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In this article we study the wave propagation in materials consisting of two components:
one component is simple elastic while, the other has a nonlinear internal damping with
elastic coefficients dependent on time. Both components have source terms. By using
the potential well method we obtain the global existence. We also show that the energy
of the system decays uniformly to zero.
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1 Introduction

The main purpose of this work is to study the asymptotic behavior of solutions of the
following nonlinear transmission problem

ρ1utt − buxx = µ1f1 (u)
ρ2vtt − a (t) vxx + g (vt) = µ2f2 (v)
u (0, t) = 0 = v (L, t)
u (L0, t) = v (L0, t)
bux (L0, t) = a (t) vx (L0, t)
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x)
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x)

in ]0, L0[× R+,

in ]L0, L[× R+,

t > 0,

t > 0,

t > 0,

xε ]0, L0[ ,
xε ]L0, L[ ,

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)

where ρ1, ρ2 are different densities of the material, µi ∈ R, i = 1, 2, b > 0, g is a non-
decreasing C1 function, a is an elastic coefficient dependent on time and fi is a function
like − |u|pi−1

u, pi ≥ 1, i = 1, 2.

Transmission problem or diffraction problems arise in several applications in physics
and biology. The stability of conservative system by means of a internal damping has been
studied by many authors, see [1,9,12,14], among others. For the transmission problem there
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exist several works about controllability and stabilization by means of feedback functions
on a part of the boundary [ 2,5,8,11].

When the coefficients depend on time and fi (s) s ≥ 0, µi = −1, Muñoz Rivera and
Cabanillas L. [10] showed that solutions converge to zero exponentially. In our case we
have µiεR, |fi (s)| ≤ |s|pi , ∀ s ε R, with non-linear damping g.

The first part of this paper is to study the global existence of regular and weak solu-
tion to problem (1.1)-(1.7), where we have some theoretical difficulties that we need over
come because of that the coefficients depend on time and the source term. Semigroup ar-
guments are not suitable for finding solutions to (1.1)-(1.7) and the method in [10] does
not seem to be directly applicable to the function fi, therefore, we make use of a Galerkin
approximation and the potential well method.

The second part is to give energy decay estimates of the solution of (1.1)-(1.7) for a
general non-linear damping g. We found that the rate of decay of the solutions depend on
behavior of the dissipative term in a neighborhood of zero, that is, for a linear dissipation we
obtain exponential decay while for a polynomial dissipation we obtain polynomial decay.

In section 2, we present the notations and statement of results. In section 3, we prove
solvability of (1.1)-(1.7) while section 4 deals with the asymptotic behavior of the solutions
obtained in section 3.

2 Preliminaries

We denote

(w, z) =
∫

I

w (x) z (x) dx, |z|2 =
∫

I

|z (x)|2 dx,

where I = ]0, L0[ or ]L0, L[ for u′s and v′s respectively.
We assume that

(A1) We take fi ∈ C1 (R), i = 1, 2, fi (0) = 0,

|f ′i (s)| ≤ |s|pi−1 1 ≤ p1, p2 < ∞

and without lost of generality, we assume p1 ≥ p2 and

Fi (s) = µi

S∫

0

fi (ξ) dξ

(A2) Let g : R→ R be a nondecreasing C1 function such that

g (s) · s > 0 for all s 6= 0,



A Transmission Problem with Nonlinear Damping and Source Terms 189

and there exist ci > 0, i = 1, 2, 3, 4 such that




c3 |s|p ≤ |g (s)| ≤ c4 |s|1/p if |s| ≤ 1,

c1 |s| ≤ |g (s)| ≤ c2 |s| if |s| > 1,

where p ≥ 1.

A3) a ∈ W 1,1
Loc (0,∞), a (t) ≥ a0 > 0, for some a0 > 0.

By V we denote the Hilbert Space

V =
{
(w, z) ∈ H1 (0, L0)×H1 (L0, L) : w (0) = z (L) = 0; w (L0) = z (L0)

}
.

By E1 and E2 we denote the first order energy associated to each equation

E1 (t, u) =
ρ1

2
|ut (t)|2 +

b

2
|ux (t)|2 −

L0∫

0

F1 (u) dx

E2 (t, v) =
ρ2

2
|vt (t)|2 +

a (t)
2

|vx (t)|2 −
L∫

L0

F2 (v) dx

and we define

J1 (u) =
b

2
|ux|2 − µ1

p1 + 1
|u|p1+1

p1+1 ,

J (u, v) =
b

2
|ux|2 −

L0∫

0

F1 (u) dx +
a (t)

2
|vx|2 −

L∫

L0

F2 (v) dx,

J2 (v) =
a0

2
|vx|2 − µ2

p2 + 1
|v|p2+1

p2+1 ,

I (u, v) = b |ux|2 + a0 |vx|2 − µ1 |u|p1+1
p1+1 − µ2 |v|p2+1

p2+1 ,

E (t) ≡ E (t, u, v) = E1 (t, u) + E2 (t, v) .

We also define the stable set as W = {(u, v) ∈ V : I (u, v) > 0 } ∪ {θ} .

In order to show the decay property we will need the following lemma.

Lemma 2.1. [3, Lemma 9.1] Let E : R+ → R+ be a nonincreasing function, and assume
that there exist two constants p > 0 and c > 0 such that

+∞∫

s

E
p+1
2 (t) dt ≤ CE (s) 0 ≤ s < +∞.

Then, we have

E (t) ≤ CE (0) (1 + t)−2/(p−1) for all t ≥ 0 and p > 1,
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E (t) ≤ CE (0) e1−wt for all t ≥ 0 if p = 1,

where c and w are positive constants.

3 Existence and Uniqueness of Solution

We begin this section with defining what we mean by weak solution to the system
(1.1)-(1.7) .

