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Abstract: In this paper, we focus on a class of Boolean permutations of an optimal algebraic degree. Firstly, we construct a class of
Boolean permutations. We put forward a method to propose the inverse of a given Boolean permutation. It is shown that a Boolean
permutation has an optimal algebraic degree if and only if its inverse has an optimal algebraic degree. Secondly, we present the inverse
of the constructed Boolean permutation, and show the inverse permutation has the largest algebraic degree. Finally, we show that the
constructed Boolean permutations can achieve optimum algebraic degree by selecting an appropriate initial vector and illustrate it with
examples.

Keywords: Steam ciphers, Block ciphers, Boolean functions, Boolean permutations, Algebraic degree.

1. Introduction on defining and solving systems of multivariate equations
in variables corresponding to the bits of a secret key, have

Let n andm be two positive integers andy be then- ~ P€€N introduced in [10]. o
dimensional vector space ovEs. A Boolean function on All the criteria mentioned above cannot be satisfied si-
n variables is anf-valued function onF?'. We call the ~ Multaneously. For odd, the most notable example is Al-

functions, fromFy to FI", (n, m)-functions. Such func- Most Bent (AB) permutations [4]. Achieving the highest

tion F being given, the Boolean functiorfs, .. ., f,, de-  nonlinearity2”~* — 2(*~1/2 (n odd) and the best differ-
fined, at everyr € FJ, by F(z) = (f1,...,fm), are  €ntial uniformity, AB permutations permit to resist linear

functions include the (single-output) Boolean functions Therefore, AB functions have received much attention in
which correspond to the case= 1. Forn = m, if ¢-F(x) cryptqgraphlc literature [4,14, 12_, 5]. Unfortunately, the al-
is a balanced Boolean function for any 0 € F7, then ~ gebraic degrees of AB permutations bfi are less than or
F(z) is called a Boolean permutation anvariables. equal to(n + 1)/2[7].

Boolean permutations are used in various different ar-  In order to obtain the Boolean permutations of the
eas and play an important role in the security of cryptosys-largest algebraic degree, a methodology was developed to
tems. Their most prominent cryptographic applications in-construct Boolean permutation by Zhang et al. [20]. But
clude the analysis and design of S-boxes in block cipherghere is only one nonlinear term (i.e., a monomial with de-
[4]. For example, the S-box used in the design of the Ad-green — 1) in any one coordinate Boolean function and
vanced Encryption Standard (AES) is a Boolean permuihe number of the Boolean permutations is very limited.
tation ong variables. The Boolean permutations used in aRecently, a class of Boolean permutations of an optimal
block cipher should possess a low differential uniformity, a algebraic degree were presented in [11,9]. But we can not
high algebraic degree and a high nonlinearity to resist higreasily propose the inverse of these permutations in [11,9].
order differential attacks [13] and linear attacks [16]. Re-  In this paper, we present a class of Boolean permuta-
cently, algebraic attacks on block ciphers, which are basedions of optimal algebraic degree d@#'. Further, we pro-
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pose the inverse of the constructed Boolean permutation®efinition 2.[18] A Boolean functionf € B,, is called
We find that theth (1 < ¢ < k) coordinate function of the Bent function onn variables if its nonlinearity equals
inverse of a constructed Boolean permutation is the func2”—! — 27/2—1 wheren is even.

tion constructed in [19]. That is to say, the inverses are the ] ) o )
permutation presented in [11,9]. Finally, it is shown that | There is a class of Bent functions which is called orig-
the Boolean permutations can achieve optimum algebrai¢n@l Maiorana-McFarland's (M-M) class of Bent functions

degree by selecting an appropriate initial veé¢toe Fi.

