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Abstract: We consider the general Dirac equation in 3+1 space-time dimensions. We derive an analytical expression for the general
solution of the Dirac equation. This solution has been generated by transforming the Dirac equation for one spinor component to a
generalized 3D-Ricatti type of equation.
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1. Introduction

The Dirac equation is a relativistic extension of the
Schr̈odinger equation, which describes the time-evolution
of a relativistic quantum mechanical particle [1]. It is a
relativistically covariant first order linear differential equa-
tion in space and time. It describes a spinor particle at rel-
ativistic energies below the threshold of pair production. It
also embodies the features of quantum mechanics as well
as special relativity. However, despite all the work that has
been done over the years on this equation, its exact solu-
tion has been limited to a very small set of potentials. Ex-
actly solvable potentials are of great interest both from the
pure mathematical point of view and for testing the valid-
ity of perturbative, numerical and semi-classical approx-
imations of physical systems. Furthermore, in some lim-
iting cases or for under some special circumstances they
may constitute analytic solutions to realistic problems. Be-
sides, it is a fact that exact solutions are important because
of the conceptual understanding of physics that can only
be brought about by the analysis of such solutions. Ex-
act solvability of a given Dirac equation with its bound-
ary conditions usually entails the exact knowledge of all
its eigenfunctions and the corresponding energy spectrum.
However, in recent years there have been efforts in clas-
sifying all types of solvable problems based on symmetry

considerations. Most of the known exactly solvable prob-
lems fall within distinct classes of what is referred to as
”shape invariant potentials”[2], supersymmetric quantum
mechanics[2], potential algebras[3], and ”point canonical
transformations”[4] are three methods among many which
are used in the search for exact solutions of the wave equa-
tion. Finally, we would like to mention that interest in the
solutions of the Dirac equation for the case of spin and
pseudo-spin symmetry has surged due to the great sim-
plification it entails to the associated spinor equations, a
critical investigation of these cases was recently accom-
plished[5].

Since the original work of Dirac in the early part of
last century up until 1989 only the relativistic Coulomb
problem was solved exactly. In 1989, the relativistic exten-
sion of the oscillator problem (Dirac-Oscillator) was for-
mulated and solved by Moshinsky and Szczepaniak [6].
However, recently an effective approach for solving the
Dirac equation with spherical symmetry was introduced
by Alhaidari[7]. His method was initiated by the observa-
tion that different potentials can be grouped into symme-
try classes; for example, the non-relativistic Coulomb, os-
cillator and S-wave Morse problems constitute one such
class. Therefore, the solution of two problems in one
class implies solution for the remaining one. This ap-
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proach was then applied successfully in obtaining solu-
tions for the relativistic extension of a class of shape invari-
ant potentials such as the Dirac-Scarf, Dirac-Rosen-Morse
I & II, Dirac-Pschl-Teller, Dirac-Eckart, Dirac-Hulthn, and
Dirac-Woods-Saxon potentials[8].

In this article we would like to present an efficient
method to solve analytically the three dimensional Dirac
equation. This solution will be generated by transforming
the Dirac equation for one spinor component to a Ricatti
type of equation which will then solved using a recently
derived fast converging method[9–11].

2. Solution of the Dirac equation

The free Dirac equation is given by

(iγµ∂µ −M)Ψ(t,−→r ) = 0, (1)

where we have used the Einstein summation conven-
tion for repeated indices. Taking into account the vector
V (→r) and scalarS (→r) interaction potentials the Dirac
equation can be rewritten in its spinor component form as
follows

[M + S (→r) + V (→r)] φ+ + (−i→σ.→∇)φ−

= εφ+, (2)

(−i→σ.→∇) φ+ + [−M − S (→r) + V (→r)] φ−

= εφ−, (3)

whereφ+ =
(

φ+
+

φ+
−

)
andφ− =

(
φ−+
φ−−

)
are the upper and

lower two-component spinors ofΨ , respectively. From the
above equations we obtain

φ∓ =
(−i→σ.→∇) φ±

[ε±M ± S (→r)− V (→r)]
(4)

The Dirac equation after algebraic manipulations for
φ+ then becomes

(−i→σ.→∇)2 φ+

+h(→r) (−i→σ.→∇)φ+ + g(→r)φ+ = 0, (5)

whereh (→r)andg (→r) are functions in2 × 2 dimen-
sions.

h (→r) = (−i→σ.→∇)
1

[ε + M + S (→r)− V (→r)]
,(6)

g (→r) = [M + S (→r) + V (→r)− ε]
(

1 0
0 1

)
. (7)

Let us first define the operator

£ = −i→σ.→∇ (8)

The above Dirac equation (5) can be then written in terms
of this operator as follows

£2
[
φ+

]
+ h(→r)£

[
φ+

]
+ g(→r)φ+ = 0. (9)