Definition 3.1. We say that the couple {u, v} is a weak solution of (1.1)-(1.7) if

{u, v} ∈ L∞ (0, T ; V ) ∩W 1,∞ (
0, T, L2 (0, L0)× L2 (L0, L)

)

and

−ρ1

L0∫

0

u1 (x)ϕ (x, 0) dx− ρ2

L∫

L0

v1 (x)ψ (x, 0) dx− ρ1

T∫

0

L0∫

0

utϕtdxdt

−ρ2

T∫

0

L∫

L0

vtψtdxdt + b

T∫

0

L0∫

0

uxϕxdxdt +

T∫

0

L0∫

0

f1 (u) ϕdxdt

+

T∫

0

a (t)

L∫

L0

vxψxdxdt +

T∫

0

L∫

L0

f2 (v)ψdxdt +

T∫

0

L∫

L0

g (vt) ψdxdt = 0

for any {ϕ,ψ} ∈ C2 (0, T ;V ) such that

ϕ (T ) = ϕt (T ) = ψ (T ) = ψt (T ) = 0.

In order to show the existence of strong solutions we need a regularity result for the
elliptic system associated to the problem (1.1)-(1.7), whose proof can be obtained with
little modifications, from the book of Ladyzhenkaya and Ural’tseva [4, theorem 16.2].

Lemma 3.2. For any given functions F ∈ L2 (0, L0), G ∈ L2 (L0, L) there exists only
one solution {u, v} of

∣∣∣∣∣∣∣∣∣

−buxx = F in ]0, L0[ ,
−a (t) vxx = G in ]L0, L[ ,
u (0) = v (L) = 0,

u (L0) = v (L0) , bux (L0) = a (t) vx (L0)

with t being a fixed value in [0, T ] satisfying

u ∈ H2 (0, L0) and v ∈ H2 (L0, L) .
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Now we are in a position to state the global existence results.

Theorem 3.3. Suppose that assumptions (A1)-(A4) holds. If
{
u0, v0

} ∈ W ,
{
u1, v1

} ∈
L2 (0, L0)× L2 (L0, L) and

max
{
|µ1| b−1cp1+1

∗

[
2
b

p2 + 1
p2 − 1

E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p1−1)/2

,

|µ2| a−1
0 cp2+1

∗

[
2
a0

p2 + 1
p2 − 1

E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p2−1)/2}
< 1,

(3.1)

where c∗ is the constant of the Sobolev´s Imbedding, then there exists a unique weak solu-
tion of (1.1)-(1.7) satisfying

{u, v} ∈ C (0, T ;V ) ∩ C1
(
0, T ; L2 (0, L0)× L2 (L0, L)

)
.

In addition, if
{
u0, v0

} ∈ W ∩ (
H2 (0, L0)×H2 (L0, L)

)
,

{
u1, v1

} ∈ V and (3.1)
holds, and the compatibility condition

bu0
x (L0) = a (0) v0

x (L0) (3.2)

is verified, then there exists a strong solution {u, v} satisfying

{u, v} ∈ C
(
0, T ; H2 (0, L0)×H2 (L0, L)

) ∩ C1 (0, T ;V ) ∩
C2

(
0, T ; L2 (0, L0)× L2 (L0, L)

)

Proof. We employ the Galerkin Method to construct a solution. Let
{{

ϕi, ψi
}

, i = 1, 2, . . .
}

be a basis to V . We construct approximate solution

{um (t) , vm (t)} =
m∑

i=1

him (t)
{
ϕi, ψi

}
,

which is determinate by the ordinary differential equations

ρ1

(
um

tt , ϕ
i
)

+ b
(
um

x , ϕi
x

)
+

(
f1 (um) , ϕi

)
+ ρ2

(
vm

tt , ψi
)

+ a (t)
(
vm

x , ψi
x

)
+

(
g (vm

t ) , ψi
)

+
(
f2 (vm) , ψi

)
= 0, (3.3)

where i = 1, 2, 3, . . . . With the initial conditions

{um (0) , vm (0)} =
{
u0, v0

}
, {um

t (0) , vm
t (0)} =

{
u1, v1

}
, (3.4)

and by standard methods in differential equations we prove the existence of solutions to
(3.3)-(3.4) on some interval [0, Tm[, 0 < Tm ≤ ∞.
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In order to extend the solution of (3.3)-(3.4) to the whole interval [0,∞[ we need the
priori estimate below.

Weak solutions: Multiplying (3.3) by h′im (t), integrating by parts and summing up on i

we get
d

dt
E (t, um, vm) + (g (vm

t ) , vm
t ) ≤ |a′ (t)|

a (t)
E (t, um, vm) . (3.5)

Integrating (3.5) over ]0, t[, we find that

E (t, um, vm)+

t∫

0

(g(vm
t (s)) , vm

t (s)) ds ≤ E
(
0, u0, v0

)
+

t∫

0

|a′ (s)|
a (s)

E(s, um(s), vm (s)) .

Employing Gronwall’s lemma, from the last inequality, we see that

E (t, um (t) , vm (t)) +

t∫

0

(g (vm
t (s)) , vm

t (s)) ds

≤E
(
0, u0, v0

)
exp

( t∫

0

|a′ (s)|
a (s)

ds

)
, 0 ≤ t ≤ T. (3.6)

Now to obtain a priori estimates, we need the following result.

Lemma 3.4. Let {um (t) , vm (t)} be the solution of (3.3)-(3.4) with
{
u0, v0

} ∈ W and{
u1, v1

} ∈ L2 (0, L0)× L2 (L0, L) . If

α = max
{
|u1| b−1cp1+1

∗

[
2
b

(
p2 + 1
p2 − 1

)
E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p1−1)/2

,

|µ2| a−1
0 cp2+1

∗

[
2
a0

(
p2 + 1
p2 − 1

)
E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p2−1)/2}
< 1,

Then {u (t) , v (t)} ∈ W on [0, T ] , that is, for all t ∈ [0, T ]

I (um (t) , vm (t)) > 0.

