
Appl. Math. Inf. Sci. 7, No. 1, 29-40 (2013) 29

Applied Mathematics & Information Sciences
An International Journal

c© 2013 NSP
Natural Sciences Publishing Cor.

Nonlinear Pedestrian-flow Model: Uniform Well-
posedness and Global Existence

Christian Dogbe1
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Abstract: This paper is concerned with the existence, uniqueness and propagation of monotonous properties for a certain class of
Cauchy problems for first-order Hamilton-Jacobi equations for which initial data is a gradient function. In particular, we show that the
monotonicity properties are propagated under certain assumptions. The main result is gained by the method of characteristics and a
priori estimates under a monotonicity criterion. Applications of equations studying here refer to control problems in crowd dynamics.
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1. Introduction

This article is meant with analytical investigations of the
following hyperbolic system of first-order PDEs:

∂u
∂ t

+(h(u)·∇)u = f (x)

ut = 0,x = u0(x)
(1)

where u(t,x) = (u1(t,x),u2(t,x)) : R+×R2 7→ R2 is the
unknown vector function, the external field h : R2 → R2

and the initial data u0 : R→ R2 are given functions, f :
R2→ R2 is prescribed and

(h(u)·∇)u =

(
2

∑
j=1

h j
∂u1

∂x j
,

2

∑
j=1

h j
∂u2

∂x j

)
.

Different choices of the terms in the system (1) allow
the derivations of various models of living systems exist-
ing in the pertinent literature. In particular, three proto-
types problems are: crowd dynamics, see among others,
papers [1–4] and the recent review [5]; vehicular traffic
[6–9]; movement and growth of animal populations [10].
In these cases, h(u) is a nonlinear function of the density
u and f (x) is the reaction term, which models the interac-
tions among the entities.

It is worth stressing that the class of equations con-
sidered in this paper also includes the Hamilton-Jacobi-
Bellman equation which arises in the framework of opti-
mal control problems and differential game to front propa-
gation, image enhancement [11,12], mathematical finance
[13], and so on.

Specifically the analysis developed in the present pa-
per refers to the well-posedness problem of the system
(1), namely existence and uniqueness of solutions, smooth
properties and shock. Moreover the solution u(t, ·) of (1)
loses its initial regularity at a finite-time if and only if an
eigenvalue of the initial velocity gradient crosses the neg-
ative real axis. To gain these results, we take advantage of
the necessary condition of the propagation of monotonic-
ity performed by Lions in [14]. Under the compatibility
condition on the data and the nonlinearity (see (H1)-(H2)
below), we establish global existence and uniqueness of
smooth solution of (1).

The contents of the present paper are organized into
three more sections which follow this introduction. In more
details, after introducing a prototype model of Eq. (1), we
begin by reviewing the main difficulty of our problem in
Section 2. This section is also concerned with the defini-
tion of the main assumption under which we perform the
whole analysis. Section 3 is devoted to the global well-
posedness of the model described in Section 2 and then
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30 C. Dogbe: Well-posedness of nonlinear pedestrian-flow model

we illustrate seven prototype examples taken from vari-
ous fields. Finally Section 4 deals with the propagation of
the monotonicity where we derive a priori estimates using
PDEs techniques.

2. Basic Equation: A Prototype Model

In the context of crowd dynamics, the model (1) can be de-
rived from the optimality principle of the following finite-
horizon control problem and is dictated by the following
reasonable picture. Let S be a system composed of pedes-
trians evolving in a domain Ω ⊂R2. Assume that a pedes-
trian is at some location x(0) at time t = 0 in the domain Ω

and would like to end up at some better location x(t) at a
later time t = T > 0. Each location x in the domain Ω has
some cost J(x,T ) ∈ R at this final time T , which is small
when x is a desirable location and large otherwise, so that
the pedestrian would like to minimize a cost function of
the following form:

J(x,T ) =
∫ T

0
L(x′(t))dt +φ(T,x(T )). (2)

The functional L : Ω → R, is a cost for changing states
L(v)dt measures the marginal cost of moving at a given
velocity v for time dt and trajectory x : [0,T ]→Ω . Func-
tion φ is a final cost (incentive to reach a certain area). One
only needs that the functions L and φ to be convex. More-
over, we can also consider the case L = L(t,x,v), therefore
Eq. (2) reads:

J(x,T,v) =
∫ T

0
L(t,x(t),v(t))dt +φ(T,x(T )). (3)

The goal now is to select a trajectory that minimizes the
functional (2). One way to compute the optimal trajectory
is to solve the Euler-Lagrange equation associated to Eq.
(2), with the boundary condition that the initial position
x(0) is fixed. From this, to derive a PDE equation, let us
take 0 6 t0 6 T and x0 ∈ Ω and define the optimal cost
u(t0,x0) at the point (t0,x0) in space-time to be

u(t0,x0) = inf
[∫ T

t0
L(x′(t))dt +φ(T,x(T ))

