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Abstract: In this paper, we focus on a class of Boolean permutations of an optimal algebraic degree. Firstly, we construct a class of
Boolean permutations. We put forward a method to propose the inverse of a given Boolean permutation. It is shown that a Boolean
permutation has an optimal algebraic degree if and only if its inverse has an optimal algebraic degree. Secondly, we present the inverse
of the constructed Boolean permutation, and show the inverse permutation has the largest algebraic degree. Finally, we show that the
constructed Boolean permutations can achieve optimum algebraic degree by selecting an appropriate initial vector and illustrate it with
examples.
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1. Introduction

Let n andm be two positive integers andFn
2 be then-

dimensional vector space overF2. A Boolean function on
n variables is anF2-valued function onFn

2 . We call the
functions, fromFn

2 to Fm
2 , (n,m)-functions. Such func-

tion F being given, the Boolean functionsf1, . . . , fm de-
fined, at everyx ∈ Fn

2 , by F (x) = (f1, . . . , fm), are
called the coordinate functions ofF . Obviously, these
functions include the (single-output) Boolean functions
which correspond to the casem = 1. Forn = m, if c·F (x)
is a balanced Boolean function for anyc 6= 0 ∈ Fn

2 , then
F (x) is called a Boolean permutation onn variables.

Boolean permutations are used in various different ar-
eas and play an important role in the security of cryptosys-
tems. Their most prominent cryptographic applications in-
clude the analysis and design of S-boxes in block ciphers
[4]. For example, the S-box used in the design of the Ad-
vanced Encryption Standard (AES) is a Boolean permu-
tation on8 variables. The Boolean permutations used in a
block cipher should possess a low differential uniformity, a
high algebraic degree and a high nonlinearity to resist high
order differential attacks [13] and linear attacks [16]. Re-
cently, algebraic attacks on block ciphers, which are based

on defining and solving systems of multivariate equations
in variables corresponding to the bits of a secret key, have
been introduced in [10].

All the criteria mentioned above cannot be satisfied si-
multaneously. For oddn, the most notable example is Al-
most Bent (AB) permutations [4]. Achieving the highest
nonlinearity2n−1 − 2(n−1)/2 (n odd) and the best differ-
ential uniformity, AB permutations permit to resist linear
attacks and differential attacks in the best possible way.
Therefore, AB functions have received much attention in
cryptographic literature [4,14,12,5]. Unfortunately, the al-
gebraic degrees of AB permutations onFn

2 are less than or
equal to(n + 1)/2 [7].

In order to obtain the Boolean permutations of the
largest algebraic degree, a methodology was developed to
construct Boolean permutation by Zhang et al. [20]. But
there is only one nonlinear term (i.e., a monomial with de-
green − 1) in any one coordinate Boolean function and
the number of the Boolean permutations is very limited.
Recently, a class of Boolean permutations of an optimal
algebraic degree were presented in [11,9]. But we can not
easily propose the inverse of these permutations in [11,9].

In this paper, we present a class of Boolean permuta-
tions of optimal algebraic degree onFn

2 . Further, we pro-
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pose the inverse of the constructed Boolean permutations.
We find that theith (1 ≤ i ≤ k) coordinate function of the
inverse of a constructed Boolean permutation is the func-
tion constructed in [19]. That is to say, the inverses are the
permutation presented in [11,9]. Finally, it is shown that
the Boolean permutations can achieve optimum algebraic
degree by selecting an appropriate initial vectorb1 ∈ F k

2 .

2. Preliminaries

In the remainder of this article, we denote the additions
and sums over theF2 finite field by⊕ and

⊕
. Let Fn

2 be
then-dimensional vector space overF2. A Boolean func-
tion on n variables is anF2-valued function onFn

2 . Let
Bn be the set of alln-variable Boolean functions fromFn

2

to F2. Any Boolean function has a unique representation
as a multivariate polynomial overF2, called thealgebraic
normal form(ANF):

f(x1, . . . , xn) =
⊕

I⊆{1,2,...,n}
aI

∏
l∈I

xl

whereaI ∈ F2, and the terms
∏

l∈I xl are called mono-
mials. Thealgebraic degreedeg(f) of a Boolean function
f equals the maximum degree of those monomials whose
coefficients are nonzero in its ANF. A Boolean function is
affine if it has degree at most1. The set of alln-variable
affine functions is denoted byAn. An n-variable affine
function with constant term0 is called a linear function,
and is denoted byω · x = ω1x1 ⊕ . . . ⊕ ωnxn where
ω = (ω1, . . . , ωn) ∈ Fn

2 , x = (x1, . . . , xn) ∈ Fn
2 .