Proof. Since I
(
u0, v0

)
> 0, it follows from the continuity of {um (t) , vm (t)} that

I (um (t) , vm (t)) ≥ 0 for some interval close to t = 0. (3.7)

Let tmax > 0 be a maximal time (possibly tmax = Tm) such that (3.7) holds on [0, tmax[ .
In order to facilitate the notation, we will omit the index m of the solution of the approxi-
mate system. Note that

J (u (t) , v (t)) ≥ b

2
|ux|2 +

a0

2
|vx|2 − µ1

p1 + 1
|u|p1+1

p1+1 −
µ2

p2 + 1
|v|p2+1

p2+1
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=
1

p2 + 1
I (u (t) ; v (t)) +

b (p2 − 1)
2 (p2 + 1)

|ux|2 +
a0 (p2 − 1)
2 (p2 + 1)

|vx|2

+
µ1 (p1 − p2)

(p1 + 1) (p2 + 1)
|u|p1+1

p1+1

≥ p2 − 1
2 (p2 + 1)

{
b |ux|2 + a0 |vx|2

}
, ∀t ∈ [0, tmax[ .

Consequently, we get

b |ux|2 + a0 |vx|2 ≤ 2 (p2 + 1)
p2 − 1

J (u (t) , v (t))

≤ 2 (p2 + 1)
p2 − 1

E (t, u, v)

≤ 2 (p2 + 1)
p2 − 1

[
E

(
0, u0, v0

)
exp

T∫

0

|a′ (s)|
a (s)

ds

]
on [0, tmax[ . (3.8)

It follows from the Sobolev-Poincaré inequality and (3.8) that

µ1 |u|p1+1
p1+1 ≤ |µ1| cp1+1

∗ |ux|p1+1

=
|µ1|
b

cp1+1
∗ |ux|p1−1

(
b |ux|2

)

≤ |µ1|
b

cp1+1
∗

[
2
b

(
p2 + 1
p2 − 1

)
E (0) exp

∫ T

0

|a′ (s)|
a (s)

ds

](p1−1)/2

b |ux|2

< b |ux|2 . (3.9)

Similarly

µ2 |v|p2+1
p2+1 ≤

|µ2|
a0

cp2+1
∗

[
2
ao

(
p2 + 1
p2 − 1

)
E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p2−1)/2

a0 |vx|2

< a0 |vx|2 . (3.10)

Thus from (3.9) and (3.10) we obtain

µ1 |u|p1+1
p1+1 + µ2 |v|p2+1

p2+1 < b |ux|2 + a0 |vx|2 . (3.11)

Therefore we get I (u (t) ; v (t)) > 0 on [0, tmax[ , which implies that we can take tmax =
Tm. This completes the proof of Lemma 3.4.

Lemma 3.5. Let {u, v} be as in Lemma 3.4. Then there is a certain number η0, 0 < η0 < 1
such that

µ1 |u|p1+1
p1+1 + µ2 |v|p2+1

p2+1 ≤ (1− η0)
[
b |ux|2 + a0 |vx|2

]
.
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Proof. In Lemma 3.4, we have obtained

µ1 |u|p1+1
p1+1 ≤

|µ1|
b

cp1+1
∗

[
2
b

p2 + 1
(p2 − 1)

E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p1−1)/2

b |ux|2 ,

µ2 |v|p2+1
p2+1 ≤

|µ2|
a0

cp2+1
∗

[
2
a0

p2 + 1
(p2 − 1)

E (0) exp

T∫

0

|a′ (s)|
a (s)

ds

](p2−1)/2

a0 |vx|2 .

From the above inequalities we get

µ1 |u|p1+1
p1+1 + µ2 |v|p2+1

p2+1 ≤ α
(
b |ux|2 + a0 |vx|2

)

≤ (1− η0)
(
b |ux|2 + a (t) |vx|2

)
,

where η0 = 1− α. This completes the proof of Lemma 3.5

Remark 3.1. From the proof of Lemma 3.4, we get

b |ux|2 + a (t) |vx|2 ≤ 2 (p2 + 1)
p2 − 1

J (u (t) , v (t)) .

Using Lemma 3.4, we can deduce a priori estimate for {u (t) , v (t)} . Lemma 3.4 im-
plies that

E (t, u (t) , v (t)) =
1
2
|ut (t)|2 +

1
2
|vt (t)|2 + J (u (t) , v (t))

≥ 1
2
|ut (t)|2 +

1
2
|vt (t)|2 +

1
p2 + 1

I (u (t) , v (t))

+
b (p2 − 1)
2 (p2 + 1)

|ux|2 +
a0 (p2 − 1)
2 (p2 + 1)

|vx|2 +
µ1 (p1 − p2)

(p1 + 1) (p2 + 1)
|u|p1+1

p1+1

≥ 1
2
|ut (t)|2 +

1
2
|vt (t)|2 +

p2 − 1
2 (p2 + 1)

(
b |ux|2 + a0 |vx|2

)
. (3.12)

From (3.6) and (3.12), we get

1
2
|ut (t)|2 +

1
2
|vt (t)|2 +

p2 − 1
2 (p2 + 1)

(
b |ux|2 + a0 |vx|2

)
+

t∫

0

(
g(vt(s)), vt(s)

)
ds

≤ E
(
0, u0, v0

)
exp

( T∫

0

|a′(s)|
a(s)

ds

)
≤ L1, (3.13)

where L1 is a positive constant independent of m ∈ N and t ∈ [0, T ] .
Thus, we deduce that

{um, vm} is bounded in L∞ (0, T ;V ) ,
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{um
t , vm

t } is bounded in L∞
(
0, T ; L2 (0, L0)× L2 (L0, L)

)
,

which imply that

{um, vm} ⇀ {u, v} weakly * in L∞ (0, T ; V ) ,

{um
t , vm

t } ⇀ {ut, vt} weakly * in L∞
(
0, T ; L2 (0, L0)× L2 (L0, L)

)
.

