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Abstract: In applied statistics, the coefficient of variation (CV) of a distribution is considered as one of the useful descriptive measures

for describing variability. However, inferences concerning the coefficient of variation of non-normal distributions are rarely reported.

In this paper, estimation of CV using progressive first failure censored data for the Lindley distribution (LD) is developed. A point

estimation as well as interval estimation of CV aure obtained using Bayesian and non-Bayesian approaches. In Bayesian approach,

we obtian the Bayes estimation with both the symmetric and asymmetric loss fnctions. Results from simulation studies assessing the

performance of the maximum likelihood estimation (MLE) and Bayes estimates are included.

Keywords: cofficient of variation; Lindely distribution; progressive first failure censored scheme; Bayesian approach .

1 Introduction

The CV is an important quantity to describe the variation. It provides an alternative index besides the most commonly
used measurements of variation such as variance or standard deviation, which come across with difficulty in comparing the
variations from different populations with different units, such as, for example, the variability of the weights of newborns
(measured in grams) with the size of adults (measured in centimeters). The CV measures the variability of a series of
numbers independently of the unit of measurement used for these numbers. This approach has been used by several authors
to obtain the CV estimator (for details, see [1] and [2]). The CV has long widely used as a descriptive and inferential
quantity in several fields such as chemistry, engineering, medical sciences, physics, and telecommunications. In chemical
experiments, it is often used as a yardstick of precision of measurements, two measurement methods may be compared
on the basis of their respective CV. In physiological science, the CV can be applied to assess the homogeneity of bone
samples [3]. It has been used as a tool in uncertainty analysis of fault trees [4] and in assessing the strength of ceramics
[5]. Many statistical procedures concerning CV are based on the normal distribution. However, several phenomena do not
agree with the normality assumption due to asymmetry or to the presence of heavy and light tails in the distribution of the
data.

2 Progressive First Failure

This section discussed the process of obtaining point and interval estimations of the parameter based on progressive first-
failure censored data. Let yi = Y R

i;m,n,k be the observed values of the lifetime y obtained from a progressive first-failure
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censoring scheme R = (R1, ...,Rm). Then the likelihood function of the observations is:

L(θ ) = Akm
m

∏
i=1

f (yi) [1−F(yi)]
k(Ri+1)−1

, (1)

L(θ ) = Akm
m

∏
i=1

[

θ 2 (1+ yi)e−θyi

1+θ

][(

1+
θyi

1+θ

)

e−θyi

]k(Ri+1)−1

, (2)

the log likelihood function may have the form:

ℓ(θ ) = logA+m logk−
m

∑
i=1

θyi + 2
m

∑
i=1

logθ −
m

∑
i=1

log(1+θ )

+
m

∑
i=1

log(1+ yi)+
m

∑
i=1

(k(Ri + 1)− 1) log(1+
θyi

1+θ
)

−
m

∑
i=1

θyi(k(Ri + 1)− 1).

(3)

Differentiating equation (3) with respect to θ and equating the equation to zero.

∂ℓ(θ )

∂θ
=

2m

θ
−

m

∑
i=1

yi −
m

∑
i=1

yi(k(Ri + 1)− 1)

+
m

∑
i=1

(k(Ri + 1))(
yi

((1+θ )(1+θ +θyi))
)

−
m

∑
i=1

(
yi

(1+θ )(1+θ +θyi)
−

m

1+θ
= 0.

(4)

Equation (4) can’t be solved analytically, but can be solved by using Newton-Raphson method.

2.1 Approximate Confidence Interval (CI)

In this subsection, we obtained the approximate confidence interval for LD parameter. The observed Fisher’s information

is given by I(θ̂ ) =−
∂ 2ℓ(θ )

∂θ 2
at θ = θ̂ . The sampling distribution of

θ̂ −θ
√

var
(

θ̂
)

can be approximated by a standard normal

distribution. When the sample size is large, the 100(1− γ)% confidence interval bounds for θ can be computed by :

(θ̂L, θ̂U ) = θ̂ ±Zγ

2

√

var
(

θ̂
)

.

In order to find an approximate estimate of the variance of CV using the Delta method, see [8], let G = (
∂CV

∂θ
)

,where
∂CV

∂θ
is the first derivatives of the CV.