]
(4)

over all (smooth) paths x : [t0,T ]→Ω starting at x(t0)= x0
and with an arbitrary endpoint x(T ). Informally, this is the
cost that the pedestrian would place on being at position
x0 at time t0. For times t0 less than T , it turns out that
under some regularity hypotheses, the optimal cost func-
tion u obeys a partial differential equation, known as the
Hamilton-Jacobi-Bellman equation, which we shall heuris-
tically derive as follows. Assume that, the pedestrian finds
himself at position x0 at some time t0 < T and is deciding
where to go next. Presumably there is some optimal veloc-
ity v in which the pedestrian should move in (a priori, this
velocity need not be unique). So, if dt is an infinitesimal

time, the pedestrian should move at this velocity for time
dt, ending up at a new position x0 +dt at time t0 +dt, and
incurring a travel cost of L(v)dt. At this point, the optimal
cost for the remainder of the pedestrian’s journey is given
by u(t0 +dt,x0 + vdt) by definition of u. This leads to the
heuristic formula

u(t0 +dt,x0 + vdt) = u(t0,x0)+L(v)dt

which by Taylor expansion (and by omitting higher order
terms) gives:

u(t0 +dt,x0 + vdt) = u(t0,x0)

[∂tu(t0,x0)+ v ·∇xu(t0,x0)+L(v)] dt.

On the one hand, v is being chosen to minimize the final
cost. Thus, we see that v should be chosen to minimize the
following expression:

v ·∇xu(t0,x0)+L(v).

Note that, from the strict convexity that minimum v will be
unique, and will be some function of ∇xu(t0,x0). We intro-
duce the Legendre transform H : Ω→R of L : Ω → R by
the following formula:

H(p) := sup
v∈Ω

[v · p−L(v)] ,

which represents the gradient of u (p = ∇u(x)). Then, un-
der the assumption that L is an even function, we get

min
v∈Ω
{v ·∇xu(t0,x0)+L(v)}=−H(∇xu(t0,x0)).

We conclude that

u(t0,x0) = u(t0,x0)+dt [∂tu(t0,x0)−H(∇xu(t0,x0))]

leading to the following Hamilton-Jacobi-Bellman equa-
tion:

−∂u
∂ t
−H(∇xu) = 0. (5)

Equation (5) is being solved backwards in time, as the opti-
mal cost is prescribed at the final time t = T , but we are in-
terested in its value at earlier times, and in particular when
t = 0. Hence, given a smooth Hamiltonian H : R2→R and
a smooth initial data g : R2 → R, we consider the corre-
sponding initial-value problem, i.e. the solution ϕ(t,x) =
u(T − t,x) of the problem

∂ϕ

∂ t
+H(∇xϕ) = 0 in R2× (0,T )

ϕ(0,x) = g(x) in R2.

(6)

The equation (6), which plays a dominant role in our study,
shows up in a variety of contexts dictated by different mod-
eling of H’s. While it is still reasonable for the crowd to
have a target, we will assume that the initial value problem
for models of crowd dynamics (6) is stated in unbounded
domains for individuals who have the objective to reach a
point of the whole space (e.g. a shopping area).
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It well known that, in general, the nonlinear partial dif-
ferential equation (6) can not be solved analytically. The
solutions usually develop singularities in their derivatives
even with smooth initial conditions. In these cases, the so-
lutions do not satisfy the equation in the classical sense.
However, M. G. Crandall and P.-L. Lions introduced the
notion of viscosity solutions to resolve this problem [15].
In order to be able to work in modes of regular solutions,
and to have the hope to manage equation (6), it would be
necessary for us to work in the framework corresponding
to convex situations which are regular modes. Thus, it is
necessary for us to work with functions u which are mono-
tone, since the gradient of a convex function is a monotone
operator and the derivative of a convex function is increas-
ing. Therefore, to analyze the solutions of Eq. (6), it is ad-
visable to make the following assumption on the function
u and the initial data u0.

Assumption 21The function u : [0,∞[×R2 → R2 is such
that u = ∇ϕ and u0 = ∇g.