Definition 1. Let φ(y) = (φ1(y), φ2(y), . . . , φm(y)) be
an (n,m)-function. Then the algebraic degree ofφ(y) is
defined as

deg(φ(y)) = min{deg(v · φ(y))|v ∈ Fm
2 , v 6= 0}.

In this paper, we say ann-variable Boolean permutation
has optimal algebraic degree if its algebraic degree equals
n− 1.

The basic representation of a Boolean function
f(x1, . . . , xn) is by the output column of its truth table,
i.e., a binary string of length2n,

[f(0, . . . , 0, 0, 0), f(0, . . . , 0, 0, 1), . . . , f(1, . . . , 1, 1, 1)].

TheHamming weightwt(f ) of a Boolean functionf ∈
Bn is the weight of the above binary string. We sayf ∈
Bn is balancedif its Hamming weight equals2n−1. The
Hamming distanced(f, g) between two Boolean functions
f andg is the Hamming weight of their differencef ⊕ g.

Thenonlinearityof f ∈ Bn is its distance from the set
of all n-variable affine functions, i.e.,

Nf = min
g∈An

(d(f, g)).

Boolean functions used in cryptographic systems must
have high nonlinearity to withstand linear and correlation
attacks [1].

Definition 2.[18] A Boolean functionf ∈ Bn is called
Bent function onn variables if its nonlinearity equals
2n−1 − 2n/2−1, wheren is even.

There is a class of Bent functions which is called orig-
inal Maiorana-McFarland’s (M-M) class of Bent functions
[18]. The original M-M class of Bent functions is the set of
all the (Bent) Boolean functions onF 2k

2 = {(x, y), x, y ∈
F k

2 } of the form:

f(y, x) = φ(y) · x⊕ g(y)

whereφ(y) = (φ1(y), . . . , φk(y)) is any permutation on
F k

2 andg(y) is any Boolean function onF k
2 . In 2004, Car-

let [2] indicated that there existed a one-to-one correspon-
dence between Boolean permutations and the original M-
M class of Bent functions.

Lemma 1.[2]
Let x ∈ F k

2 , y ∈ F k
2 , φi(y) with 1 ≤ i ≤ k

be a k-variable Boolean function, andg(y) be anyk-
variable Boolean function. A2k-variable Boolean func-
tion f(y, x) = φ(y) · x ⊕ g(y) is a Bent function if and
only if

φ(y) = (φ1(y), φ2(y), . . . , φk(y))

is a Boolean permutation.

Moreover, by the representation of polynomial basis
[17], we present a corollary.

Corollary 1.
Let x, y ∈ F k

2 , τ ∈ F k
2 . A 2k-variable Boolean func-

tion

f(y, x) =
⊕

τ∈F k
2

δτ (y)aτ (x) (1)

is a Bent function defined as Lemma 1 if and only if
aτ (x) = φ(τ) · x ⊕ g(τ), where bothφ(y) and g(y) are
defined as Lemma 1.

LetF2n denote a finite field with2n elements. It can be
viewed as ann-dimensional vector space over its subfield
F2. Every functionf : F2n → F2n can be uniquely rep-
resented as a polynomial

⊕2n−1
i=0 aix

i (called its univari-
ate representation), whereai ∈ F2n , andf is a Boolean
function if and only if

⊕2n−1
i=0 aix

i ∈ F2 for x ∈ F2n .
Given a basis(β1, β2, . . . , βn), we can identify any ele-
mentx =

⊕n
i=1 x1βi ∈ F2n with then-tuple of its coor-

dinate(x1, x2, . . . , xn) ∈ Fn
2 .