The approximate asymptotic variance of CV is given by Var(ĈV ) = [GI−1Gt ]θ̂ . The asymptotic distribution of

ĈV −CV
√

Var(ĈV )
has N(0,1). This yields that the asymptotic 100(1− γ)% confidence interval for CV is:

ĈV ±Zγ

2

√

var
(

θ̂
)

.
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3 Bayes Estimators under Symmetric and Asymmetric Loss Functions

This section deals with obtaining the Bayesian estimation for the LD (for more detail about LD see [6], [7]) parameter
under different loss functions. Dube et al. [8] had studied the Bayesian estimation using squared error (SE) loss function
for Lindely distribution by using important sampling technique and Metropolis-Hasting algorithm . In practical works
the parameters cannot be treated as a constant during the life testing time. Therefore, it would be a fact to assume the
parameters used in the life time model as random variables. We have also conducted a Bayesian study by assuming the
following independent gamma prior for θ :

g(θ )αθ a−1e−bθ ,θ > 0, (5)

where a and b are hyperparameters and a,b > 0.

3.1 Symmetric Loss Function

In this subsection, we made Bayesian estimation using SE loss function. The likelihood function has the form :

L(θ ) = Akm
m

∏
i=1

[

θ 2 (1+ yi)e−θyi

1+θ

][(

1+
θyi

1+θ

)

e−θyi

]k(Ri+1)−1

. (6)

Thus, the posterior density function of θ , given the data, is given by

π (θ | x) =
L(θ )g(θ | a,b)

∫ ∞
0 L(θ )g(θ | a,b)dθ

. (7)

Therefore, the Bayes estimate of any function of θ say h(θ ) under squared error loss function is

θ̂SE = E(θ |data) [h(θ )] =

∫ ∞
0 h(θ )L(θ )g(θ | a,b)dθ
∫ ∞

0 L(θ )g(θ | a,b)dθ
. (8)

The posterior density function is:

π (θ | x) ∝ L(θ )g(θ | a,b). (9)

π(θ | y) ∝ θ 2m+a−1 Akm

(1+θ )m

m

∏
i=1

(1+ yi)(1+
θyi

(1+θ )
)k(Ri+1)−1 × [exp(−θ (b+ k

m

∑
i=1

yi(Ri + 1)))]. (10)

It is not possible to compute equation (8) analytically. The posterior density function cannot be reduced analytically to
well known distributions. But its plot shows that it is similar to normal distribution. So, to calculate the integral that we
cannot calculate it exact, we use the Metropolis-Hasting (MH) algorithm with normal proposal distribution.

3.2 Asymmetric Loss Function

Asymmetric loss function may be more appropriate in some fields. Recently, many authors considered asymmetric loss
functions in reliability and life testing. One of the most popular asymmetric loss functions is linear-exponential (LINEX)
loss function which was introduced by [9]. It used in several papers, for example, [10], [11], [12] and [13]. This function
is approximately linearly on one side and rises approximately to zero on the other side. Under the assumption that the

minimal loss occurs at θ̂ = θ , the LINEX loss function can be expressed as:

L1(δ ) ∝ exp(cδ )− cδ − 1, (11)

where δ = θ̂ −θ , θ̂ is the estimate of θ ,c 6= 0.
The magnitude of c represent the direction, and degree of symmetry. Where c > 0 means overestimation is more serious
than underestimation, and c < 0 means the opposite. For c close to zero the LINEX loss function is approximately the
(SE) loss function. The posterior expectation of the LINEX loss function of is :

Eθ (L1(θ̂ −θ )) ∝ ((ecθ )Eθ [e
−cθ ])− c((θ̂ −Eθ θ )− 1. (12)
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The Bayes estimator under the LINEX loss function is the value of

θ̂LINEX =
−1

c
log(Eθ [exp(−cθ )]), (13)

such that Eθ [exp(−cθ )] exists.
Another asymmetric loss function called a general entropy (GE) loss function was proposed by [14] which can be

expressed as:

L2(θ̂ ,θ ) ∝ [
θ̂

θ
]q − q log

θ̂

θ
− 1. (14)

The weighted SE loss function results from q =−1. The Bayes estimate θ̂GE under GE loss function is

θ̂GE = (Eθ [θ
−q])

−1
q , (15)

such that Eθ [θ
−q] exists.

Since it is not possible to compute equation (13) and (15) analytically. we used the Markov chain Mont-Carlo (MCMC)
method such as Metropolis-Hastings algorithm. to draw samples from the posterior density function and then to compute
the Bayes estimate.

3.3 Metropolis-Hasting Algorithm

The MH algorithm was originally introduced by [15]. Suppose that our goal was to draw samples from some
distributions f (x|θ ) = νg(θ ), where ν is the normalizing constant which may not be known or very difficult to compute.

