminaries

Let S ' ={z € R™:2; >0, Y x; =1} bea (m — 1)—dimensional simplex.
i=1

2

Then the vectors e, = (0,0,..., 1 ,...,0),(k =1, m) are its vertices.
~~
k
Let x,y € R™. Let’s put T = (33[1], T2 --- x[m}), where (Z‘[l], T2 --- ,Z‘[m])— de-
creasing rearrangement of (21, T2, ..., Ty, ), thatis x> wpg) > -+ > Ty

Definition 2.1. We say that  majorized by y (or y majorates x), and write z < y (or
y > z) if the following conditions are fulfilled:

k k
=1 i=1
2) ;z[i] = Z:ly[i]-

Lemma 2.1. [8] Forany x = (71,%2,...,%m,) € S™ ! we have

11 1
(

— —...,—) <z =<(1,0,...,0).
e ) <z < )
Remark 2.1. It should be noted that “ < ” is not a partial ordering, because from = < y

and y < x it only follows that x| = y,.
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We call any operator V mapping S™ ! into itself stochastic operator.

Definition 2.2. A stochastic operator V' is called dissipative if
Ve =z, YoeSm (2.1)

Observation. Let us consider the case when V is a linear dissipative operator, that is
Vo = Az, here A = (a;;) i,j=Tm- Now we show that only permutation linear operators
are dissipative. Indeed, since Vx > x then by putting = = e; we have Ae; > e;. From the
lemma 2.1. we obtain that (Ae;); = (e;),. The last means that only one component of the
vector Ae; is 1 and the others are 0, which implies that the desired assumption. So, a linear
case studying dissipative operators is very simple. Therefore, it is more interesting to study
non-linear dissipative ones. In what follows, we consider quadratic operators.

Recall that a stochastic operator is called a quadratic stochastic operator (g.s.o. in

short) if it has a form

m
(Va)e = Y pijatiay, (2.2)
ij=1
where = (21,%2,...,Zm) € S™=1. Here the coefficients pij,k satisfy the following
conditions

m
Pijk = Pjik = 0, Zpij,k =1L (2.3)

k=1

It is easy to see that g.s.o. is well defined, i.e. it maps the simplex into itself.

It should be stressed that dissipative operators are not well studied, except for so called
F- quadratic stochastic operators [12]. For the sake of completeness we recall it here. Let
E =1{0,1,...,m — 1}. Fix aset F C F and call this set of “females” and the rest set
M = E\ F set of “males”. The element 0 will play a role of empty body. The heredity
coefficients of F'-q.s.o. is defined by

1, ifk=0,i,je€FUOorijecMUO
Pijk=14 0, ifk#0,i,j€e FUOor i,j7€ MU0
>0, ifieF,je M,Vk.

Biological treatment of the above coefficients is very clear: a “child” k can be generated
if its parents are taken from different classes F" and M. In general, p;; o can be strictly
positive for ¢ € F' and j € M, this corresponds, for instance, to the case when “female” ¢
with “male” j can not generate a “child”, since one of them (or both) is (are) ill. In general
F'- g.s.o. for the case F' = {1} can be represented by

(Va)o=1—-2x1 > (1 — p1i0)i,
(Vo) =221 > prigei, k=1,2,...,m—1.
i=2

m



214 Farruh Shahidi

In [12], a limit behavior of such operators has been studied.

Now recall the term of well known Volterra g.s.0. A g.s.0. (2.2) is called Volterra g.s.o.
if it satisfies an additional assumption p;; , = 0, Vk ¢ {, j}. By changing ax; = 2p;x x—1
one can write down the following canonical form:

(Vo) = ax (1 + Z akixi) (2.4)
i=1

In [3], it was proved that for any non-fixed initial point from the interior of the simplex,
trajectory approaches a bound of the simplex. We will show that dissipative g.s.0. can not
be Volterra g.s.o.

Now let us introduce the last notations which will be useful for the next sections.

The point z° € S™~ 1 is called a fixed point if Vz® = 2°. As arule there are three types
of fixed point. We call a fixed point x° elliptic (hyperbolic; parabolic) if the spectrum of
the Jacobian .J(z°) restricted to the invariant plane Y., z;; = 0 lies inside of the unit ball
(respectively, outside the closure of the unit ball; inside the unit circle).