For f ∈ Bn, we defineAN(f) = {g ∈ Bn|fg = 0}.
Any functiong ∈ AN(f) is called an annihilator off . The
algebraic immunity(AI) of f is the minimum degree of all
the nonzero annihilators off and of all those off ⊕ 1. We
denote it by AI(f).

Two Boolean functionsf andg are said to be affine
equivalent if there exist an invertiblen×n binary matrixD
and a vectorb ∈ Fn

2 such thatg(x) = f(Dx⊕ b). Clearly,
algebraic degree, algebraic immunity and nonlinearity are
all affine invariant [3].
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In the sequel, we recall some notation from [19]. Let
p(z) = zn + cn−1z

n−1 + . . . + c1z + 1 be a primitive
polynomial over the fieldF2. The companion matrixD of
it is

D =




0 0 · · · 0 1
1 0 · · · 0 c1

· · · · · · · · · · · · · · ·
0 0 · · · 1 cn−1


 .

Given any initial valueb1, we can define an iterative
sequenceB = {bi|1 ≤ i ≤ 2n − 1} as follows:
{

b1 ∈ Fn
2 ;

bi+1 = Dbi, 1 ≤ i < 2n − 1.

Clearly,B = {0} if and only if b1 = 0.
In [19], Wang et al. showed thatB = Fn

2 − {0} if
b1 6= 0. Given anyb1 6= 0, we define a multiplication ”∗”
on the setB as follows:

Dib1 ∗Djb1 = Di+jb1.

ThenB will be a cyclic group of order2n−1 andDb1 is its
generator. Moreover, we know thatD2l

b1 is also its gener-
ator sincegcd(2n − 1, 2l) = 1 wherel = 1, 2, . . . , n− 1.
Thus,B∪{0} is a finite field of order2n andB is its mul-
tiplicative group. Clearly, its additive identity is0 and its
multiplicative identity isb1.

3. Main Results

From now on, we always assume thatδτ (y) =
k∏

i=1

(yi ⊕
τi ⊕ 1), wherey, τ ∈ F k

2 .

Definition 3. An (k, k)-functionφ(y) = (φ1(y), φ2(y),
. . . , φk(y)) is called aBoolean permutationif the number
of solutionsy ∈ F k

2 of φ(y) = a is exactly 1 for any
a ∈ F k

2 .

Lemma 2.[19] Let x ∈ Fn
2 . Let1f = {x|f(x) = 1} =

{(bi1, . . . , bin) ∈ Fn
2 |1 ≤ i ≤ wt(f)}. Thenf can be

represented as follows:

f(x1, x2, . . . , xn) =
wt(f)⊕
i=1

n∏
j=1

(xj ⊕ 1⊕ bij).

Obviously,deg(f) < n if and only ifwt(f) is even. More-
over,deg(f) = n− 1 if and only ifwt(f) is even and

wt(f)⊕
i=1

(bi1, . . . , bin) 6= 0.

The above fact will play an important role in proving
Boolean functions of an optimum algebraic degree.

Since a Boolean permutation is a bijective mapping,
the inverse of a Boolean permutation is a Boolean permu-
tation as well. In what follows, we put forward a method
to present the inverse of a given Boolean permutation.

Theorem 1. Let x, y ∈ F k
2 andφ(y) = (φ1(y), φ2(y),

· · · , φk(y) be a Boolean permutation. Then

f ′(y, x) =
⊕

τ∈F k
2

δφ(τ)(y) (τ · x) (2)

is a M-M Bent function. Furthermore,

ψ′(y) =
(
f ′(y, e(1)), f ′(y, e(2)), . . . , f ′(y, e(k))

)
(3)

is the inverse of the Boolean permutationφ(y), wheree(l)

denotes the vector with thelth entry 1 and the others 0.

Proof Clearly, f ′(y, x) is a Bent function in that
φ(y) is a Boolean permutation. According to definition of
ψ′(y), we havef ′(y, x) = ψ′(y) · x. Hence,f ′(y, x) =⊕
τ∈F k

2

δψ′(y)(τ)(τ · x). On the other hand,δφ(τ)(y) =

δφ−1(y)(τ), then we haveψ′ = φ−1 by the uniqueness
of the ANF.