The MH algorithm provided a way of sampling from f (x|θ ) without requiring us to know ν . Let q
(

θ (b)|θ (a)
)

be an

arbitrary transition kernel: that is the probability of moving, or jumping, from current state θ (a) to θ (b). This is

sometimes called the proposal distribution. The following algorithm generated a sequence of values θ (1),θ (2), ...,θ (n)

which form a Markov chain with stationary distribution given by f (x|θ ).

Algorithm

1.Start with θ (0) = θMLE .

2.Set i=1.
3.Generate θ (∗) from the proposal distribution N(θ (i−1),varθ (i−1)).

4.Calculate the acceptance probability r(θ (i−1),θ (∗)) = min

[

1,
π(θ (∗))

π(θ (i−1))

]

.

5.Generate U from uniform on (0, 1).
6.If U < r(θ (i−1),θ (∗)) accept the proposal distribution and set θ (i) = θ (∗). Otherwise, reject the proposal distribution

and set θ (i) = θ (i−1).

7.Set i = i+ 1.
8.Repeat Steps 3− 7 N times.

9.Obtain the BEs of θ using MCMC under SEL function as ĈV SE = ∑N
i=M+1

1
N−M

CV (i).

10.Obtain the BEs of θ using MCMC under LINEX function as ĈV LINEX = −1
c

log
∑N

i=M+1 exp(−cCV (i))

N−M
.

11.Obtain the BEs of θ using MCMC under GE function ĈV GE = [
∑N

i=M+1(CV (i))−q

N−M
]
−1
q , where M is nburn units and N is

the number of MCMC iterations.
12.Arrange the values of θ (∗) in ascending order.
13.Find the position of the lower bound and upper bound θ

14.Repeat the above steps N times and every time find the average value of θ
(∗)
low and θ

(∗)
upp.

4 Simulation Study

This section deals with obtaining some numerical results. MLE and Bayes estimates using LINEX, SE and GE loss
functions with their mean square errors (MSE) , coverage probability (COV) , 95 % CIs and HPD Interval with their
widths for the parameter θ when N = 10000, M = 1000,θ = 1,a = 1,b = 1,A = 2,k = 2,4,6,8,12,c = 1,q = 1. We
generate a progressively first-failure censored samples from the continuous random variable using the algorithm described
in [17]. Tables (1-5) contains some results concluded from the simulation study.
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Table 1: Estimators and MSE, CI and HPD

C.S [1] [2] [3]

n 50 50 70

m 20 20 30

k 2 2 2

ĈVMlE 0.937 0.9363 0.9344

ĈVSE 0.9343 0.9330 0.9313

ĈVLINEX 0.9344 0.93309 0.9314

ĈVGE 0.934 0.933 0.931

MSEMlE 0.00014 0.000104 0.00012

MSESE 0.000108 0.000082 0.00012

MSELINEX 0.000109 0.000089 0.00011

MSEGE 0.00011 0.000090 0.00012

95%CI {0.91569, 0.95997} {0.914, 0.959} {0.912, 0.957}
Length 0.04428 0.045 0.045

95%CI f orHPD {0.910367, 0.953985} {0.9087, 0.9529} {0.907, 0.9514}
Length 0.043618 0.0442 0.0444

COVMLE 0.92 0.95 0.93

COVMCMC 0.95 0.99 0.98

Table 2: Estimators and MSE, CI and HPD

C.S [1] [2] [3]

n 80 80 80

m 40 40 40

k 2 2 2

ĈVMlE 0.9341 0.9339 0.9337

ĈVSE 0.93408 0.93391 0.9354

ĈVLINEX 0.934 0.934 0.93376

ĈVGE 0.934 0.933 0.934

MSEMlE 0.000052 0.000058 0.00006

MSESE 0.00005 0.000054 0.0000564

MSELINEX 0.000048 0.000054 0.000056

MSEGE 0.000048 0.000054 0.0000567

95%CI {0.9197, 0.9518} {0.9195, 0.9517} {0.9193, 0.9515}
Length 0.0321 0.0322 0.0322

95%CI f orHPD {0.917, 0.9488} {0.9168, 0.9487} {0.9165, 0.9486}
Length 0.0318 0.0319 0.0321

COVMLE 0.98 0.95 0.96

COVMCMC 0.98 0.97 0.97

Under different combinations of n,m, we used three different censoring scheme (C.S), as:
scheme I: R1 = n−m, Ri = 0 for i 6= 1.
scheme II: R m+1