With the above hypotheses, taking the gradient on (6),
one gets an equivalent (at least for smooth solutions) form
of the Hamilton-Jacobi equation

∂u
∂ t

+
∂

∂xi
{H(u)}= 0

u|t=0 = u0(x).
(7)

Thus, we are led to solving the following Cauchy problem:
∂u
∂ t

+(h(u) ·∇)u = 0

h(u) = H ′(u)
u|t=0 = ∇g(x) := u0(x)

(8)

Here, h = (h j) is the velocity vector with n components;
h·∇ is a first order differential operator with coefficients
h j. If one had used the cost function (3) instead of (2), one
would be confronted with the equation{

∂tϕ +H(t,x,∇xϕ) = 0
ϕ(0,x) = g(x).

(9)

Differentiation of Eq. (9) with respect to x and making the
choice

h(u) =
∂H
∂ p

and G (u) =−∂H
∂x

give the following system
∂u
∂ t

+(h(t,x,u) ·∇)u = G (t,x,u)

u|t=0 = ∇g(x) := u0(x)
(10)

which, despite some technical difficulties in the calcula-
tions would not change the problem.

The equations are nonlinear with quadratic nonlinear-
ity. Because of the nonlinearity of h, one cannot generally

expect the global smoothness of solutions of (10). That is
singularities appear. The central issue of interest here is
the well-posedness of the problem (10). In particular, one
is interested to know when the solution u will lose its ini-
tial regularity at finite-time.
It is well known that one of the main difficulty when deal-
ing with hyperbolic first-order equations is the appearing,
at finite time, of discontinuities in u when H is non-linear.
It is easy to verify that global C1-solution does not exist
for (6) in the generic situation, regardless of the smooth-
ness of the initial condition g(x). Singularities in the form
of discontinuities in the derivatives of ϕ would appear at a
finite time in most situations, thus the solutions would be
Lipschitz continuous but no longer C1. The simplest ex-
ample revealing this pathology is, in the one dimensional
case, if we identify u = ϕx. In fact, the simplest example
revealing this pathology is, in dimension 1, the equation:

∂tϕ +
1
2
(∂xϕ)2 = 0, ϕ(0,x) = ϕ0(x). (11)

With u(t,x)= ∂xϕ(t,x), by taking the derivative of Eq.(11),
one obtains, the equation known as “Burger’s equation”:1

∂tu+u∂xu = 0, u(0,x) = u0(x)

Within this framework the hamiltonian is not other than
H(t,x, p) = 1

2 p2. It is thus independent of x and the hamil-
tonian system is written:

ẋ(t) = p(t), ṗ(t) = 0, x(0) = X , p(0) = u0(X).

It is integrated at sight to give:

x(t) = u0(X), x(t) = X + tu0(X).

One observes that projection

(x(X(t), p(X , t)) 7→ x(t) = X + tu0(X)

is a bijection as long as remains strictly increasing, that is
as long as

t <
1

max(−∂xu0(x))
.

To simplify the exposition, we confine ourselves to the
most important special case, where G = 0 in (10) and the
functions H do not depend explicitly on t.

3. Global Well-posedness

Since these equations share many properties with the po-
tential initial condition, such as a form of maximum prin-
ciple and the translation invariance, uniqueness and mono-
tone behavior for the solution, as in the usual case, are ex-
pected. We present an elementary proof of this monotone

1 For examples, one can take a smooth bounded initial condi-
tion u0(x) = Arctan(x) where shocks can occur even with very

regular initial conditions u0 and u0 =

{
−1 if x < 0

1 if x > 0
where

the solution is not defined everywhere.
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32 C. Dogbe: Well-posedness of nonlinear pedestrian-flow model

behavior. The question is to determine the class of initial
data for which there is no appearance of shocks.

First, we describe below the appropriate classes of lin-
ear operators that we will use in this paper.

Definition 1.Let Ω be a subset of R2 and f : Ω → R2.

(i) f is monotone if for all x,y ∈Ω

( f (y)− f (x),y− x)> 0.

(ii)An operator A : R2→ R2 is said to be monotone if

(A (x)−A (y),x− y)> 0, ∀x, y.

(iii)The map Φ : R2 → R2 is said to be ν-monotone, if
there exists ν > 0 such that ∀ξ ∈ R2 and y ∈ R2 the
following holds:

(Φ ′(y) ·ξ ,ξ )> ν |Φ ′ ·ξ |2.

Convexity of a function and monotonicity of its gra-
dient are equivalent. Actually, the following proposition
holds, see [16].

Proposition 1.Let f be a differentiable function on an open
convex set Ω of R2. Then:

(i) f is convex on Ω if and only if ∇ f is monotone on Ω .
(ii) f is strictly convex on Ω if and only if ∇ f is strictly

monotone on Ω .

Equipped with these definitions of monotonicity, we
now turn to the assumption which allows to obtain smooth
global solution of our equation by standing:

Assumption 31. Assume that h and u0 are monotone and
u0 is not necessary a gradient function.