2. Preliminaries

In the remainder of this article, we denote the additions
and sums over thé&; finite field by ® and@p. Let F be

the n-dimensional vector space oves. A Boolean func-
tion onn variables is anFy-valued function onFy'. Let

B,, be the set of alh-variable Boolean functions froth}’

to F5. Any Boolean function has a unique representation
as a multivariate polynomial ovéfs, called thealgebraic
normal form(ANF):

flay,. ... x,) = &b

1C{1,2,...,n}

ay H Xy

lel
wherea; € F, and the termg],_, z; are called mono-
mials. Thealgebraic degreeleg(f) of a Boolean function
f equals the maximum degree of those monomials whos
coefficients are nonzero in its ANF. A Boolean function is
affine if it has degree at most The set of alln-variable
affine functions is denoted by,,. An n-variable affine
function with constant termd is called a linear function,
and is denoted by - z wiry D ... ® w,x, Where
w=(w1,...,wp) € FI'x = (x1,...,2,) € FJ.

Definition 1. Letg(y) = (¢1(y), d2(y), .., dm(y)) be
an (n, m)-function. Then the algebraic degree ¢fy) is

defined as
deg(¢(y)) = min{deg(v - ¢(y))|v € F3",v # 0}.

In this paper, we say an-variable Boolean permutation

[18]. The original M-M class of Bent functions is the set of
all the (Bent) Boolean functions afi?* = {(z,y),z,y €
FJ¥Y of the form:

fly,z) = 9(y) -z D g(y)

whered(y) = (91(y), ..., dr(y)) is any permutation on
F¥ andg(y) is any Boolean function ofy’. In 2004, Car-

let [2] indicated that there existed a one-to-one correspon-
dence between Boolean permutations and the original M-
M class of Bent functions.

Lemma 1]2]

Letz € FFy € FF, ¢i(y) with1 < i < k
be a k-variable Boolean function, ang(y) be anyk-
variable Boolean function. Rk-variable Boolean func-
tion f(y,z) = ¢(y) - = @ g(y) is a Bent function if and

only if
o(y) = (61(y), b2(y), - - - Pr(y))

% a Boolean permutation.

Moreover, by the representation of polynomial basis
[17], we present a corollary.

Corollary 1.
Letz,y € F¥, 7 € F¥. A2k-variable Boolean func-
tion

fly,z)= D 0-(y)ar(v)

TE sz’

1)

is a Bent function defined as Lemma 1 if and only if
ar-(x) = ¢(1) - = ® g(7), where bothp(y) and g(y) are
defined as Lemma 1.

has optimal algebraic degree if its algebraic degree equals | gt F,. denote a finite field witR” elements. It can be

n—1.

The basic representation of a Boolean function
f(z1,...,z,) is by the output column of its truth table,
i.e., a binary string of length”™,

[£(0,...,0,0,0), £(0,...,0,0,1),...., f(1,... ).

TheHamming weighwt(f) of a Boolean functiorf €
B,, is the weight of the above binary string. We shy
B,, is balancedif its Hamming weight equalg”~*. The
Hamming distancd( f, g) between two Boolean functions
f andg is the Hamming weight of their difference® g.

Thenonlinearityof f € B,, is its distance from the set
of all n-variable affine functions, i.e.,

Ny = min (d(f,g)).

1,1,1

) ) )

viewed as am-dimensional vector space over its subfield
F». Every functionf : Fon — Fy» can be uniquely rep-
resented as a polynomig@)>_; " a;z* (called its univari-
ate representation), whetg € Fy», and f is a Boolean
function if and only if@flgl a;xt € Fyforx € Fyn.
Given a basig 1, 52, - ., 3,), we can identify any ele-
mentz = @;_, x18; € Fan with then-tuple of its coor-
dinate(zy,xa,...,z,) € F3.

For f € B,, we defineAN(f) = {g € B,|fg = 0}.
Any functiong € AN (f) is called an annihilator of. The
algebraic immunityAl) of f is the minimum degree of all
the nonzero annihilators gfand of all those off & 1. We
denote it by A[f).

