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Abstract: In this paper, we firstly present a general expression for the entries of the rth (I‘ S N) power of certain

n-square are complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we

obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order
to verify our calculations.
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1 Introduction

In recent years, computing the integer powers of tridiagonal matrices has been a very popular problem.
Rimas investigated positive integer powers of certain tridiagonal matrices of odd and even order
depending on the Chebyshev polynomials [1,2]. The authors generalized some papers of Rimas [3-8].
Eigenvalues of certain tridiagonal matrices are investigated in many papers [9-10].

In this paper, we obtain the entries of positive integer powers of an n-square complex tridiagonal
matrix of the form

fa+b b
b a b 0
8- b a . | o
.. b
0 b a b
b a+b]|

where b=0 and a,beC. We also give complex factorization formulas for the Fibonacci and Pell

numbers.
Now, we are beginning with following lemma.

Lemma 1 [11] Let {H (n), n=12,.. } be sequence of tridiagonal matrices of the form
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h, h,
h2,l h2,2 h2,3 O
H (n) = hs,z h3,3 B .
O | N
hn,n—l hn,n
Then the successive determinants of H (FI) are given by the recursive fo;mula:
|H (1)| =h,

|H (2)| = hl,lhz,z - hl,2h2,1’
IH()|=h,,[Hh-D|-h_ h,..|HNO-2).

Let {H f(n), n=1, 2} be sequence of tridiagonal matrices of the form

I hl,l _hl,Z
_h2,1 h2,2 _h2,3
H f(n) = _ha,z h3,3
B LI
_hn,n—l hn,n

Since the matrices H(N) and H'(N) have the same recursive formula, it can be written that
[H)| =[H"(n)].
2 Main Results

In this section, we give the eigenvalues and eigenvectors of the matrix B given by (1).
Let U be the following n-square tridiagonal matrix

11
1 0 1 0
U= 1 .O
A |
0 1 01
11
By using (2), we write the characteristic pol_ynomial of U asthe fc;IIowing:
t-1 1
1 t 1 0
[t —U|= ' .t 1 :
0 1 t 1
1 t-1

and from [2], the eigenvalues of U are

()

3)
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t, =

—Zcosk—ﬂ, fork=12,...,n
n

where t, denotes kth eigenvalue of the matrix U.

Lemma 2 Let Q be the following n-square tridiagonal matrix

fa+1 1
1 a 1 0
1 a °
IR |
0 1 a 1
1 a+1

where ae C. Then the eigenvalues of Q are

y7s :a—Zcosk—”, fork=12,...,n
n

where g, denotes kth eigenvalue of the matrix Q.

(4)

Q)

(6)

Proof. Since eigenvalues of Q are the roots of its characteristic polynomial, we can write the
characteristic polynomial of Q from (2) to be

|l -Ql =

Substituting t = #z—a and taking (3) and (4) into account, we find the eigenvalues of the matrix Q as

u—a-1
1

My =a=

1
u—a 1 0
1 u-a
' 1
0 1 pu-a 1
1 pu-a-1

2cosk—”, fork=12,...,n.
n

Theorem 3 Let the matrix B be as in (1). Then the eigenvalues of B are

A :a—2bcosk—7z, fork=12,...,n
n

where 4, denotes kth eigenvalue of the matrix B and b 0.

()

Proof. We need a relation between the matrices B and Q in order to prove the theorem. Dividing all
entries of the matrix B by nonzero b, we get a new n-square matrix M normalized the upper and lower

sub-diagonals as the following

65
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241 1
1 21 0
e 1 2 "
o1
0 1 2 1
i 1 $+1]
Taking (5) and (6) into account, we find the eigenvalues of the matrix M to be

E_ZCOSK—E, fork=12,...,n.
b n

Since the eigenvalues of the matrix B are just b times the eigenvalues of the matrix M, we get
A = a—2bcosk—7[, fork=12,...,n,
n

and the proof is completed.
Each eigenvector of the matrix B is the solution of the following homogeneous linear equation
system
(41-B)x=0, (8)
where 4, is the jth eigenvalue of the matrix B (13 J < n). Solving the set of system (8), we find the
eigenvectors of the matrix B as

9, .
Xik :T% ? forj,k=12,...,n, 9)

where T, (X) is the kth degree Chebyshev polynomial of the first kind [12]:
T, (x)=cosk(arccosx), —1<x <1,
and

General expression for the entries of B'

Consider the relation B"=NJ'N™', where J is the Jordan's form of B and N is the
transforming matrix. In order to get the general expression for the entries of B', we firstly find the
matrices J and N.