Under the assumption 31, we will show that the prob-
lem (8) has a global smooth solution. The strategy for prov-
ing our regularity result is based on direct construction
following the characteristic method. The following result
holds.

Theorem 1.Assume that the function h∈C2(R2) and u0 ∈
C2(R) are smooth and monotone. Then,

(1)The class of solutions of initial condition for which
there is no appearance of shocks, is the class of u0 such
that (I + th(u0)) is invertible for all t;

(2)There exists an unique monotone and smooth solution
of the system (8) on [0,+∞[ provided that

(I) Spec(D(h◦u0)(x)) ∩ ]−∞,0[= /0, ∀x,

where Spec(A) denotes the spectrum of the matrix A.

Proof of Theorem 1.
Our proofs rely on new ideas introduced by P-L. Lions

[14]. We proceed in two steps to prove the global solu-
tion of system (8). Firstly, we give necessary conditions
for existence of a piecewise smooth global solution by the

method of characteristics [17]. We no longer have the ex-
plicit representation solution u of the system (8). However,
we can cleverly use the characteristic curves to solve the
Cauchy problem. Secondly, we prove the well-posedness
of our problem by showing the injectivity of the underly-
ing application. Essentially, the idea is to prove that the
map x 7→ x+ th(u0(x)) is a smooth diffeomorphism. The
whole amounts to invert an operator. This is a finite di-
mensional nonlinear problem.

• First Step. Construction of solutions
One of the classical methods for solving first order

non-linear equations is the characteristic one. However,
this method has a weak point from the fact that a smooth
mapping cannot uniquely have the inverse at a point where
its jacobian vanishes, i.e., that is inverse becomes many-
valued there. Our aim is to show how to put a reasonable
condition in order to obtain smooth solution. We develop
the method of characteristics explaining how the smooth
solutions of (8) can be obtained. Denoting by X the char-
acteristic that passes through the origin and with a dot the
derivative with respect to t, then characteristic lines cor-
responding to the Cauchy problem (8) are determined by
following equations:

Ẋ = h(u)
u̇ = 0
X |t=0 = x
u|t=0 = u0(x).

(12)

Solving equations (12) yield the solution (while it is smooth)
forward in time: at each point (X |t=0,u0(x)) a characteris-
tic curve is the following:

X = x+ th(u0(x)). (13)

Each of the coordinates satisfies the transport equation (8).
Let us assume that problem is resolved; and if it is case,
there is a vector field. The equation (12) means that u is
constant along the trajectories of this vector field and along
this trajectory; if u is constant, it means that the h is con-
stant. Therefore, if one starts from a point x, one has a
vector u0(x), and if one looks on line (14) generated by
this field of vector, u does not move. Consider the map
X : [0,+∞)×R2 −→ R2 defined by

X(t,x) = x+ th(u0(x)). (14)

We want to define u at the point (X(x, t), t). Let us first
remark that u is well defined by (14) if and only if the
map (x 7→ X(x, t)), for each t, is bijective. This will be in
general true for t small (and thus will yield local existence
results) and in general false for every t. There exists T > 0
such that X is a diffeomorphism of class C1 (i.e. bijective
and with a C1 inverse) on R2 for all t ∈ [0,T ]. Indeed, the
jacobian matrix of the map (x→ X(t,x)) is

DX
Dx

(t,x) = I + tDh(u0(x))·Du0(x), (15)

c© 2013 NSP
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and det
(DX

Dx (0,x)
)
> 0. Therefore this map is a C1 diffeo-

morphism for 0 6 t < T . For t small, this determinant is
obviously positive and the assertion follows from the the-
orem of local inversion. Nevertheless, the fact that the ap-
plication of X(t,x) is a local diffeomorphism for each pos-
itive time is not in itself sufficient to obtain the existence
of global solutions. For this to happen, more properties on
the data of the problem are needed.

We will next prove that X(t,x) is a global diffeomor-
phism for each t > 0 by using the fact that h and u0 are
monotone. In fact, as Dh(u0(x)) and Du0(x) are symmet-
ric positive matrices, semi-definite positive for each x, we
will prove that the eigenvalues of matrix Dh(u0)·Du0(x)
are real and nonnegative for all x. Roughly speaking, us-
ing the method of characteristics, formally, it is expected
that

u(X(t), t) = u0(x), (16)

such that, at least formally, we have

u = u0(I + th◦u0)
−1, (17)

which remains true until the time of first shock. Since h◦u0
is the composition of two monotone maps, this implies that
(I + th◦u0)

−1 exists.

Proof of (16). To show that (16) is a solution of (8), we
differentiate the relation (16)) with respect to t. Clearly,
we have

∂u
∂ t

+
∂X
∂ t
·Dyu = 0.