Two Boolean functionsf and g are said to be affine
equivalent if there exist an invertiblex n binary matrixD

Boolean functions used in cryptographic systems mustnd a vectob € F3* such thay(z) = f(Dxz @ b). Clearly,

have high nonlinearity to withstand linear and correlation
attacks [1].

algebraic degree, algebraic immunity and nonlinearity are
all affine invariant [3].
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In the sequel, we recall some notation from [19]. Let Theorem 1. Letx,y € F¥ and¢(y) = (é1(y), #2(y),

p(2) = 2" + ¢ 12" ' 4+ ...+ 12 + 1 be a primitive
polynomial over the fields. The companion matrip of
itis

0 0 ---0 1
p=| 100
0 0 -1 ¢cp_q

Given any initial valueb;, we can define an iterative
sequencé3 = {b;|1 <1i < 2" — 1} as follows:

b € an;
bi+1:Dbi; 1 << 2™ —1.
Clearly, B = {0} ifand only if b; = 0.
In [19], Wang et al. showed thd = F} — {0} if
b1 # 0. Given anyb; # 0, we define a multiplication"
on the setB as follows:

Dby + Diby = Db,

ThenB will be a cyclic group of orde2™ —1 and Db, is its
generator. Moreover, we know thBe b, is also its gener-
ator sinceged(2" — 1,2!) = 1 wherel = 1,2,...,n — 1.
Thus,BU{0} is afinite field of ordeR™ and B is its mul-

tiplicative group. Clearly, its additive identity & and its
multiplicative identity isb .

3. Main Results

k

From now on, we always assume thaty) = [] (y; ©
i=1
7, ® 1), wherey, T € F¥.

Definition 3. An (k, k)-functioné(y) = (¢1(y), d2(y),

.., 0k (y)) is called aBoolean permutationf the number
of solutionsy € F¥ of ¢(y) = ais exactly 1 for any
ac Fy.

Lemma2[19] Letz € F}. Letly = {z|f(x) =1} =
{(bi1, ... bin) € FF|1 < i < wt(f)}. Thenf can be
represented as follows:

wt(f) n
fxy,me,.. o n) = @ [](z; ©1Sbyy).
i=1 j=1

Obviouslydeg(f) < n if and only ifwt(f) is even. More-
over,deg(f) = n — 1if and only ifwt(f) is even and

wt(f)

D (bia,...

i=1

The above fact will play an important role in proving
Boolean functions of an optimum algebraic degree.

Since a Boolean permutation is a bijective mapping,
the inverse of a Boolean permutation is a Boolean permu-
tation as well. In what follows, we put forward a method

to present the inverse of a given Boolean permutation.

.-+, ¢r(y) be a Boolean permutation. Then

f'y.x) = P doirW) (- x) )
7'€F2’c

is a M-M Bent function. Furthermore,

W) = (F'we), g e®), . fme®) @)

is the inverse of the Boolean permutatiofy), wheree®)
denotes the vector with thith entry 1 and the others 0.

Proof Clearly, f'(y,z) is a Bent function in that
¢(y) is a Boolean permutation. According to definition of
/(). we havef'(y,z) = ¢/(y) - x. Hence,f'(y,x) =

@D Oy (7)(7 - ). On the other handjy(y) =
T€F2k

ds-1()(7), then we have)’ = ¢~' by the uniqueness
of the ANF.

Theorem2. Lety € F¥ and ¢(y) be a Boolean
permutation. Letyp~!(y) be the inverse ofs(y). Then
deg(é(y)) = k — 1ifand only ifdeg(¢—1(y)) = k — 1.

Proof Since(¢=1)"(y) = ¢(y), it suffices to show that
deg(¢~"(y)) =k — 1if deg(o(y)) =k — L.

Let E be a set witl2*~! elements. Ifb,c gz = 0, then
E'is a hyperplane and vice versa. According Definition 1
and Lemma 2, we know that the Sgty, = {ylv - ¢(y) =
1,y € F3'} must not be a hyperplane for anye F7,
wherel ; denote the support set of a functignHowever,
H® = {¢(y)|o(y) -v = 1,y € Fy} is a hyperplane for
any nonzero vector € Fy. That is to sayp— ' (H")) =
1,.4 must not be a hyperplane for anye £3'. Again by
Lemma 2, the algebraic degreegf!(y) is equal tok — 1.

Here, we present a class of Boolean permutations.

Theorem 3. Lety € F¥. Letp(y) = Do, fory # 1,
¢(y) = 0 for y = 1 whereb; # 0, [y] denotes the decimal
expansion of; (i.e.,[(0,...,0,1,1)] = 3). Thené(y) is a
Boolean permutation ofy .