It is worth to mention that

£2 = −
(

1 0
0 1

)
∆ (10)

Let us try to find the inverse of this operator£−1. We con-
siderH(→r), so that

H(→r) = (−i→σ.→∇)G, (11)

whereG is 2× 2 dimensional function verifying

∫
∂

∂xi
G(→r)dxj =

∫
∂

∂xj
G(→r)dxi,

i, j = 1, 2, 3 (12)

herexi are defined as following:(x1, x2, x3) = (x, y, z).
Let us calculate

∫
(i→σ.d→r)H(→r), (13)

Sinceσ2
i =

(
1 0
0 1

)
andσiσj +σjσi = 0 for i 6= j and by

using the restriction for the2 × 2 dimensional functionG
we get

∫
(i→σ.d→r)H(→r)

=
∫

(i→σ.d→r)£(G(→r)) = G(→r). (14)

Let us calculate

−i→σ.→∇
[∫

(i→σ.d→r)G(→r)
]

(15)

−i→σ.→∇
[∫

(i→σ.d→r)G(→r)
]

= σ2
x

∂

∂x

∫
Gdx + σ2

x

∂

∂y

∫
Gdy + σ2

x

∂

∂z

∫
Gdx

+σxσy
∂

∂x

∫
Gdy + σyσx

∂

∂y

∫
Gdx

+σxσy
∂

∂x

∫
Gdy + σyσx

∂

∂y

∫
Gdx

+σyσz

∫
∂

∂y
Gdz + σyσz

∫
∂

∂z
Gdy (16)

which gives

−i→σ.→∇
[∫

(i→σ.d→r)G(→r)
]

= G(→r), (17)

in other words

−i→σ.→∇
[∫

(i→σ.d→r)G(→r)
]

(18)
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= £
[∫

(i→σ.d→r)G(→r)
]

= G(→r).

so we have

£
[∫

(i→σ.d→r)G(→r)
]

= G(→r), (19)

and
∫

(i→σ.d→r)£ [G(→r)] = G(→r), (20)

we can write then that

£−1(G(→r)) =
∫

(i→σ.d→r)G(→r), (21)

for any2× 2 dimensional functionG verifying

∫
∂

∂xi
G(→r)dxj =

∫
∂

∂xj
G(→r)dxi

i, j = 1, 2, 3 (22)

Let us analyze the last condition, we can deduce more re-
stricted condition by deriving this condition by∂∂xi

and

then by ∂
∂xi

and we get a more restricted condition

∂2

∂x2
i

G =
∂2

∂x2
j

G, (23)

where, as an exception to the general rule, repeated indices
are not summed over in (27). If we define the following
coordinate(ξ1, ζ2, ζ3) = (x, iy, z) then our previous equa-
tion reduces to

∆1,2G = 0,

and

∆2,3G = 0, (24)

where∆i,j = ∂2

∂ζ2
i

+ ∂2

∂ζ2
j

.Let us return to our main problem

the Dirac equation and let us define a2 × 2 dimensional
functionF verifying the condition and

φ+ = exp
[
£−1F

]
A (25)

= exp
[∫

(i→σ.d→r)F (→r)
]

A,

in other words

F = £
[
ln

[
φ+.AT

]]

= (−i→σ.→∇) ln
[
φ+.AT

]
(26)

A is a two dimensional constant vector. The Dirac equation
becomes then

F 2(→r) + (−i→σ.→∇)F (→r) (27)

+h(→r)F (→r) + g(→r) = 0.

Using the same technique developed recently for
Schr̈odinger equation [9–11] we can write

F (→r) = F0(→r) + η(→r), (28)

whereF0(→r) andη(→r) are2 × 2 dimensional func-
tions.F0(→r) represents the adiabatic part of the solution
verifying

F 2
0 (→r) + h(→r)F0(→r) + g(→r) = 0, (29)

with formal solution

F0±(→r) =
−h(→r)±

(
[h(→r)]2 − 4g(→r)

) 1
2

2
. (30)

neglecting theη(→r)2 we get

F 2
0 (→r) + (−i→σ.→∇)η(→r) (31)

+ [h(→r) + 2F0(→r)] η(→r) = 0.

The 2-dimensional constant vectorsA± in the general so-
lution (42) are to be fixed by the boundary conditions.

3. Conclusion

We have succeeded in solving the three dimensional Dirac
equation by reducing the one component spinor equation
to a generalized Ricatti equation which was then solved
using a recently developed fast converging technique, the
final form of the solution is given by equation (42). The
present method can be applied to a broad class of rela-
tivistic problems ranging from atomic to laser applications.
This approach promises that it is more accurate than the
usual perturbative approach and goes beyond the adiabatic
limit.
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