Since
∂X
∂ t

= h(u0) and u0 = u, we deduce the relation

∂u
∂ t

+(h(u0) ·∇)u = 0,

in other words
∂u
∂ t

+(h(u) ·∇)u = 0,

proving that as long as we have the injectivity, we solve
the equation on the domain reached on all X of the form
(14).

Proof of (17). Assume that

∀ t u(t) : R2→ R2 is invertible.

Let V be defined by

V (u(t,x), t) = x

then we write the equation satisfies by V = u−1. Taking the
derivative of Eq. (8) with respect to t, we obtain

∂V
∂ t
−h(y) = 0. (18)

Consequently,

V (t,y) =V0(y)+ th(y) = u−1
0 (y)+ th(y).

Thus, provided that u is invertible, we obtain

u = u0(I + th◦u0)
−1.

We deduce that the class of solutions of initial condition
for which there is no appearance of shocks, is the class of
u0 such that (I + th(u0)) is invertible for all t or, equiva-
lently, the derivative of (I + th(u0)) must be strictly pos-
itive. It is also the same thing to say that the Jacobian of
the map x 7→ x+ th(u0(x)) is invertible at any point. This
is equivalent to saying that I+ t(D(h◦u0)(x)) is invertible
for any x and t. Strictly speaking, the condition

Spec(D(h◦u0)(x)) ∩ ]−∞,0[= /0, ∀x (19)

must be verified, where u0 is assumed to be bounded, Lip-
schitz, smooth. An equivalent expression of this fact is

inf
x∈R2

dist (Spec(D(h◦u0)(x)) , ]−∞,0[)> 0.

This completes the proof of Theorem 1. �

We have then proved that, the system (8) admits a global
smooth solution forward in time, if and only if the condi-
tion (19) is fulfilled. This kind of results can be compared
with spectral method used by Liu et al. [18] to obtain sim-
ilarly results of this kind of equation.

The linear case is very instructive. In this case, one can
have shocks. One states that a maximal solution exists un-
der the criterion 19 on the initial data. Indeed, consider the
case where

h(u) = u and u0 = A0x with A0 =

(
−1 0
0 −1

)
so that A0 is symmetric matrix. Bearing in mind that in our
case A = DU . Now we seek the solution of Eq. (8) in the
form

u = Ax,

or equivalently u = ai jx j. This implies that

Ȧ+A2 = 0 (20)

or equivalently ȧi jx j+aiα aαkxk = 0. It is clear that
Du
∂x
6 0.

So the spectrum of A consists of negative real. Thus, we
can not obtain the propagation of regularity of smooth so-
lutions. But if A0 > 0, it is possible to find a solution which
does not blow up in the infinity (think for example in case
of one space dimension). Another case where the propa-
gation of regularity remains true is the case where A0 is
invertible. In this time, by writing the equation given by
P := A−1. We get

ȦP+AṖ = 0,

such that

Ṗ =−A−1ȦP =−A−1ȦA−1;

from (20), we have

−Ȧ = A2.
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Moreover, notice further that

Ṗ =−A−1Ȧ2A−1 = I,

which suggests that

P = P0 + tI.

Consequently, there exists a maximal solution to Eq. (20):

A = (A−1
0 + tI)−1.

Finally, if we factored the following property holds:

A = (I + tA0)
−1A0, (21)

then, the class of solutions of initial condition for which
there is no appearance of shocks, is the class where we
have

∀x Spec(A0(x))∩ ]−∞,0[= /0.

This means that,
1
t

will never been eigenvalue of A0. In
summary, we have proved the existence and global smooth
solutions to the transport equation

∂u
∂ t

+(u ·∇)u = 0

u|t=0 = u0(x)
(22)

provided I+ tu0 is invertible on R2, ∀ t > 0 and if and only
if the condition (19) is conserved.

Remark.In order to better understand our main ideas in the
next section, we first give a simple example of the situa-
tion where there is appearance of shocks. In fact we have
shown that roughly speaking, if h and u0 are monotone
or more generally if h(u0) is monotone, then there exist
smooth solutions. Let h and u0 defined by h = Au, u0 = Bx
with A the rotation of angle −π

2
and B = A. We have

A =

(
0 1
−1 0

)
, and AB = A2 =

(
−1 0
0 −1

)
.

One recovers a rotation of angle −π

2
and Eq. (14) becomes

(1− t)x = X .

Thus for the t < 1 everything goes well, but in t = 1 one
loses the invertibility property and shocks appear.