Proof Forb; # 0, B = {D'b,|i = 0,1,...,2F — 1} =
F¥\ {0}. Then,¢(y) is a Boolean permutation afiy.

By using Theorem 1, we can present the inverse per-
mutation ofé(y).

Theorem 4Letn = 2k, x,y € F¥, by # 0 € F¥. Then

Fwe)= @ b, @)(T-2)@do(y)(1-%) (4)

TEFF\{1}

is a Bent function. Moreover,
W (y) = (f’(y,e“)),f’(y,e(”),..-,f/(y,e(’“)))

is a Boolean permutation.
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Proof Let ¢(y) be defined as Theorem 3. Theély) is a
Boolean permutation oh variables. Further, according to
Theorem 1, we have thgt (y, «) is a bent function o2k
variables and)’(y) is a permutation o# variables.

Theorem 5. Let f(V(y,z) € By, be as in Remark
3. Thenf(M(y,e®) has an optimal algebraic immunity
[k/2] and algebraic degreé — 1, wherel = 1,2, ..., k.

Proof From Remark 3, we know

Remark. According to Corollary 1, we know that

)= P SprmWer(a) @ o)) 6)

TeFF\{1}

1f<1>(y,e(l>) = {Dib1|i S

U

t=0,2,4,...,21 -2

wherei € [t2¢! (¢ + 1)2¥=! — 1] denoteg2" ! < i <
(t+ 128"~ 1,1 =1,2,3,...,k Forl = 1, we have
thatlf<1>(y7e(1>) = {Dzb1|0 <1< k=1 _ 1} Thus, by
Lemma 3, the functiorf™ (y, e(!)) has an optimal alge-
braic immunity[%/2] and algebraic degrée— 1.

Let o be the Frobenius automorphism on finite field
BUO0. Thatis to saya(Dib}C) = (D'by)?. SinceDb; is a
1’(y) have same algebraic degree and nonlinearity. In ad%e'}5rzltoirsogsinggcsrgzrﬁor_fér) a_ 1’60{1(2171)’ (]jfefoltfd
dition, we find thatf™)(y,e), which is the function C)I/ TI Lth gt 1) ) ny b e " d
constructed in [19] by Wang and Peng, has a high non_Dearby,_ e support of V) (y, ") can be represented as
linearity, an optimal algebraic degree and an optimal im-—'~1"1* -€-,
munity. Recently, Carlet [6] showed that the first of the two 1 1), o) = {D}_;b1]0 < i < 2=t 11
constructions in [19] is the same as the construction Preiherel — 2.3 k
sented in [8]. In [9], Carlet and Feng studied the crypto- By the ’ Fovmﬁ ' rocess of Lemma 3. the function
graphic properties of an infinite class of balanced vectorial Y P 9p f

[t2F=L (¢ 4+ 1)2k=1 — 1]}

is a Bent function, where, (z) = (7 @ 1) - x. Moreover,

() = (F0.). 7V (1.0, 7V (5.0M))

is a Boolean permutation.
Clearly, ¥(y) Y'(y) @ 1, that is, bothy(y) and

)

Boolean functions over finite fields which were introduced

by Feng, Liao and Yang [11]. Thus, by the arguments pro-

posed in [6], the Boolean permutatiar(y) presented in

Remark 3 is the same as the vectorial functions in [11’9]Tion

In the following, we show that the Boolean permutation
¥(y) on F¥ has an optimal algebraic degree from its truth
tables.

Lemma3[19] Lety € FF, h(y) € B, and 1;, =
{Db|0 < i < 2F~1}, where0 # b, € F¥. Thenh(y)
has optimum algebraic immunify: /2] and algebraic de-
greek — 1.

From Theorem 4 and Lemma 3, we find ttfay, e(!))
may be exactly the functioh(y). We consider the proper-
ties of f(y, e)) wherel = 2.3, ... k.