Using Aubin-Lions compactness lemma, we find that

{um, vm} → {u, v} strongly in L2
(
0, T ; L2 (0, L0)× L2 (L0, L)

)
,

and consequently

um → u a.e in ]0, L0] and f1 (um) → f1 (u) a.e. in ]0, L0] ,

vm → v a.e in ]L0, L] and f2 (vm) → f2 (v) a.e. in ]L0, L] .

Besides, from the growth condition in (A1) we have that

f1 (um) is bounded in L2
(
0, T ; L2 (0, L0)

)
,

f2 (vm) is bounded in L2
(
0, T ; L2 (L0, L)

)
,

and therefore

{f1 (um) , f2 (vm)} ⇀ {f1 (u) , f2 (v)} in L2
(
0, T ;L2 (0, L0)× L2 (L0, L)

)
.

Now, we note that from (3.13) and the assumption (A2), we get

t∫

0

|g (vm
t (s))|2 ds ≤ L,

where L is a positive constant independent of m and t.

So, we can take a subsequence, still denote by (vm) such that

g (vm
t ) → χ weakly in L2 ( ]L0, L[× ]0, T [ ) .

Returning to (3.8) and using standard arguments we can show, from the convergence above,
that

ρ1utt − buxx =µ1f1 (u) in L2
(
0, T ; H−1 (0, L0)

)
,

ρ2vtt − a (t) vxx + χ =µ2f2 (v) in L2
(
0, T ; H−1 (L0, L)

)
.

Our goal is to prove that
χ = g (vt) ,
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but this relation follows from a standard theory of monotone and hemicontinuous operators
(cf. [6]), so the proof is omitted. Therefore, {u, v} satisfies (1.1)-(1.5).

Regularity of solutions: To get the regularity result, we take a basis

B =
{{

ϕi, ψi
}

, i ∈ N}

such that {
u0, v0

}
,
{
u1, v1

} ∈ Span
{{

ϕ0, ψ0
}

,
{
ϕ1, ψ1

}}
.

Let us differentiate the approximate equation and multiply by h′′im (t). Using a similar
argument as before, we obtain that

d

dt
E2 (t, u, v) +

L∫

L0

g′ (vm
t (x, t)) (vm

tt (x, t))2 dx

= µ1 (f ′1 (um)um
t , um

tt ) + µ2 (f ′2 (vm) vm
t , vm

tt )

− at (t) (vm
x , vm

xtt) +
1
2
at (t) |vxt|2 , (3.14)

where

E2 (t, u, v) =
ρ1

2
|utt|2 +

b

2
|uxt|2 +

ρ2

2
|vtt|2 +

a (t)
2

|vxt|2 .

Note that

− at (vm
x , vm

xtt) = − (at (vm
x , vm

xt))t + att (vm
x , vm

xt) + at |vm
xt|2 , (3.15)

E2 (0, um, vm) is bounded, because of our choice of the basis.

Now, from the growth condition (A1) and the Sobolev imbedding we have

L0∫

0

f ′1 (um) um
t um

tt dx ≤ c

[ L0∫

0

|um
x |2 dx

](p1−1)/2

|um
xt| |um

tt | , (3.16)

and similarly

L∫

L0

f ′2 (vm) vm
t vm

tt dx ≤ c

[ L∫

L0

|vm
x |2 dx

](p2−1)/2

|vm
xt| |vm

tt | . (3.17)

Taking into account the first estimate (3.13), (3.15)-(3.17), from (3.14) and the Gronwall
inequality, we conclude that

E2 (t, um, vm) ≤ c, (3.18)

which implies that

{um
t , vm

t } ⇀ {ut, vt} weakly * in L∞
(
0, T ;H1 (0, L0)×H1 (L0, L)

)
,
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{um
tt , v

m
tt } ⇀ {ut, vt} weakly * in L∞

(
0, T ;L2 (0, L0)× L2 (L0, L)

)
.

Therefore we have {u, v} satisfies (1.1)-(1.5) and we have

∣∣∣∣∣∣∣∣∣

−buxx = −ρ1utt + µ1f1 (u) ∈ L2 (0, L0) ,

−a (t) vxx = −ρ2vtt − g (vt) + µ2f2 (v) ∈ L2 (L0, L) ,

u (L0, t) = v (L0, t) , bux (L0, t) = a (t) vx (L0, t) ,

u (0, t) = 0 = v (L, t) .

Then using Lemma 3.2 we have the required regularity for {u, v}.

4 Exponential Decay

In this section we study the asymptotic behavior of the solution of system (1.1)-(1.7). In
the remainder of this paper we denote by c a positive constant which takes different values
in different places. We shall suppose that

ρ1 ≤ ρ2 (4.1)

and
a (t) ≤ b, at (t) ≤ 0, ∀t ∈ ]0,∞[ . (4.2)

Let fi, i = 1, 2 be such that

0 ≤ F1 (s) ≤ |µ1|
p1 + 1

sf1 (s) ,

0 ≤ F2 (s) ≤ |µ2|
p2 + 1

sf2 (s) ,

F1 (s) ≤ F2 (s) .

Note that odd polynomials satisfy the above inequalities.

Theorem 4.1. Let {u, v} be the weak solution obtained in Theorem 3.3. Suppose that
(4.1)-(4.2) and (A2) hold with p = 1. If, in addition, the initial data satisfy

v0
x (L0) = 0, (4.3)

then there exists positive constants γ and c such that

E (t) ≤ cE (0) e−γt, ∀t ≥ 0. (4.4)

We shall prove this theorem for strong solutions, our conclusion follow by standard
density arguments.