Theorem 2. Let y ∈ F k
2 and φ(y) be a Boolean

permutation. Letφ−1(y) be the inverse ofφ(y). Then
deg(φ(y)) = k − 1 if and only ifdeg(φ−1(y)) = k − 1.

Proof Since(φ−1)−1(y) = φ(y), it suffices to show that
deg(φ−1(y)) = k − 1 if deg(φ(y)) = k − 1.

LetE be a set with2k−1 elements. If⊕x∈Ex = 0, then
E is a hyperplane and vice versa. According Definition 1
and Lemma 2, we know that the set1v·φ = {y|v · φ(y) =
1, y ∈ Fn

2 } must not be a hyperplane for anyv ∈ Fn
2 ,

where1f denote the support set of a functionf . However,
H(v) = {φ(y)|φ(y) · v = 1, y ∈ Fn

2 } is a hyperplane for
any nonzero vectorv ∈ Fn

2 . That is to say,φ−1(H(v)) =
1v·φ must not be a hyperplane for anyv ∈ Fn

2 . Again by
Lemma 2, the algebraic degree ofφ−1(y) is equal tok−1.

Here, we present a class of Boolean permutations.

Theorem 3. Let y ∈ F k
2 . Letφ(y) = D[y]b1 for y 6= 1,

φ(y) = 0 for y = 1 whereb1 6= 0, [y] denotes the decimal
expansion ofy (i.e., [(0, . . . , 0, 1, 1)] = 3). Thenφ(y) is a
Boolean permutation onF k

2 .

Proof For b1 6= 0, B = {Dib1|i = 0, 1, . . . , 2k − 1} =
F k

2 \ {0}. Then,φ(y) is a Boolean permutation onF k
2 .

By using Theorem 1, we can present the inverse per-
mutation ofφ(y).

Theorem 4.Letn = 2k, x, y ∈ F k
2 , b1 6= 0 ∈ F k

2 . Then

f ′(y, x) =
⊕

τ∈F k
2 \{1}

δD[τ]b1(y)(τ · x)⊕ δ0(y)(1 · x) (4)

is a Bent function. Moreover,

ψ′(y) =
(
f ′(y, e(1)), f ′(y, e(2)), . . . , f ′(y, e(k))

)

is a Boolean permutation.
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Proof Let φ(y) be defined as Theorem 3. Thenφ(y) is a
Boolean permutation onk variables. Further, according to
Theorem 1, we have thatf ′(y, x) is a bent function on2k
variables andψ′(y) is a permutation onk variables.

Remark. According to Corollary 1, we know that

f (1)(y, x) =
⊕

τ∈F k
2 \{1}

δD[τ]b1(y)cτ (x)⊕ δ0(y)c1(x) (5)

is a Bent function, wherecτ (x) = (τ ⊕ 1) · x. Moreover,

ψ(y) =
(
f (1)(y, e(1)), f (1)(y, e(2)), . . . , f (1)(y, e(k))

)

is a Boolean permutation.
Clearly, ψ(y) = ψ′(y) ⊕ 1, that is, bothψ(y) and

ψ′(y) have same algebraic degree and nonlinearity. In ad-
dition, we find thatf (1)(y, e(1)), which is the function
constructed in [19] by Wang and Peng, has a high non-
linearity, an optimal algebraic degree and an optimal im-
munity. Recently, Carlet [6] showed that the first of the two
constructions in [19] is the same as the construction pre-
sented in [8]. In [9], Carlet and Feng studied the crypto-
graphic properties of an infinite class of balanced vectorial
Boolean functions over finite fields which were introduced
by Feng, Liao and Yang [11]. Thus, by the arguments pro-
posed in [6], the Boolean permutationψ(y) presented in
Remark 3 is the same as the vectorial functions in [11,9].
In the following, we show that the Boolean permutation
ψ(y) onF k

2 has an optimal algebraic degree from its truth
tables.

Lemma 3.[19] Let y ∈ F k
2 , h(y) ∈ Bk and 1h =

{Dib1|0 ≤ i < 2k−1}, where0 6= b1 ∈ F k
2 . Thenh(y)

has optimum algebraic immunitydk/2e and algebraic de-
greek − 1.