Remark.If h is quadratic, h(u)= u, to have smooth solution
is equivalent to the criterion (19). That means Du0 is a
symmetric matrix and Spec(Du0)⊂R+. In fact, for Eq (8),
g(x) convex implies ∇g monotone; since u0 is monotone
then h(u0) is the composite of two monotone maps. ϕ0 is
the only case of regularity for all times and this remains
also valid when H ′′ > 0. In fact, in that case, we must look
at a condition on H ′(∇g) satisfying the criterion (I), which
implies g convex because the following holds:

Du0(x) = H ′′(∇g)·D2g

The above matrix is the product of two symmetric matrix,
that means, product of two matrices whose eigenvalues do
not intercept the negative real which suggest that Dg > 0
gives the propagation of the regularity of solutions.

The following lemma contains the key observation needed
to solve our problem.

Lemma 1.The necessary and sufficient condition for the
propagation of regularity to the solution for Eq (8) is that
H ′(∇g) must satisfies criterion (I).

• Second Step. Regularity or one-to-one of the map X .

Observe that, since the map

X 7−→ x+ th(u0(x))

is C ∞, then X is invertible. The inverse is also of class C ∞.
We only need to verify that the solution we construct, is
a smooth solution. The result follows, if we can establish
that the application X is invertible. This reduces to study
the Jacobian matrix of X . We now proceed to show that this
is the case. Calling the jacobian matrix (15) and having in
the mind that the matrix Du0 > 0 (u0 is monotone) and
Dh > 0 (h is monotone). Instead of working with matrix
(15), it would be more convenient to work with vectors.
We will look at the Jacobian matrix of the transformation
(15) in a direction η , which we denote ξ . When the dif-
ferentiation of the map X is carried out in the direction η ,
linearized equation results:

η = ξ + tDh(u0) ·Du0·ξ . (23)

Next, we take the dot product of (23) with Du0·ξ in order
to reveal the monotonous assumptions on u0 and Dh. We
clearly have

(Du0ξ ,η) = (ξ ,Du0·ξ )+ t(Dh ·Du0·ξ ,Du0·ξ ). (24)

Observe that, in Eq. (24) we are faced with product of two
matrices, and the goal is to reverse this product; so be sure
that the kernel is non-zero, i.e. that the product is invert-
ible. So the study of injectivity is equivalent to looking at
the kernel. We resort to

0 = (ξ ,Du0·ξ )+ t(Dh ·Du0·ξ ,Du0·ξ ). (25)

Moreover, by assumptions regarding u0 and h, we have

Du0·ξ > 0, and (Dh ·Du0·ξ ,Du0·ξ )> 0.

We deduce that each term of the equality (24) is zero.
Therefore, ξ is in the kernel of the symmetric part. Strictly
speaking,

ξ ∈ Ker(Du0 +(Du0)
∗),

where ∗ means the transposition of a vector. This also re-
sults that

Du0·ξ ∈ Ker(Dh+(Dh)∗).
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If h is the derivative of a convex function, meaning that, it
is not only monotone, but a symmetric operator monotone,
in which case h′ = H ′′, i.e Dh = D2H and so it becomes
symmetric. Here D2H denotes the Hessian matrix of H.
Thus

Du0·ξ ∈ Ker(Dh) if h = H ′,

and this belongs in the kernel of Dh since

Dh.Du0·ξ = 0,

resulting ξ = 0. We then have proved injectivity. Summing
up the above results yields the theorem. �

• Third Step: a priori estimate.
One way to get rid the situation in Remark 3, would

be to impose more regularity to h and Du0. We make the
following regularity criterion.

Assumption 32. For all z∈R2, ξ ∈R2, there exists ν > 0,
independent of z and ξ , such that

(H1) (Dh(z) ·ξ ,ξ )> ν |h′(z) ·ξ |2;

(H2) (Du0(x)ξ ,ξ )> ν |u′0(x) ·ξ |2.

These assumptions immediately call for some few com-
ments. Both assumptions are assumptions about the in-
verse of invertible functions. Roughy speaking, this means
that, one has a matrix A such that

(Aξ ,ξ )> ν |Aξ |2. (26)

Indeed, let’s write η = Aξ , then (26) is equivalent to

(η ,A−1η)> ν |ξ |2,

if A is invertible. Formally, one could translated theses as-
sumptions as follows

A−1 > νI′′.

The assumption (H1) allows to eliminate the case of the
rotations of angle −π

2
. This assumption ensures that u is

smooth solution of the problem. In addition, if h′ is sym-
metric, assumption (H2) remains true.

To prove that the map x 7→ X is a diffeomorphism and
bi-lipschitz2 we must derive also a priori estimate.

• First case: using the estimate on u0.
Taking the dot product of (23) with Du0(x)·ξ , we
get:

(Du0(x)·ξ ,ξ )+t(h′(Du0)·ξ ·Du0ξ )= (Du0(x)·ξ ,η).
(27)

On the one hand, observe that

h′(Du0) ·ξ ·Du0ξ > 0.