The dissipative property of system (1.1)-(1.7) is given by the following lemma.
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Lemma 4.2. The first order energy satisfies

d

dt
E1 (t, u, v) = − (g (vt) , vt) + at |vx|2 . (4.5)

Proof. Multiplying equation (1.1) by ut, equation (1.2) by vt and performing an integration
by parts we get the result.

Let ψ ∈ C∞0 (0, L) be such that ψ = 1 in ]L0 − δ, L0 + δ[ for some small constant
δ > 0. Let us introduce the following functional

I (t) =

L0∫

0

ρ1utquxdx +

L∫

L0

ρ2vtψqvxdx,

where q (x) = x.

Lemma 4.3. There exists c1 such that

d

dt
I (t) ≤ − L0

2

{
(ρ2 − ρ1) v2

t (L0, t) + a (t)
[
1− a (t)

b

]}

− L0 [F2 (v (L0, t))− F1 (u (L0, t))]− 1
2

L0∫

0

(
ρ1u

2
t + bu2

x − 2F1 (u)
)
dx

+ c1

{ L∫

L0+δ

(
v2

t + v2
x

)
dx +

L∫

L0

(
v2 + g (vt)

2
)

dx

}
+ εE (t, u, v) .

Proof. Multiplying equation (1.1) by qux, equation (1.2) by ψqvx, integrating by parts
and using the corresponding boundary conditions, we have

d

dt
(ρ1ut,qux) =

L0

2
[
ρ1u

2
t (L0, t) + bu2

x (L0, t)
]

+ L0F1 (u (L0, t))− 1
2

L0∫

0

[
ρ1u

2
t + bu2

x.− 2F1 (u)
]
dx, (4.6)

d

dx
(ρ2vt, qψvx) ≤ −L0

2
[
ρ2v

2
t (L0, t) + a (t) v2

x (L0, t)
]

− L0F2 (v (L0, t))− a (t)
4

L0+δ∫

L0

v2
xdx

+ c1

[ L∫

L0+δ

(
v2

t + v2
x

)
dx +

L∫

L0

(
g (vt)

2 + |F2 (v)|
)

dx

]
. (4.7)

Adding (4.6) and (4.7), we get

d

dt
I (t) ≤ −L0

2
[
(ρ2 − ρ1) v2

t (L0, t) + a (t) v2
x (L0, t)− bu2

x (L0, t)
]
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− L0 [F2 (v (L0, t))− F1 (u (L0, t))]− 1
2

L0∫

0

(
ρ1u

2
t + bu2

x − 2F1 (u)
)
dx

− a (t)
4

L0+δ∫

L0

v2
xdx + c1

[ L∫

L0+δ

(
v2

t + v2
x

)
dx +

L∫

L0

(
g (vt)

2 + |F2 (v)|
)

dx

]
. (4.8)

According to (A.1), we have that

|F2 (s)| ≤ c |s|p2+1 ≤ c |s|2p2 . (4.9)

Now, applying the interpolation inequality

|z|p ≤ |z|α2 |z|1−α
q ,

1
p

=
α

2
+

(1− α)
q

, α ∈ [0, 1] ,

and the inmersion H1 (L0, L) ↪→ L2(2p2−1) (L0, L) , we get, for all t ≥ 0,

|v (t)|2p2
2p2

≤ cεE (0)2(p2−1) |v (t)|22 +
ε

E (0)2(p2−1)
|vx (t)|2(2p2−1)

2 , for all ε > 0.

Considering inequality (3.8) we infer that

|vx (t)|22 ≤ cE (0) ,

then
|v (t)|2p2

2p2
≤ cεE (0)2(p2−1) |v (t)|22 + εE (t, u, v) . (4.10)

From (4.8)− (4.10), our conclusion follows.

Let ϕεC∞ (R) be a non-negative function such that ϕ = 0 in Iδ/2 =
]L0 − δ/2, L0 + δ/2[ and ϕ = 1 in R\Iδ and consider the functional

J (t) =

L∫

L0

ρ2vtϕvdx,

we have the following estimate.

Lemma 4.4. Given ε > 0, there exists a positive constant cε such that

d

dt
J (t) ≤ −a (t)

2

L∫

L0+δ

v2
xdx + ε

[
a (t)

L0+δ∫

L

v2
xdx + E (t, u, v)

]

+ cε

L∫

L0

(
v2

t + g (vt)
2 + v2

)
dx.
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Proof. Multiplying equation (1.2) by ϕv and integrating by parts, we get

d

dt
J (t) = −a (t) (vx, ϕvx)− a (t) (vx, ϕxv) + (vt, ϕvt)− (g (vt) , ϕv)

+ µ2 (f2 (v) , ϕv) .

Applying Young’s inequality and hypothesis (A.1) and (4.10), our conclusion follows.

Let us consider the following functional

K (t) = I (t) + (2c1 + 1) J (t) .

Using Lemma 4.3 and fixing ε = ε1 in Lemma 4.4, where ε1 is the solution of the equation

(2c1 + 1) ε1 =
1
8
,

we have that there exists a positive constant c2 such that

d

dt
K (t) ≤ −E1 (t, u)− 1

8
a (t)

L∫

L0

v2
xdx + εE (t, u, v)

+ c2

( L∫

L0

(
v2

t + g (vt)
2 + v2

)
dx

)
. (4.11)

Now in order to estimate the last term of (4.11) we need the following result.

Lemma 4.5. Let {u, v} be a solution in Theorem 4.1. Then there exist T0 > 0 such that if
T ≥ T0 we have

T∫

S

|v|2 ds ≤ ε

T∫

S

|vx|2 ds + +cε

T∫

S

(
|vt|2 + |g (vt)|2

)
ds (4.12)

for any ε > 0 and cε is a constant depending on T but independent of {u, v} and 0 < S <

T < +∞.