Since all the eigenvalues 4, (k=12,...,n) are simple, each eigenvalue A, corresponds single
Jordan cell J; (4 ) in the matrix J . Taking this into account we write down the Jordan's form of the
matrix B

J=diag(4, 4,....4,)- (10)

Let us find the transforming matrix N and its inverse N’l_ Denoting jth column of N by
N;, wehave N=(N;,N,,...,N,). From (9) we get
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_T%(%J _
(Sl
N, = Tg(? , forj=12,...,n. (11)
By (11), we obtain the transforming matrix N as:
AGRRAC AT
o TE TE )| ”
Tal2) Tal®) o T(®)
Denoting the jth column of the inverse matrix N~ by (N‘1 =(70. 71 rn)), from [1], we get
_flT%(%)_
7, = szz'z-l(%z) , forj=12,...,n (13)
fTi(%)
where ) _
¢ 2 ifk=12,...,n-1
k‘{% ifk =n.
Taking into account (13), we write down the matrix N as
(3) m(3) e Ma(3) (%)
(3) an(3) o ma(3) ()
N1:% z T : (14)
2T (%) 2N (%) o 2Maa(%) ()
T T Tel®) Tl

2

By combining (10), (12) and (14) and using the equality B" = NJ"N ™, we compute the rth powers of the
matrix B of order n. (i,j)th entry of the matrix B" = [sij] can be given as:

S, :sz (4 )rTM (%)Tzél (%j fori,j=12,..,n,

k=1 g

or, by substituting &, =22,

i(ﬂk‘ajn“ﬁ‘aj fori, j=12,...,n. (15)
k=1 2 2b T2 2b
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3 Numerical Considerations

In this section, we give two examples. One of them is 4-square real matrix and the other is 3-square
complex matrix. We calculated 3th and 2th power of these matrices, respectively. These examples can be
verified by using Maple procedure given in Appendix A.

Example 4 Let B, be a 4x4 real tridiagonal matrix (for a=2 and b=3, given in (1)) as in the
following:

o W NN W
w NN w O
g1 w O O

3th power of B, is computed as in the following.
From (7), eigenvalues of the matrix B, can be written fo k =1,2,3,4 as:

ﬂk:Z—GCoskTﬁ,

namely, 4 = 2—3\/5, =2 4= 2+3\/§ and A, =8. We also write the transforming matrix N,
whose columns consist of eigenvectors of B,, and its inverse as:

L) T(=) (%) ) : x oy 1
N L) L) TE) L) | 1y x4
() TS T ()| 2y x i
HCRIERACORACH] y
and )
m(s) () (%) ()| Yoy
G 1 ) ) ) ) | gk x x x
A () (%) () ()| 4y ey
11 1 1
L) ) T )

Where x:\/z y=2c0s% and z=2c0s3-. Then we get

233 171 81 27
171 143 117 81
81 117 143 171
27 81 171 233
(i,j)th entry of the B}, can be verified by formula given in (15).

BY = N,J3N;* =

Example 5 Let B, be a 3x3 complex tridiagonal matrix (for a=1—i and b=5+2i, given in (1)) as
in the following:
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6+i 5+2i 0
B,=[5+2i 1-i 5+2i|.
0 5+2i 6+i
2th power of B, is computed as in the following.
From (7), eigenvalues of the matrix B, can be written for k =1,2,3 as:

ﬂk:(l—i)—(10+4i)cosk?ﬂ,

namely, 4, =—4-3i, 4, =6+1 and A, =11+3i. We also write the transforming matrix N,,  whose

columns consist of eigenvectors of the B,, and its inverse as:

T(%) (%) T.(%) 1 3 2

N, =|T,(%%) T.(%) (%) Z% 2 02

2

() h) T Lt R

PN 3

and
() (%) ()| 12 1
3|75 (5 an()|=3 B o0 |
%(L) T(%) (%) P
Then we get

56+32i 35+14i 21+ 20i
B =N,J/N,'=|35+14i 42+38i 35+14i |.
21+20i 35+14i 56+32i
(i,j)th entry of the B,, can be verified by formula given in (15).

4. Complex Factorization of Fibonacci and Pell Numbers

In this section we find two complex factorization formulas for the Fibonacci and Pell numbers in terms of
determinant of the matrix B given in (1). Calculations given in this section can be verified by using
Maple 13 procedures given in Appendix B.
In [11], authors obtained that
tridiag, (i,1,i)|=F,,,. (16)

In [13], authors obtained that

mtridiag, (12i,1)|=PR,,, (17)
where
1 n=0(mod4),
o —i  n=1(mod4),
-1 n=2(mod4),
i n=3(mod4).