From Theorem 4 and Lemma 3, we find thatf(y, e(1))
may be exactly the functionh(y). We consider the proper-
ties off(y, e(l)) wherel = 2, 3, . . . , k.

Definition 4. Let Fpn be a finite field and a prime char-
acteristic p. Let α ∈ Fpn . The mapσ defined by:σ :
α → αp is bijective and a homomorphism, and is therefore
an automorphism on the fieldFpn which fixes the subfield
with p elements. It is called theFrobenius automorphism.

In fact, theσ satisfies

σ(α + β) = (α + β)p = (α)p + (β)p = σ(α) + σ(β),
σ(α · β) = (α · β)p = σ(α) · σ(β).

Moreover,σ(1) = 1, 1 /∈ ker(σ), soker(σ) = 0, i.e.,σ is
an injective. Thus, this shows thatσ is an automorphism
onFpn .

From Definition 4, it is clear thatσr is also anauto-
morphismon Fpn for any r ∈ {1, 2, . . . n − 1}, where
σr(α) = αpr

.

Theorem 5. Let f (1)(y, x) ∈ B2k be as in Remark
3. Thenf (1)(y, e(l)) has an optimal algebraic immunity
dk/2e and algebraic degreek − 1, wherel = 1, 2, . . . , k.

Proof From Remark 3, we know

1f(1)(y,e(l)) = {Dib1|i ∈⋃
t=0,2,4,...,2l−2

[t2k−l, (t + 1)2k−l − 1]}

wherei ∈ [t2k−l, (t + 1)2k−l − 1] denotest2k−l ≤ i ≤
(t + 1)2k−l − 1, l = 1, 2, 3, . . . , k. For l = 1, we have
that1f(1)(y,e(1)) = {Dib1|0 ≤ i ≤ 2k−1 − 1}. Thus, by
Lemma 3, the functionf (1)(y, e(1)) has an optimal alge-
braic immunitydk/2e and algebraic degreek − 1.

Let σ be the Frobenius automorphism on finite field
B ∪ 0. That is to say,σ(Dib1) = (Dib1)2. SinceDb1 is a
generator ofB andgcd(2r, 2k−1) = 1, σr(Db1), denoted
by Drb1, is also a generator for anyr ∈ {1, 2, . . . k − 1}.
Clearly, the support off (1)(y, e(l)) can be represented as
Dl−1b1, i.e.,

1f(1)(y,e(l)) = {Di
l−1b1|0 ≤ i ≤ 2k−1 − 1},

wherel = 2, 3, . . . , k.
By the proving process of Lemma 3, the function

f(y, e(l)) has an optimal algebraic immunitydk/2e and
algebraic degreek − 1 for any l ∈ {2, . . . , k}. The theo-
rem is proved.

In the following, we show that the Boolean permuta-
tion φ(y) has an optimal algebraic degreek − 1 by select-
ing an appropriateb1.

Lemma 4.[15] For any finite fieldFpn there exists a nor-
mal basis ofFpn over its prime subfield that consists of
primitive elements ofFpn .

Theorem 6. Let f (1)(y, x) ∈ B2k and the Boolean
permutationψ(y) be as in Remark 3. Thendeg(ψ(y)) =
k − 1 if and only if {Dν(2k−1−1)mod (2k−1)b1,

D
ν(2k−1−1)mod (2k−1)
2−1 b1, . . . , D

ν(2k−1−1)mod (2k−1)
k−1 b1}

is a normal basisof B ∪ {0} over {0, b1}, where ν
is an integer andb1 ⊕ Db1 = Dνb1. Furthermore,
there exists at least a vectorb1 ∈ F k