2 We say that a function f : Rd → Rd is bi-lipschitz if both f
and f−1 are Lipschitz.

On the other hand we have

(Du0(x) ·ξ ,ξ )6 ν |Du0(x) ·ξ |2,

while

(Du0(x) ·ξ ,η)6 |η ||Du0(x) ·ξ |.

From the above estimates and assumptions (H1), we
deduce

|Du0(x) ·ξ |6
1
ν
|η |

that controls the term Du0 ·ξ . Next, writing

ξ = η− th′ ·Du0 ·ξ (28)

we get

|ξ |= |η |+ tC0

ν
|η |,

where C0 is Lipschitz constant of h, by taking into
account the estimate

Du0 ·ξ 6
1
ν
|η |.

Therefore, when assumption (H1) is used,

∃ν > 0, ∀x, |ξ |6
(

1+
C0t
ν

)
|η |

which is an a priori estimate giving the existence of
a global smooth solution.

• Second case: using the estimate on h.
We begin with the relation (27). On the one hand we
get

t(h′(Du0) ·ξ ,Du0 ·ξ ) 6 νt|h′ ·Du ·ξ |2

6 |η ||Du0(x) ·ξ |
6 C1|η ||ξ |, (29)

where C1 is now, the Lipschitz constant of u0. The
estimate (29) can be expressed as

|h′ ·Du0 ·ξ |6
(

C1

νt
|η ||ξ |

)1/2

.

On the other hand, the relation (28) suggests that

|ξ |6 |η |+ t
(

C1

νt
|η ||ξ |

)1/2

. (30)

With the help of Cauchy-Schwartz inequality, the re-
lation (30) can be rephrased as

|ξ | 6 |η |+
(

C1t
ν

)1/2

|η |1/2|ξ |1/2

6
a
2
|ξ |+ 1

2a

(
C1t
ν
|η |
)
, 0 < a < 2.

Let us consider the following change of variable:
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x =
(
|ξ |
|η |

)1/2

we are led to solve the inequality

x2−
(

C1t
ν

)1/2

x−16 0

from which we deduce the estimate

|ξ |
|η |
6

(
1
4

[(
C1t
ν

)1/2

+

√
C1t
ν

+4
])2

.

So we find a behavior near the origin. Consequently,
we obtain an estimate depending on t and η :

|ξ |6C(t)|η |.

The proof of theorem is complete. �

3.1. Some Examples

We now turn to consider some examples which demon-
strate our procedure. For simplicity of notations we shall
mostly concentrate on the one and two dimensional cases,
even if the results of the theorem remains true also in the
higher dimensional space.

Example 1.It is useful to have in mind what happens in
the special case n = 1. In one space dimension, Eq. (6)
becomes {

∂tϕ +H(ϕx) = 0 in (0,∞)×R,
ϕ(0,x) = g(x) in R.

(31)

This is relatively easy case, because (31) is equivalent to
the conservation laws{

∂tu+(H(u))x = 0 in (0,∞)×R,
u(0,x) = u0(x) in R

(32)

if we identify u = ϕx which can be written as a quasilinear
equation

∂tu+a(u)ux = 0 u(0,x) = u0(x) in (0,∞)×R
(33)

where a(u) denotes H ′(u). We shall require that (33) be
genuinely nonlinear, i.e., that a, the coefficient of ux, should
vary with u in the sense that a′(u) is not zero. Since a = f ′,
this means that f ′′ 6= 0, i.e., the function f (u) is either
strictly convex or strictly concave. Here, we will assume
that f is strictly convex. As a system of characteristic dif-
ferential equations is written by

ẋ = a(u), ż = 0

whose initial condition is

x(0) = y, z(0) = u0(x),

then, one has
u(t,x(t)) = z(t), (34)

and a family of the characteristic curves is given by

x = y+ t f ′(u0(x)), y ∈ R. (35)

Therefore, it follows that

∂x
∂y

= 1+ t f ′′(u0(x))u′0(x).

In that case, we are in a regime of regularity of solutions,
because as u0 and a(u) = f ′ are increasing functions, the
composition of two increasing functions f ′(u0(x)) is in-
creasing. We are thus faced with an application x 7→ y+
t f ′(u0(x)) which, in term of growth is undervalued by x
and which is known to be injective and hence surjective.
To be more precise, we have the monotony of the oper-
ator x 7→ x(t) defined in (34) as long as one keeps a dif-
feomorphism of application (35). We know how to define
the value of u at any point in the expression (34). We thus
found a regular solution of the problem Eq. (32).