2
= n−m, Ri = 0 for i 6= m+1

2
; if m odd, and

R m
2
= n−m, Ri = 0 for i 6= m

2
; if m even.

scheme III: Rm = n−m, Ri = 0 for i 6= m.
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Table 3: Estimators and MSE, CI and HPD

C.S [1] [2] [3]

n 130 200 250

m 60 120 140

k 2 2 2

ĈVMlE 0.9363 0.9351 0.9234

ĈVSE 0.93408 0.991 0.954

ĈVLINEX 0.934 0.921 0.95676

ĈVGE 0.934 0.9345 0.9674

MSEMlE 0.000042 0.000022 0.000023

MSESE 0.0000386 0.000021848 0.00002241

MSELINEX 0.000039 0.000021822 .00002239

MSEGE 0.00003873 0.0000219 0.00002246

95%CI {0.9234, 0.9492} {0.9258, 0.944} {0.9266, 0.9437}
Length 0.0258 0.0185 0.0171

95%CI f orHPD {0.9215, 0.9472} {0.9249, 0.9433} {0.9258, 0.9429}
Length 0.0257 0.0184 0.0171

COVMLE 0.935 0.9667 0.94

COVMCMC 0.965 0.96 0.94

Table 4: Estimators and MSE, CI and HPD

C.S [1] [2] [3]

n 50 50 50

m 20 20 20

k 4 4 4

ĈVMlE 0.9367 0.9241 0.9354

ĈVSE 0.938 0.991 0.922

ĈVLINEX 0.9356 0.931 0.95346

ĈVGE 0.934 0.935 0.9334

MSEMlE 0.000143 0.00011 0.000145

MSESE 0.00011881 0.0001008 0.0001248

MSELINEX 0.0001184 0.0001003 0.0001243

MSEGE 0.000119 0.0001020 0.0001259

95%CI {0.9145, 0.9588} {0.913, 0.9573} {0.9139, 0.9579}
Length 0.0443 0.0443 0.044

95%CI f orHPD {0.9094, 0.953} {0.9082, 0.9517} {0.9088, 0.9523}
Length 0.0436 0.0435 0.0435

COVMLE 0.8933 0.9667 0.92

COVMCMC 0.9533 0.9733 0.9667
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Table 5: Estimators and MSE, CI and HPD

C.S [1] [2] [3]

n 80 80 50

m 40 40 20

k 6 8 12

ĈVMlE 0.9457 0.9367 0.9233

ĈVSE 0.9345 0.9351 0.922

ĈVLINEX 0.9344 0.9351 0.94346

ĈVGE 0.956 0.935 0.9334

MSEMlE 0.000055 0.0000612 0.0000640

MSESE 0.0000509 0.0000532 0.0000543

MSELINEX 0.0000508 0.0000531 0.0000542

MSEGE 0.0000511 0.0000533 0.0000544

95%CI {0.9212, 0.9522} {0.913, 0.9573} {0.9216, 0.9524}
Length 0.0313 0.031 0.0308

95%CI f orHPD {0.9177, 0.9487} {0.9185, 0.9494} {0.9191, 0.9496}
Length 0.031 0.0309 0.0305

COVMLE 0.9467 0.9467 0.925

COVMCMC 0.98 0.9733 0.955

5 Conclusion

Point and interval estimation using symmetric and asymmetric Bayesian estimation by two methods for LD parameter
based on progressive first failure samples are derived and computed. Asymmetric Bayesian estimation is always better
than symmetric Bayesian estimation, the MSE of ĈV LINEX is always smaller than MSE of ĈV SE , the HPD interval length
and the approximate CI length of the parameter decreases as n,m increase, olso as the diffrence between n,m deacreses
the MSE error of the paramter deacreses, all the results concludede are:

1.For all censoring schemes and all values of k as n,m increase the MSE of ĈV MLE , ĈV SE , ĈV LINEX , ĈV GE decrease.
2.For all censoring schemes and all values of k as n,m increase the HPD interval length and the CI length of the parameter

decreases.
3.The MSE of ĈV SE , ĈV LINEX , ĈV GE (Bayesian estimators) is always smaller than MSE of ĈV MLE .
4.The MSE of ĈV SE , ĈV LINEX is always smaller than MSE of ĈV GE .
5.The MSE of ĈV LINEX is always smaller than MSE of ĈV SE .
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