Proof. Let suppose that (4.12) does not hold, then there would exist a sequence of solutions
{uν , vν} such that

T∫

S

|vν |2 ds ≥ γ

T∫

S

(
|vν

t |2 + |g (vν
t )|2 ds

)
+ c0

T∫

S

|vν
x|2 ds, (4.13)

for some C0 > 0.

We observe that in our work, in view of (3.1), the energy of the initial data
{{uν (0) , vν (0)} , {uν

t (0) , vν
t (0)}}, denoted by Eν (0), remains uniformly bounded in

ν, that is, there exists M > 0 such that Ev (0) ≤ M, ∀v ∈ N.
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Consequently, we have Ev (t) ≡ E (t, uν , vν) ≤ M, ∀ν ∈ N, since Eν is a non-
increasing function. Then, there exists a subsequence {uν , vν} which we still denote in the
same way, such that

uν ⇀ u weak star in L∞
(
0, T ; H1 (0, L0)

)
,

uν
t ⇀ ut weak star in L∞

(
0, T ; L2 (0, L0)

)
,

vν ⇀ v weak star in L∞
(
0, T ; H2 (L0, L)

)
,

vν
t ⇀ vt weak star in L∞

(
0, T ; L2 (L0, L)

)
.

Applying compactness results we deduce that

uν → u strongly in L2
(
0, T ;L2 (0, L0)

)
, (4.14)

vν → v strongly in L2
(
0, T ; L2 (L0, L)

)
. (4.15)

According to (4.14)-(4.15), we have that

f1 (uν) → f1 (u) a.e. in ]0, L0[× ]0, T [ ,

f2 (vν) → f2 (v) a.e. in ]L0, L[× ]0, T [ .

From the above convergence and since the sequence {f1 (uν) , f2 (vν)} is bounded in
L2

(
0, T ; L2 (0, L0)× L2 (L0, L)

)
we conclude by Lion’s Lemma that

{f1 (uν) , f2 (vν)} ⇀ {f1(u), f2(v)} weakly in L2
(
0, T ; L2 (0, L0)× L2 (L0, L)

)
.

(4.16)
The term

∫ T

S
|vν |2 ds is bounded since Eν (t) ≤ M , ∀ν ∈ N, ∀t ≥ 0 and |vν (t)|2 ≤

cEν (t), where c is a positive constant independent of ν and t. Then, from (4.13) the term

T∫

S

(
|vν

t |2 + |g (vν
t )|2

)
ds → 0 as ν → +∞.

Particularly, it comes that

T∫

S

|g (vν
t )|2 ds → 0 as ν → +∞.

As S is chosen in the interval [0, T ], we can write

lim
ν→+∞

T∫

S

|g (vν
t )|2 ds = 0.

Therefore
g (vν

t ) → 0 strongly in L2
(
0, T ;L2 (L0, L)

)
. (4.17)
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Using analogous arguments we get from (4.13) that

vν
t → 0 strongly in L2

(
0, T ; L2 (L0, L)

)
. (4.18)

Besides, from the uniqueness of the limit we conclude that

vt (x, t) = 0,

and therefore
v (x, t) = ϕ (x) .

Note that {uν , vν} satisfies
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ1u
ν
tt − buν

xx = µ1f1 (uν) in ]0, L0[× ]0, T [ ,
ρ2v

ν
tt − a (t) vν

xx + g (vν
t ) = µ2f2 (vν) in ]L0, L[× ]0, T [ ,

uν (0, t) = 0 = vν (L, t) , t > 0,

uν (L0, t) = vν (L0, t) ,

buν
x (L0, t) = a (t) vν

x (L0, t) ,

uν (x, 0) = uν,0 (x) , uν
t (x, 0) = uν,1 (x) ,

vν (x, 0) = vν,0 (x) , vν
t (x, 0) = vν,1 (x) .

(4.19)

Taking limit in (4.19) as ν → +∞, we get, for {u, v},
∣∣∣∣∣∣∣∣∣∣∣∣

ρ1utt − buxx = µ1f1 (u) in ]0, L0[× ]0, T [ ,
−a (t) vxx = µ2f2 (v) in ]L0, L[× ]0, T [ ,
u (0, t) = 0 = v (L, t) ,

bux (L0, t) = a (t) vx (L0, t) ,

vt (x, t) = 0 in ]L0, L[× ]0, T [ ,

(4.20)

and for y = ut,
∣∣∣∣∣∣∣

ρ1ytt − byxx = µ1f
′
1 (u) y in ]0, L0[× ]0, T [ ,

y (0, t) = 0 = y (L0, t) ,

byx (L0, t) = a′ (t) vx (L0, t) .

(4.21)

Here, we observe that
uxt (L0, t)
ux (L0, t)

=
a′ (t)
a (t)

,

and we get after an integration

ux (L0, t) = k a (t) , k is a constant.

But, using the hypothesis we obtain

0 = lim
t→0+

ux (L0, t) = k a (0) .
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Consequently k = 0 and ux (L0, t) = 0. Thus, the function y satisfies
∣∣∣∣∣∣∣

ρ1ytt − byxx = µ1f
′
1 (u) y in ]0, L0[× ]0, T [ ,

y (0, t) = 0 = y (L0, t) on ]0, T [ ,
yx (L0, t) = 0 on ]0, T [ .

Then, using the results of [6] (based on Ruiz arguments [13]) adapted to our case we
conclude that y = 0, that is ut (x, t) = 0, for T suitable big.

Returning to (4.20) we obtain the following elliptic system
∣∣∣∣∣

−buxx = µ1f1 (u) ,

−a (t) vxx = µ2f2 (v) .

Multiplying by u and v respectively and integrating, then summing up we arrive at

b

L0∫

0

u2
xdx + a (t)

L∫

L0

v2
xdx = µ1

L0∫

0

f1 (u)udx + µ2

L∫

L0

f2 (v) vdx.