3 Dissipative Quadratic Stochastic Operators and Their Limit Behav-
ior

In this section we first give some properties of dissipative q.s.0. and by means of them
we will study the regularity of certain class of dissipative q.s.0. Moreover, we provide an
example of dissipative g.s.0. which has infinitely many fixed points and study its limit
behavior.

Note that the following example shows that the set of dissipative g.s.0. is non-empty.

(Vz), = :17% + x% + l’% + 2122 + T123 + T2T3,
(Va)e = z120 + 2123,

(V.’l?)g = T2X3.

Given g.s.0. V' we denote a;; = (pij’l,pij’% ..y Dijm) Vi,j =1, m, where p;; , are
the coefficients of q.s.0. V' (see (2.2)). One can see that a;; € Sm=1 foralls,j € 1,m

Lemma 3.1. Let V be a dissipative q.s.o. Then the following conditions hold

(aii)l =€ Vi = l,m.

Proof. Due to dissipativity of V one has V = x Vz € S™~!. Now putting z = e; we get
e; < Ve,. On the other hand, from Lemma 2.1 it follows that e; = = Vz € S™~!. That’s
why (e;); = (Ve;);. Then the equality Ve; = a;; implies the assertion. O
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Remark 3.1. Note that in [4] quadratic bistochastic operators were studied, that is, opera-
tors satisfying the condition z = Vx Vz € S™~1. It was proved that such operators form a
convex compact set and its extreme points were studied. The situation under consideration
is different. Indeed, let us consider the following operators:

(Vox)1 = z1xe + 2123,

2 2 2
(Vox)a = o7 + a5 + x5 + 122 + 2223 + 2123,

(Vo) = xaxs.

(Viz)y = a5 + 25 + 23 + 3122 + 273 + 7173,
(Viz)2 = 2172 + 2173,
(Viz)3 = zox3
One can see that these operators are dissipative. However, Lemma 3.1 implies that the

operator V), = AV; + (1 — A)Vj is not dissipative for any A € (0, 1). Hence, all dissipative
g.s.0. do not form a convex set.

Let V be a dissipative q.s.0. Then thanks to Lemma 3.1 it can represented by

(Va), = Z i + 2zpij,k$ixj k=1,m, (3.1)

icay i<j

where o, C I ={1,2....m},a;Na; =0,i# j, Uy ar = 1.

Lemma 3.2. Let (3.1) be a dissipative q.s.0.

() Ifj € any, then pijr, = (aij)pny > 1/2, Vi=1,m.

(i) If m > 3, then (a;j)) = 0Vk >3, Vi=1,m.

Proof. (). Letj € ay, and x = (1 — A)e; + Ae;. Here, as before, e;, e; are the vertices of
the simplex and A is sufficiently small positive number. It is easy to see that x;;) = 1 — A
and (V) = (Vr)g,. Since Vo = 2 then xpy) < (Va)puy, s0 1 — A < (Via)y, or

L= X< (1= X)2+2pij M1 — A).
The last inequality implies that p;; 5, > 1/2.
(ii). Denote p;j r~ = maxyxy, Pij,t- One can see that (V)= = (ai;)[2). Now from
)+ 2 < Vap) + V.
we obtain
1< (1= 02 4 2(pij, + Pijes )AL = A).

Assuming A — 0 one gets p;; 1., + Pij = > 1. This yields that p;; . + pij e+ = 1 and
(aij)[k] :OVkZ?), Vi = l,m. O
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Observation. Note that statements of Lemmas 3.1 and 3.2 are the necessary conditions for
g.s.0. to be dissipative. It turns out that at m = 2 the statements are sufficient. Indeed, in

this case only dissipative q.s.0. are the identity operator and the following one

(Va), = :c% + x% + axr1xa,

(Vz)e = (2 — a)z129,

up to permutation of the coordinates. Here 1 < a < 2.
However, when m > 3 then the statements are not sufficient. Consider the following

example of g.s.o.