2 such that

{Dν(2k−1−1)mod (2k−1)b1, D
ν(2k−1−1)mod (2k−1)
2−1 b1,

. . . , D
ν(2k−1−1)mod (2k−1)
k−1 b1} is a normal basis of

B ∪ {0} over{0, b1}.
Proof From Theorem 5, we know thatf (1)(y, e(1))

has algebraic degreek − 1. Thus, we have

2k−1−1⊕
i=0

Dib1 = (b1 ⊕Db1)2
k−1−1

= Dν(2k−1−1)mod (2k−1)b1 6= 0,

where0 ≤ ν ≤ 2k − 1 is an integer.
Let σ be also the Frobenius automorphism on finite

field B∪0. By the proving process of Theorem 5, we have

1f(1)(y,e(2)) = {Di
2−1b1|0 ≤ i ≤ 2k−1 − 1}.
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Moreover,
⊕2k−1−1

i=0 Di
2−1b1 = σ2−1(

⊕2k−1−1
i=0 Dib1)

= D
ν(2k−1−1)mod (2k−1)
2−1 b1 6= 0.

By using the same argument as above, one may show that
⊕2k−1−1

i=0 Di
l−1b1 = σl−1(

⊕2k−1−1
i=0 Dib1)

= D
ν(2k−1−1)mod (2k−1)
l−1 b1 6= 0,

wherel ∈ {3, . . . , k}.
According to Definition 3, we knowdeg(ψ(y)) = k−

1 if and only if

(Dν(2k−1−1)mod (2k−1)b1, D
ν(2k−1−1)mod (2k−1)
2−1 b1, . . . ,

D
ν(2k−1−1)mod (2k−1)
k−1 b1) · v 6= 0,

wherev ∈ F k
2 \ {0}.

Therefore, according to the above equation, we know
that the following three conditions are equivalent.

1.deg(ψ(y)) = k − 1;

2.Dν(2k−1−1)mod (2k−1)b1, D
ν(2k−1−1)mod (2k−1)
2−1 b1,

. . . , D
ν(2k−1−1)mod (2k−1)
k−1 b1 are linearly independent;

3.{Dν(2k−1−1)mod (2k−1)b1, D
ν(2k−1−1)mod (2k−1)
2−1 b1,

. . . , D
ν(2k−1−1)mod (2k−1)
k−1 b1} is a normal basisof

B ∪ {0} over{0, b1}.
Next, we show that there exists ab1 such that

{Dν(2k−1−1)mod (2k−1)b1, D
ν(2k−1−1)mod (2k−1)
2−1 b1, . . . ,

D
ν(2k−1−1)mod (2k−1)
k−1 b1} is a normal basisof B ∪ {0}

over{0, b1}.
Let 0 6= a0 ∈ F k

2 , ai+1 = Dai. Then there exists a
positive integerν < 2k−1 such thata0⊕Da0 = Dνa0(=
aν). Moreover, we have

(Da0 ⊕D2a0)2
k−1−1

= (D(ν+1)mod (2k−1)a0)2
k−1−1

= a(1+ν)(2k−1−1)mod (2k−1);
(D2a0 ⊕D3a0)2

k−1−1

= (D(ν+2)mod (2k−1)a0)2
k−1−1

= a(2+ν)(2k−1−1)mod (2k−1);

...

(D2k−3a0 ⊕D2k−2a0)2
k−1−1

= (D(ν+2k−3)mod (2k−1)a0)2
k−1−1

= a(2k−3+ν)(2k−1−1)mod (2k−1);

(D2k−2a0 ⊕ a0)2
k−1−1

= (D(ν+2k−2)mod (2k−1)a0)2
k−1−1

= a(2k−2+ν)(2k−1−1)mod (2k−1).

We have

{a(i+ν)mod (2k−1)|i = 0, 1, . . . , 2k−2} = B = F k
2 \{0}.

On the other hand,gcd(2k−1 − 1, 2k − 1) = 1 in that
gcd(2k − 2, 2k − 1) = 1. Consequently,

{a(i+ν)(2k−1−1)mod (2k−1)|i= 0, . . . ,2k−2}= B
= F k

2 \ {0}.
According to Lemma 4, there exists a numberρ′ such that

{D20(ν+ρ′)(2k−1−1)mod(2k−1)a0,

D21(ν+ρ′)(2k−1−1)mod(2k−1)a0, . . . ,

D2k−1(ν+ρ′)(2k−1−1)mod(2k−1)a0}
is a normal basis ofB ∪ {0} over {0, a0}. We setb1 =
Dρ′(2k−1−1)mod(2k−1)a0. Thus, the above normal basis
can be represented as follows:

{D20ν(2k−1−1)mod(2k−1)b1, D
21ν(2k−1−1)mod(2k−1)b1, . . . ,

D2k−1ν(2k−1−1)mod(2k−1)b1}.