Hence
b |ux|2 + a0 |vx|2 ≤ µ1 |u|p1+1

p1+1 + µ2 |v|p2+1
p2+1 .

But, this contradicts the Lemma 3.5, if v 6= 0. Similarly, if u 6= 0 we can obtain a contra-
diction.

Let us assume that u = 0, v = 0. Defining

λ2
ν =

∫ T

S
|vν |2 ds, wν (x, t) =

uν (x, t)
λν

,

zν (x, t) =
vν (x, t)

λν
, 0 ≤ t ≤ T,

(4.22)

we have that λν → 0 and ∫ T

S

|zν |2 ds = 1. (4.23)

We also have that

∼
E

ν

(t) = E (t, wν , zν) ≤ 1
2
|wν

t (t)|2 +
b

2
|wν

x (t)|2 +
1
2
|zν

t (t)|2 +
a (t)

2
|zν

x (t)|2

=
1

2λ2
ν

{
|ut (t)|2 + b |uν

x (t)|2 + |vν
t (t)|2 + a (t) |vν

x (t)|2
}

.

From Remark 3.1 we deduce that

∼
E

ν

(t) ≤ 1
λ2

ν

(
p2 + 1
p2 − 1

)
Eν (t) . (4.24)
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Also

∼
E

ν

(t) ≥ 1
2

{
|wν

t (t)|2 + |zν
t (t)|2 +

p2 − 1
p2 + 1

(
b |wν

x|2 + a (t) |zν
x |2

)}

≥ 1
λ2

ν

(
p2 − 1
p2 + 1

)
Eν (t) . (4.25)

On the other hand, applying inequality (4.11) to the solutions {uν , vν} we have

d

dt
Kν (t) ≤ −δ0E (t, uν , vν) + c3

L∫

L0

(
vν 2

t + g (vν
x)2 + vν 2

)
dx.

Then integrating over [S, T ], we obtain

Kν (T ) + δ0

∫ T

S

E (t, uν , vν) dt ≤ Kν (S) + c3

∫ T

S

(
|vν

t |2 + |g (vν
t )|2 + |vν |2

)
dt.

Since Kν satisfies
c0E (t, uν , vν) ≤ Kν (t) ≤ c1E (t, uν , vν)

and that E is a decreasing function, we get

E (T, uν , vν) +
(

δ′0 −
c ′1
T

) ∫ T

S

E (t, uν , vν) dt

≤ c′3

∫ T

S

(
|vν

t |2 + |g (vν
t )|2 + |vν |2

)
dt. (4.26)

Dividing both sides of (4.26) by λ2
ν , applying inequalities (4.24), (4.25), (4.13) and taking

T large enough, we conclude that E (T, wν , zν) is bounded.
Integrating (4.5) over [S, T ], we obtain

Eν (t) = Eν (T ) +
∫ T

t

(g (vν
t ) , vν

t ) dt−
∫ T

t

at |vν
x|2 dt

≤ Eν (T ) + c

∫ T

S

(
|g (vν

t )|2 + |vν
t |2 + |vν

x|2
)

dt.

Dividing both sides of this inequality by λ2
ν , we have that, for every t ∈ [S, T ] with 0 ≤

S < T < +∞,

Eν (t)
λ2

ν

≤
(

p2 + 1
p2 − 1

)
E (T, wν , zν) +

c

λ2
ν

∫ T

S

(
|g (vν

t )|2 + |vν
t |2 + |vν

x|2
)

dt.

From (4.13) we deduce that

lim
ν→+∞

1
λ2

ν

∫ T

S

(
|g (vν

t )|2 + |vν
t |2 + |vν

x|2
)

dt = 0, (4.27)
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and, consequently, there exists M > 0 such that

Eν (t)
λ2

ν

≤ M

for all t ∈ [S, T ] and ν ∈ N. From (4.24) we find that

∼
E

ν

(t) ≤ c (4.28)

for all t ∈ [S, T ] , 0 ≤ S < T < +∞, and ν ∈ N.

Then in particular, for a subsequence {wν , zν} , we obtain

wν ⇀ w weak star in L∞
(
0, T ;H1 (0, L0)

)
,

wν
t ⇀ wt weak star in L∞

(
0, T ;L2 (0, L0)

)
,

zν ⇀ z weak star in L∞
(
0, T ;H1 (L0, L)

)
,

zν
t ⇀ zt weak star in L∞

(
0, T ;L2 (L0, L)

)
,

wν → w strongly in L2
(
0, T ; L2 (0, L0)

)
,

zν → z strongly in L2
(
0, T ; L2 (L0, L)

)
.

In addition, {wν , zν} satisfies
∣∣∣∣∣∣∣∣∣∣∣

ρ1w
ν
tt − bwν

xx =
µ1

λν
f1 (uν) in ]0, L0[× ]0, T [ ,

ρ2z
ν
tt − a (t) zν

xx +
1
λν

g (vν
t ) =

µ2

λν
f2 (vν) in ]L0, L[× ]0, T [ ,

wν (0, t) = 0 = zν (L, T ) , t > 0,

bwν
x (L0, t) = a (t) zν

x (L0, T ) , t > 0.

(4.29)

From (4.27) we get that

lim
ν→+∞

∫ T

S

∣∣∣∣
g (vν

t )
λν

∣∣∣∣
2

dt = 0 and lim
ν→+∞

∫ T

S

|zν
t |2 dt = 0.

Then, in particular, for S = 0, we obtain

g (vν
t )

λν
→ 0 in L2

(
0, T ; L2 (L0, L)

)
as ν → +∞. (4.30)

In addition
zν
t → 0 in L2

(
0, T ; L2 (L0, L)

)
as ν → +∞,

∫ T

0

∫ L0

0

(
f1 (uν)

λν

)2

dx dt ≤
∫ T

0

∫ L0

0

(wν)2 (uν)2(p1−1)
dx dt (4.31)

=
∫ T

0

∫

|uγ |≤ε

(wν)2 (uν)2(p1−1)
dx dt
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+
∫ T

0

∫

|uγ |>ε

(wν)2 (uν)2(p1−1)
dx dt.