(Va)1 =1 + 22 — 2122,
(V[)S)Q = 0.8,@11‘27
(Vl')g =23+ 0.21’11’2.

One can see that it satisfies the mentioned statements. But for 2° = (0.5;0.49;0.01) we
have V z0 o 29, which means that it is not dissipative.

Studying of limit behavior of all dissipative g.s.o. is a difficult problem. Therefore, we
are going to consider some particular cases.

First, recall a q.s.o. V : S™~1 — S§™~1 is called regular if the trajectory of any
x € 8™~ converges to a unique fixed point.

Note that regular operators a’priori must have a unique fixed point and its fixed point is
attracting.

Now let consider the case oy = I and o = () for k # 1. Then the operator has the
following form

(
(

) F 2 pijazity
i<j (3.2)

m
V) =Y, x?
i=1
Va)y =2 pijrriz;, 2<k<m
i<j

Theorem 3.1. A dissipative g.s.o. given by (3.2) is regular. Its unique fixed point is e;.

Proof. Let us first prove that there is a unique fixed point. The existence of the fixed point
follows from the Bohl-Brower theorem. Denote it by z(?) = (x(lo), asgo), el 1:,(79)). It is

clear that it satisfies the following equality:

m

) = Z(l‘go))Z + ZZpij,lxz('O)x;O):

i=1 i<j
which can be rewritten by

@2 + a2+ a2 = 3 @) +23 pyaa¥al”
=1 1<j
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or
(wéo))Q + (ﬂvgo))2 +o (@02 4 Z(Qpij}l - 1)9050)301(0) + Z pij71m§0)x;o) =0.
i=2 2<i<y

From Lemma 3.2 we have 2p;; 1 — 1 > 0. Therefore, the left hand side is positive, which
means that the equality holds iff 29 = z3 = --- = z,, = 0. Hence, q.s.o. (3.2) has a
unique fixed point e; .
Now let us show that the operator is regular. Consider a function ¢ : S™~! — R,
defined by
o) =z0+ 234+ + T
Then .
=D Wiawiz;.
i<j k=2

One can see that 2 2?22 Dij e < 1since 2p;;1 — 1 > 0. Hence,

o(Vx) <Zx T <lezxz iﬂ?i:@(x)
=2

1<J

Consequently, {(V"x)} is a decreasing sequence. Therefore it converges.

Denote
lim (V"z)=C.
The equality
(Vi) =3 (Vi2)? +2) pia (Vi)™ (Via);
i=1 i<j

with 2p;; 1 — 1 > 0 implies

3

(V") = (VPa)] +2)  pia (V)i (V'e);

i= i<j

3

1
> Vn + Z Vn o
i:l 1<j
=(V"z)1+ Y _((V"2):)* + Z (V") (V")
1=2 1<i<y
Since lim,, o0 (V") = lim,, o (V"2); = 1 — C, we have

m

Jim (3 ((V72)i)® + D (V7a)i(V"a)2 <0,

i=2 1<i<j
which means that lim,, ... (V"x); = 0 for all ¢ > 2, Hence lim,,_,, (V") = e;. There-

fore we deduce that the operator (3.2) is regular. O
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Remark 3.2. If the trajectory of g.s.0. belongs to the edge of the simplex, then it means
that in process of time some species of the population are in the bound of disappearing. In

our case we can conclude that almost all species will disappear.

Remark 3.3. As we know that dissipative g.s.o. has a form (3.1), but the converse is not
true (see example below). Therefore, Theorem 3.1 holds for wider class of q.s.0. Indeed,
consider the following example.

2 2 2
(Viz)y = o7 + 25 + 25 + a12122 + bizexs + c121 23,
(Vi) = asx129 + boxaxs + coxy 23,

(Viz)s = aszi129 + b3xaxs + c3x23,

where ay, by, ¢y > 1and 3270 a; = 20 by = 327 ¢; = 2. If the coefficient are strictly
positive, then g.s.o. is not dissipative. However, the proof of the theorem3.1 is valid for
above operator, not only for dissipative ones.