Definition 4. Let F,» be a finite field and a prime char-
acteristicp. Leta € Fp». The mapo defined by.o :

a — aP is bijective and a homomorphism, and is therefore
an automorphism on the fiell,» which fixes the subfield
with p elements. It is called therobenius automorphism

In fact, theo satisfies

o(a+p) = (a+p)P = () + () = o(a) +0(f),
o(a-f)=(a-P)F =o(a) o(B).

Moreover,o(1) = 1,1 ¢ ker(o), soker(c) =0, i.e.,ois
an injective. Thus, this shows thatis an automorphism
on Fyn.

From Definition 4, it is clear that” is also anauto-
morphismon F,» for anyr € {1,2,...n — 1}, where
o (a) = aP".

f(y,e) has an optimal algebraic immunity:/2] and
algebraic degreé — 1 for anyl € {2,...,k}. The theo-
rem is proved.

In the following, we show that the Boolean permuta-
¢(y) has an optimal algebraic degree- 1 by select-
ing an appropriaté; .

Lemma 4[15] For any finite fieldF),» there exists a nor-
mal basis ofF,» over its prime subfield that consists of
primitive elements of .

Theorem 6. Let f(V(y,z) € By, and the Boolean
permutatior)(y) be as in Remark 3. Theteg(y(y)) =
k — 1 if and only if {Dv@"'-1med 2"~y
;(721"71—1)mod (2k—1)b1' o ,DZ(_szl—nmod (2’“—1)b1}
is a normal basisof B U {0} over {0,b;}, wherev
is an integer andb; & Db, D"by. Furthermore,
there exists at least a vectos; € FJF such that
{Du(2’“’1—1)mod (2’“—1)b1 DV(Qkﬁ_lfl)mOd (2k*1)b1

2—1
k—1_ k__ . .
.., Dy Thmed Ty v s 4 normal  basis of

B U {0} over{0,b;}.

Proof From Theorem 5, we know that!) (y, e(V))
has algebraic degréde— 1. Thus, we have

2k—1-1

E_BO Dib; = (by @ Dby)2" 1
a _ Dy(2k71—1)mod (2k_1)b1 7& 0,

where0 < v < 2% — 1 is an integer.
Let o be also the Frobenius automorphism on finite
field BUO. By the proving process of Theorem 5, we have

L) (yo@y = {Ds_1b1]0 < i< 2F 1 -1}

(@© 2012 NSP
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Moreover, On the other handged(2¥~! — 1, 2 — 1) = 1 in that
h1 g 1, ged(2F — 2, 2% — 1) = 1. Consequently,
Dy Db =0 (DI, Dby .
o D;SZk’ —1)mod (2k_1)b1 # 0. {a(i+y)(2k71,1)mod (2+k—1) ‘Z: 0,... ,2k—2}: B

=3\ {0}.
By using the same argument as above, one may show that
o According to Lemma 4, there exists a numpésuch that
2577 =1 g —
@i:(} Dj_yb1 = o' 1(@1 0 ' Dl bl)

k—1_ _
VEZI 1)mod (2* l)b1 #0,

{D2 O(w4p")(2F 1 =1)mod(2F *1)a0,
Dzl(u+p’)(2’“*1—1)mod(2’”‘—1)a0’ e

wherel € {3,...,k}. D2 v+ )@ = mod(2" ~1) g 1
According to Definition 3, we knowleg(vy(y)) = k — _ _
1 if and only if is a normal basis oB U {0} over {0,a0}. We seth; =
Dr' (@ =1mod(2*~1) ¢ Thus, the above normal basis