Since the function F (s) = |s|pi−1 is continuous in R and Mε = sup|s|≤ε |F (s)| is well
defined, from (4.31) we get

∫ T

0

∫ L0

0

(
f1 (uν)

λν

)2

dxdt ≤ M2
ε |wν |2L2(Q0)

+ λ2(p1−1)
ν |wν |2p1

L2p1 (Q0)
,

where Q0 = ]0, L0[× ]0, T [ .
From (4.28), {wν} is bounded in

L∞
(
0, T ; H1 (0, L0)

)
↪→ L∞

(
0, T ; L2p1 (0, L0)

)

and, consequently, there exists B > 0 such that
∫ T

0

∫ L0

0

(
f1 (uν)

λν

)2

dxdt ≤ B
[
M2

ε + λ2(p1−1)
ν

]
.

Then, taking ε → 0 and ν → +∞ we conclude that

f1 (uν)
λν

→ 0 in L2
(
0, T ; L2 (0, L0)

)
as ν → +∞. (4.32)

The same argument shows that

f2 (vν)
λν

→ 0 in L2
(
0, T ; L2 (L0, L)

)
as ν → +∞. (4.33)

Passing to the limit in (4.29) as ν → +∞ and taking (4.30) and (4.32)-(4.33) into account,
we obtain

∣∣∣∣∣∣∣∣∣∣∣∣

ρ1wtt − bwxx = 0
zxx = 0
w (0, t) = 0 = z (L, t) ,

bwx (L0, t) = a (t) zx (L0, t) ,

zt (x, t) = 0

in Q0,

in Q1 = ]L0, L[× ]0, T [ ,
t > 0,

t > 0,

in Q1.

Repeating the above procedure in the case u 6= 0, we get w = 0 and z = 0, which
contradicts (4.23) . So, Lemma 4.5 is proved.

Proof of Theorem 4.1 It is not difficult to see that K (t) verifies

q0E (t) ≤ K (t) ≤ q1E (t) , (4.34)

where q0 and q1 are positive constants. Now, from hypothesis on the function g we get

|vt|2 + |g (vt)|2 ≤ c

∫ L

L0

g (vt) vtdx. (4.35)
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Applying the inequalities (4.11), (4.34) and (4.35), along with the ones in Lemma 4.5, and
integrating from S to T, where 0 ≤ S ≤ T < +∞, and choosing ε > 0 sufficient small,
we obtain ∫ T

S

E (t) dt ≤ CE (S) .

In this condition, Lemma 2.1 implies

E (t) ≤ CE (0) e−νt.

¤

5 Polynomial Decay

In this section we study the asymptotic behavior of the solutions of system ( 1.1)-(1.7)
when the function g (s) is non-linear in a neighbourhood to zero like sp with p > 1. In this
case we shall prove that the solution decays like (1 + t)−2/(p−1)

.

Theorem 5.1. With the hypotheses in Theorem 4.1 and p > 1 the weak solution decays
polynomially, i. e.

E (t) = CE (0) (1 + t)−2/(p−1) , ∀t ≥ 0.

Proof. First of all, we shall use some estimates of the previous section which do not depend
on the behavior of the function g. From (A.2) and making use of Hölder’s inequality, we
deduce that ∫

|vt|>1

(
v2

t + g (vt)
2
)

dx ≤ C

∫ L

L0

g (vt) vtdx (5.1)

and that
∫

|vt|≤1

(
v2

t + g (vt)
2
)

dx ≤ C

∫ L

L0

(g (vt) vt)
2/(p+1)

dx

≤ C

( ∫ L

L0

g(vt) vtdx

)2/(p+1)

. (5.2)

Summing inequalities (5.1) and (5.2) we get

∫ L

L0

(
v2

t + g (vt)
2
)

dx ≤ k1

∫ L

L0

g (vt) vtdx + k2

( ∫ L

L0

g (vt) vtdx

)2/(p+1)

. (5.3)

Using the inequality (4.11), Lemma 4.3, (5.3), and taking ε > 0 small enough we have that

K ′ ≤ −w1E − w2E
′ + w3 (−E′)2/(p+1)
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for some constants w1, w2, w3 > 0 which are independent of the data. Multiplying this
inequality by E(p−1)/2 we obtain

w1E
(p+1)/2 ≤ −w2E

(p−1)/2E′ −K ′E(p−1)/2 + w3E
(p−1)/2 (−E′)2/(p+1)

≤ −w2E
(p−1)/2E′ −

(
KE(p−1)/2

)′
+ 2 (p− 1)KE(p−3)/2

+ w3E
(p−1)/2 (−E′)2/(p+1)

.

Integrating the above inequality from S to T , and using (4.34), we get

∫ T

S

E(p+1)/2dt ≤ CE(p+1)/2 (0) E (S) +
w3

w1

∫ T

S

E(p−1)/2 (−E′)2/(p+1)
dt. (5.4)

Using Hölder and Young’s inequalities we can estimate the last term of this inequality by

w3

w1

∫ T

S

E(p−1)/2 (−E′)2/(p+1)
dt

≤ 1
2

∫ T

S

E(p+1)/2dt +
(

2
w3

w1

)(p+1)/2

(p + 1)−1

(
p− 1
p + 1

)(p−1)/2

E (S) . (5.5)

Substituting (5.5) into (5.4) we arrive at

∫ T

S

E(p+1)/2dt ≤ CE (S) .

Applying Lemma 2.1, we obtain

E (t) ≤ CE (0) (1 + t)−2/(p+1)
,

which completes the present proof.
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