On the other hand, we mentioned that in [12] a F-q.s.0. has been studied. Such op-
erators can be represented in (3.2) form. For the case F' = {1} if we suppose that the
coefficients of F-q.s.0. p1;0 > 1/2 then this operator becomes dissipative. Only in this
case our result extends a result obtained in [12]. In all other cases classes dissipative oper-
ators and F-q.s.0., respectively, do not intersect.

Corollary 3.1. In the case of oy, = I and oj = 0 for j # k dissipative g.s.o. is regular
and has a unique fixed point ey .

Let V be a g.s.0. Then the set w(z°) = 20U, {V"2%} is called w-limit set of
trajectory of initial point ° € S™~!. From the co_mpact;less of the simplex one can deduce
that w(z%) # () for all z° € S™~1.

Now we turn to another case, namely let oy = I\{l} as = {I} (actually we can put
ag, = {1} for some ko) and oy, = ) Vk > 3. Then operator (3.1) has the following form

(Vo) = > 5512 +2 sz‘j,lﬂfixj
i=1, il i<j
(Va)y =2} +2 3 pijozit; (3.3)
i<y
(Va)y =2 pijrrizy, 3<k<m

i<j

Theorem 3.2. If | # 2 then the dissipative q.s.o. (3.3) is regular and has a unique fixed
point ey. If | = 2 then the dissipative q.s.o. (3.3) has infinitely many fixed points and all
of them are parabolic. Moreover, w-limit set of trajectory of any initial point z° belongs to

co{ey, ea}, here coA denotes the convex hull of a set A.
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Proof. The first part of the proof is similar to the proof of the Theorem 3.1. Therefore,
consider when [ = 2. From Lemma 3.2 it follows that 2p;;; > 1 and 2p;2.2 > 1, hence
Di2,1 + Di2,2 > 1. But 22;1271'2,16 = 1 implies that 2p;> 1 = 2p;22 = 1 and p;p 1, = 0 for
all £ > 3. Now we can rewrite operator (3.1) as:

m
(Vz)r =21+ 3 x% +2 Y pijazizg
i=3 1<i<j

Va)a=a2+2 > pijoxiz; (3.4)
1<i<j i#2

(Va)e=2 > pirzizj, 3<k<m
1<i<j
Putting x) = Aeq + (1 — A)eg, where 0 < A < 1, we get V), = x. Therefore, V has
infinitely many fixed points x . Simple calculations show that Jacobian J(z) of the fixed
point z has a following form

1 0 O 0
0 0 0
0 0 O 0
0 0 0 .. O

So, one can see that the only eigenvalue of this matrix is 1, which belongs to the unit
ball. Therefore, all of fixed points are parabolic. Now consider a function ¢ : S™~! — R,
defined by ¢(z) = 23 + x4 + - - + @,,. Then Vo € S™~1 we have

o(Vz) = Z ZQpij7kxixj.

1<i<j k=3

m
The inequality 2p;;1 — 1 > 0 implies 2 Y p;;x < 1, which yields
k=2

m m m
(V) < Z ziz; < Zmi T = sz = p(x).
1<i<j i=3 =1 i=3

Consequently, {(V"x)} is a decreasing sequence. Therefore it converges.

Denote
lim o(V"z)=C.

n—oo

From (3.4) one gets
(V) + (V) = (VM) + (Va)y + 2 Z pija(V"2);(V"'z);
1<i<j

+ 2 Z pwyg(V”x)Z(V”x)J

1<i<j
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According to

lim (V)" 4+ (Vo)™ = lim (V2)™ + (va)i)=1-C

we have
nl_)H;c( Z pl]’l( 37)1 ( .27)] + Z p’J’Q( x)i ( 'r)] ) )
1<i<j 1<i<j
which means that C' = 0, and therefore w(x) € co{ey, es}. 0

Remark 3.4. We showed that all of the fixed points are parabolic, this means that trajectory
in a neighborhood of these points is nonstable.

Observation. In last two theorems we have seen that the trajectory of an initial point tend
to the bound of the simplex. Therefore it is natural to ask whether dissipative g.s.0. and
Volterra g.s.o coincide. The answer is negative. Namely, a dissipative g.s.0. (3.1) can be
Volterra if and only if ay, = {k}. On the other hand, from the Lemma 3.2 it automatically
follows that p; , = 1/2 and ag; = 2p;x,x — 1 = 0. Therefore only identity operator can
be contemporary dissipative and Volterra g.s.0.