Equality (17) can be written as

69
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tridiag, (i,2,1)|=P,,.. (18)
Theorem 6 Let B be n-square matrix as in (1). Then
(1+2i)F, ifa=landb=i,
det(B) = LU . (19)
(2+2i)P, ifa=2andb=i,
where F, and P, denote nth Fibonacci and Pell numbers.
Proof. By applying the Laplace expansion according to the first and last rows of B, we get
B|=(a+b)’|tridiag, _, (b,a,b)|.
Bl (a-b)'[ridiag, . (0.2.b) 2

—~2b? (a+b)|tridiag, , (b, a,b)|+b" |tridiag, , (b,a,b).
If we choose a=1 and b =i in (20), and take (16) into account, we write
det(B)=(1+i)’ [tridiag, , (i,1,i)|+2(1+i)[tridiag, , (i,1,i)|+|tridiag, , (i)
=(1+i)’ F,, +2(1+i)F,
=(1+2i)F,.
If we also choose a=2 and b=i in (20), and take (18) into account, we write
det(B)=(2+i) [tridiag, , (i,2,i)|+2(2+i)|tridiag, , (i,2,1)| + [tridiag, , (i,2.i)|
=(2+i) P, +2(2+i)P,, +P,,
=(2+2i)P,
thus, the proof completes.

-2 + Fn—3

Conclusion 7 Let n-square matrix B be as in (1). Then, complex factorizations of the Fibonacci and Pell

numbers are
n-1

F = H{l— 2i cosk%}

k=1
and

n-1
P :H[Z—Zi cosk—”}.

k=1 n
Proof. Since eigenvalues of B for k =1,2,...,n are
A = a—2bcosk—”
n

from (7), determinant of B can be written as

det(B):ﬁ[a—ZbcoskTﬂ}.

k=1

By using (190), we write

and
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So, we obtain
F, :i_ [1—2icosk—”}
1+21 5 n
n-1
:H{l—Zicosk—”}
k=1 n

asin[11] and

+21 n
n-1
= H[Z—Zi cos—”}.
k=1

Thus, proof is completed.

Appendix A. Following Maple 13 procedure calculates the rth power of N — square complex
tridiagonal matrix given in (1) and (i,J) th entry of B" for b = 0 .

>restart:

with(LinearAlgebra):

power:=proc(n,r,a,b,i,j)

local ¢,s,B,f, lambda, delta, T, M;

c:=(i,j)->piecewise(i=1 and j=1,a+b,i=n and j=n,a+b,i=j,a,abs(i-j)=1,b,0);
B:=Matrix(n,n,c):

lambda:=(k)->a-2*b*cos(k*Pi/n);

delta:=(j)->((lambda(j)-a)/b);

T:=(k,x)->evalf(cos(k*arccos(x)));

f:=(k)->piecewise(k=n,1/n,2/n);
s:=(i,j)->sum(f(k)*(lambda(k))r*T((2*i-1)/2,delta(k)/2)*T((2*j-1)/2,delta(k)/2),k=1..n);
M:=Matrix(n,n,s);

print(M);

print(s(i.j));

end proc:

power(! 111 )v

Appendix B. (i) Following Maple 13 procedure calculates N — square matrix B given in (1) for

a=1 and b =1, determinant of B and complex factorization formula for Fibonacci numbers given in
Conclusion 7.

>restart:

with(LinearAlgebra):

F:=proc(n)

local c,B,Factorization;

c:=(i,j)->piecewise(i=1 and j=1,1+l,i=n and j=n,1+l,i=j,1,abs(i-j)=1,1,0);
B:=Matrix(n,n,c):
Factorization:=(1/(1+2*I))*product(1-2*1*cos(k*Pi/n),k=1..n);

print(B);

print(Determinant(B));

print(evalf(Factorization));

end proc:

FO);
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(i) Following Maple 13 procedure calculates N — square matrix B givenin(1)for a =2 and b =1,
determinant of B and complex factorization formula for Pell numbers given in Conclusion 8.

>restart:

with(LinearAlgebra):

P:=proc(n)

local c,B,Factorization;

c:=(i,j)->piecewise(i=1 and j=1,2+l,i=n and j=n,2+l,i=j,2,abs(i-j)=1,1,0);
B:=Matrix(n,n,c):
Factorization:=(1/(2+2*1))*product(2-2*1*cos(k*Pi/n),k=1..n);
print(B);

print(Determinant(B));

print(evalf(Factorization));

end proc:

P();
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