That is to say, the vectorsD20ν(2k−1−1)mod(2k−1)b1,

D21ν(2k−1−1)mod(2k−1)b1, . . . , D
2k−1ν(2k−1−1)mod(2k−1)b1

are linearly independent. The theorem is proved.
Example 1. Let n = 2k = 16, x, y ∈ F 8

2 ,0 6=
b1 ∈ F 8

2 . Denote(i)2 the binary expansion of the integer
i ∈ [0, 2k − 1]. Let f(y, x) ∈ B16 and φ(y) be as in
Remark 3. Clearly,f(y, e(l)) is balanced, has optimum
algebraic immunity and optimum algebraic degree where
l = 1, 2, . . . , 8. Here, we takeP (z) = z8⊕z6⊕z5⊕z⊕1.
From Theorem 6, we know that there exists at least a
vector b1 ∈ F 8

2 such thatdeg(φ(y)) = 7. By calcula-
tion, we find thatdeg(φ(y)) = 7 when arbitraryb1 ∈
{(1)2, (2)2, (3)2, (6)2, (9)2, (14)2, (26)2, (28)2, (29)2,
(36)2, (38)2, (41)2, (42)2, (43)2, (44)2, (47)2, (48)2, (50)2,
(57)2, (61)2, (67)2, (69)2, (73)2, (74)2, (82)2, (83)2, (84)2,
(90)2, (92)2, (93)2, (96)2, (105)2, (107)2, (109)2, (111)2,
(115)2, (117)2, (118)2, (119)2, (125)2, (130)2, (131)2,
(135)2, (138)2, (139)2, (141)2, (143)2, (148)2, (149)2,
(150)2, (153)2, (156)2, (158)2, (161)2, (165)2, (166)2,
(168)2, (169)2, (177)2, (180)2, (181)2, (182)2, (183)2,
(189)2, (201)2, (209)2, (218)2, (219)2, (220)2, (227)2,
(233)2, (237)2, (240)2, (246)2, (248)2, (250)2, (255)2}.
There are77 elements in the set.

Theorem 7. Let y ∈ F k
2 andφ(y) be defined as in The-

orem 3. Then there exists at least one vectorb1 ∈ F k
2 such

thatdeg(φ(y)) = k − 1.

Proof From Theorem 2, we know thatdeg(φ(y)) =
k− 1 if and only if deg(φ−1(y)) = k− 1. By Theorem 4,
we haveφ−1(y) = ψ′(y). Further, according to Remark 3,
we knowψ′(y)⊕ 1 = ψ(y). Clearly, the algebraic degree
of ψ′(y) is same as that ofψ(y). Combining to Theorem 5
and 6, there exists at least one vectorb1 such thatψ(y) has
an optimal algebraic degreek − 1. Thus, bothψ′(y) and
φ(y) have an optimal algebraic degree.

For k = 8, we can obtain77 Boolean permutations of
an optimal algebraic degree on8 variables by using Theo-
rem 7 and Example 1.
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4. Conclusion

In the design and analysis of cryptographic transforma-
tions such as block ciphers and stream ciphers, Boolean
permutations play an important role. In this paper, we
put forward a method to propose the inverse of a given
Boolean permutation. It was shown that a Boolean per-
mutation had an optimal algebraic degree if and only
if its inverse had an optimal algebraic degree. We pre-
sented a class of Boolean permutations and showed that
the constructed Boolean permutations have an optimal al-
gebraic degree if we selected an appropriate initial vector
b1. In addition, we found that the sum of the inverse of
the constructed Boolean permutations and vector1 was
the Boolean permutations presented in [11,9]. In terms of
constructions of Boolean permutations with good criteria
(which mainly include high algebraic degree, high non-
linearity and low differential uniformity), the research re-
sults are relatively few. The problem of how to construct
Boolean permutations with good criteria is an interesting
topic that we would like to address in the future.
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