4 Ergodicity of Dissipative Operators

Let us recall that a stochastic operator V' is called ergodic if the following limit exists

x4+ Va4 4Vl
lim

n— oo n

forany x € S™1,
In this section we are going to show that any dissipative stochastic operators is ergodic.
Note that Ulam [14] formulated a conjecture that is any g.s.o. ergodic. However,
Zakharevich [16] showed that it is not so. He considered the following q.s.o.

(V) = 22 + 2139,

(Va)y = 23 + 2x023,

(V) = 23 + 2x123
and proved that such an operator is not ergodic. From section 2 one can see that such an
operator is Volterra.

Now we show that Ulam’s conjecture is true for all dissipative stochastic operators, i.e.

not only for quadratic ones.

Theorem 4.1. Any dissipative operator is ergodic.
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Proof. Let V : S™~1 — §™~1 be a dissipative stochastic operator. Then we have
<V <Viz<Viz=<...

It means that

k k k
Z Z Vx [l] Z V2$)m < .-
i=1 =1 1=1

k
The sequences { > (V"(z))), n=1,2,...} Vk = 1,m are increasing and bounded,
=1

1=
consequently convergent. The last means that the following sequences are also convergent

{(V”(m))[k] n=12,..}Vk=1,m.

Let’s denote yx, = lim,, oo (V™)1 and y = (y1,92, - - -, Ym)-

If 2 = (21,20,...,2m) € w(zC), then there exists {x(")}, such that (V™) — z.
Therefore we have (V™ z); — z|. On the other hand (V™ z), — y, since y is a limit
of the sequence (V"x), n = 1,2,... That’s why z; = (y1,%2,...,Ym) = y. Therefore,
we infer that any element of w(z) is some kind of rearrangement of (y1,y2, ..., Ym) = ¥y.
This means that the cardinality of w(z) cannot be greater than m!

Let |w(x)| = p, then the trajectory of the {V"x} tends to the cycle of order p, i.e.
the trajectory is divided into p convergent subsequences. The operator V' acts as a cyclic

permutation of their limits. Therefore we conclude that V' is ergodic. O

Remark 4.1. Now we proved that limit set of the trajectory is finite. From biological point
of view this means that there are periodical evolutions, since there are periodical points of
the dissipative g.s.o0. Indeed, all points of permutation operators are periodic. So we can
infer that permutation operators have periodic trajectory. Now, let us consider nontrivial
example.

(Vm)l =22 + X3+ (Cl — 2)3&‘25(}3,
(Va)a = 21 + coxaws,

(

Here ¢; + co + ¢c3 = 2, ¢; > 1. The last conditions tell us that above operator is dissipa-

<

1‘)3 = C3T2X3.

tive(one can easily check it). This operator has a unique fixed point (1/2,1/2,0) and two

periodical points e; and es. That’s why there is a periodical evolutions.
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Corollary 4.1. Let V' be a dissipative stochastic operator. Then for any subsequence
{nr} C N the following limit exists

. VMo Vg 4. Vitkg
khm ’

Proof. The proof immediately follows from that w(z) is finite,for all z € S™~ 1. O

5 Conclusion.

The main achievement of the present paper is that it introduced and studied a new
class of stochastic operators, called dissipative ones. Dissipative stochastic operators have
various application in mathematical genetics and one can use given results [5], [7]. The
main results of this work are Theorems 3.1, 3.2, and 4.1 . The methods, which were used for
proving results are different from those well-known ones. One can use these methods and
techniques for proving other results, not only in the theory of quadratic stochastic operators,
but also in other disciplines of mathematics, namely nonlinear analysis, dynamical systems
and ergodic theory. Nevertheless, in a class of dissipative g.s.0. there are some open
problems.

Prove or disprove the following statements.

Problem 1. Any dissipative g.s.o0. has either unique or infinitely many fixed points.
Problem 2. If V is a dissipative g.s.0., then w— limit set of any non-fixed initial belongs to
the bound of the simplex.
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