(Dy(2k71 1)mod (2* —l)b D2(2 Tt —1)mod (2"— 1)b

o Lyeees can be represented as follows:
Dk(21 —1)mod (2% 71)b ) v 7£ 0,

{D20u(2k_171)mod(2k71)b1 D21v(2k_171)m0d(2k71)b1

wherev € F¥ \ {0}. D2 @ T = Dmod (2"~ 1)y
Therefore, according to the above equation, we know N .
that the following three conditions are equivalent. That is to say, the vector®? ¥(2" —1mod(2"~1)p,
21y (2871 —1)mod(2F —1 2k=1y (2P =1 —1)ymod(2F -1
o 1 & 1 k are linearly independent. The theorem is proved.
2Du(2 —1)mod (2 —1)b D ( —1)mod (2 1)b s
o Ly Example 1. Letn = 2k = 16,2,y € F5,0 #
.,D,’;(_Ql ~Dmod (2" _1)b1 are linearly independent; l?l € FQS.kDenote(z')Q the binary expansion of the inte_ger
S{Dy@kfl_l)mod (@ -1y pr T =Dmod (2*-1) i € [0,2° —1]. Let f(y,x) € Bjg and ¢(y) be as in
' S 1y (oh 11’ 2-1 b Remark 3. Clearlyf(y,e) is balanced, has optimum
. DZ(_l ~Hmed (27=Dy 1 s a normal basisof  algebraic immunity and optimum algebraic degree where
BU{0} over{0,b;}. 1=1,2,...,8. Here,we takeP(z) = 28 @20 @2 @2z 1.

From Theorem 6, we know that there exists at least a
vectorb; € F§ such thatdeg(¢(y)) = 7. By calcula-
e tion, we find thatdeg(¢(y)) = 7 when arbitraryb; €

DZ(E: 1_1)m0d (2 1)b1} |S anorma| baSiSOf B U {0} {(1)2, (2)2, (3)2, (6)2, (9) (14)2, (26)2, (28)2, (29)2,

Next, we show that there exists & such that
{Dr@* " =Dmod (2" =1)p, D”(2k —l)mod<2k—1>b1

oot D

k X _ X H 29 29 29 29 29 29 29 25 25
posli_ts:eoin?[ée;eope<F22k7_all+sluCh chaaZtlogle)rZLsh:ergl’e;(OI?t:S 2 ( )2 (92)27( 3)2 ( )27 (105)2a (107)27 (109)27 (111)21

a.). Moreover, we have (115), (117)2, (118)s, (119)2, (125), (130),, (131)s,

v : (135)2, (138)a, (139)2, (141)s, (143)s, (148), (149).
(Dao @ D2ag)? ™ 1 (150)2, (153)2, (156)2, (158)2, (161)2, (165)s, (166)s,
— (D(u+1)7rLod (2’“—1) )2’“’1—1 (168)2, (169)2, (177)2, (180)2, (181)2, (182)2, (183)2,
. L ’ (189), (201)s, (209)s, (218)s, (219), (220)s, (227)s,
(L1)(2+ 2 ~1)mod (2 ~1); (233)5, (237)2, (240)s, (246), (248)s, (250)s, (255)2}.

(D2ag ® D3ag)?" !

B There arer7 elements in the set.
_ (D(u+2)mod (2 - 1)a0)2k 11

= Q(24v) (28— 1—1)mod (2F—1)} Theorem 7. Lety € FF and¢(y) be defined as in The-
orem 3. Then there exists at least one veétoe F¥ such
thatdeg(o(y)) = k — 1.

D23 D2 242" 11 _
( ao @ N ao) . Proof From Theorem 2, we know thdtg(4(y)) =
= (D27 =3)mod (27-1) )27~ 1 k — 1ifand only if deg(¢~'(y)) = k — 1. By Theorem 4,
= (25 —341) (251 —1)mod (2% 1)} we havep—!(y) = v'(y). Further, according to Remark 3,
we knowv)’(y) € 1 = ¢(y). Clearly, the algebraic degree
(D2 ~2ay @ ag)?" "1 of ¢’ (y) is same as that af(y). Combining to Theorem 5
_ (D(y+2k—2)mod (2"’—1)(10)2"'*1—1 and 6, there exists at least one veétpsuch that)(y) has

an optimal algebraic degrée— 1. Thus, bothy’(y) and

¢(y) have an optimal algebraic degree.

We have For k = 8, we can obtairY7 Boolean permutations of
an optimal algebraic degree 8rvariables by using Theo-

{a(ivvymod (2+—1)li = 0,1,...,2F =2} = B=FF\{0}.  rem 7 and Example 1.

= G2k —241)(2k—1—1)mod (2k—1)"
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