Example 2.Consider the following Cauchy problem with
convex Hamiltonian:

∂tϕ +
1
2
(ϕx)

2 = 0, x ∈ R2, t > 0,

ϕ(0,x) =
1
2

x2, x ∈ R2,

(36)

interpreted through the Eikonal equation (a special case
of a HJ equation) which is of an main interest in optimal
control theory. With this choice, we immediately obtain

X(t,x) = (1+ t)x,

whereby

DX
Dx

= 1+ t > 1 > 0.

Therefore

X−1(t,x) =
x

1+ t
,

that is well defined and is a diffeomorphism for each t >
0. As before, we conclude that the Eq (36) has a global
classical solution.

Example 3.Consider the following Cauchy problem with
non-convex Hamiltonian:

∂tϕ =
1
2
(ϕx)

2, x ∈ R2, t > 0,

ϕ(0,x) =
1
2

x2, x ∈ R2.

(37)

We immediately obtain

X(t,x) = (1− t)x,
DX
Dx

= 1− t

whereby
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X−1(t,x) =
x

1− t
.

This function is a diffeomorphism in [0,1) but is not de-
fined at t = 1. The corresponding solution is then a classi-
cal local solution explodes in finite time.

Example 4.Consider the following initial data

u0(x) = A ·x+ c

where A ∈ R2 and c is a fixed real number. In this case,

X(t,x) = x+ th(A)

where we have made use of relation (14). Then,

det
(

DX(t,x)
Dx

)
≡ 1, ∀t > 0.

Example 5.Consider the following nonlinear example{
∂tϕ +ϕxϕy = 0, x ∈ R, y ∈ R
ϕ(0,x,y) = xy.

One has u0(x,y) =
(

y
x

)
and Du0(x,y) =

(
0 1
1 0

)
whose

eigenvalues intercept the negative real axis. Therefore, we
have no regularity for our equation.

Example 6.Consider the following scalar Hamilton-Jacobi
equation

ϕt +H(ϕx,ϕy) = 0, ϕ(0,x,y) = ϕ0(x,y)

which in a certain sense is equivalent to the following con-
servation system:

ut +H(u,v)x = 0
vt +H(u,v)y = 0
(u,v)(0,x,y) = (u,v)0(x,y)

(38)

if we identify

(u,v) = (ϕx,ϕy).

Next, we take the hamiltonian and the initial data respec-
tively as

H(u,v) =
1
2

u2− 1
2

v2, (u,v)0(x,y) = ϕ(x)−ψ(y)

where H is convex in u and concave in v, with ϕ and ψ are
convex functions. In this case we can recast Eq (38) as(

u
v

)
t
+

(
H(u,v)

0

)
x
+

(
0

H(u,v)

)
y
= 0

which is solved separately and the solution is of the form

(u,v)(t,x,y) = ϕ(t,x)−ψ(t,y).

To be more precise, ϕ and ψ solve the following decoupled
system:

∂ϕ

∂ t
+

1
2

ϕ
2
x = 0

∂ψ

∂ t
+

1
2

ψ
2
y = 0.

Then, we agree with the previous case of regularity of so-
lutions. Next, observe that the condition H ′(∇g) satisfies
criterion (I) is equivalent to look

H ′ : R2→ R2 H ′(u,v) = (u,−v)

that is

H ′(∇ϕ0) = ϕx−ϕy, ϕ := ϕ0.

In other words, we must look the eigenvalues of the matrix

D
(

ϕx

−ϕy

)
=

(
ϕxx ϕxy

−ϕxy −ϕyy

)
.

From the computation of the characteristic polynomial of
the above matrix, one can prove that, we have the regular-
ity of the solution provided that the condition

|ϕxx +ϕyy|< 2|ϕxy|

is fulfilled. In this case, we have complex eigenvalues which
imaginary part is nonzero. Another case is when we take
the function

ϕ(t,x,y) = φ(x)−ψ(y).

It follows the condition

φxx +ψyy > |φxx−ψyy| with φxx > 0, ψyy > 0.

since the eigenvalues corresponding to the jacobian matrix
are real and positive. Imagine that done; we then deduce
the solution of Eq. (38).

Example 7.Consider the following 2D Eikonal equation which
arises in geometric optics [19,20]:∂tϕ +

√
ϕ2

x +ϕ2
y = 0, x ∈ R, y ∈ R,

ϕ(0,x,y) = ϕ0(x,y).

In this equation

H(u,v) =
√

u2 + v2.

Let us write

∇ϕ0 =
√

Φ2
x +Φ2

y , Φ := ϕ0.

Then

u0 = H ′(∇Φ) =
∇Φ

|∇Φ |
=

Φx +Φy√
Φ2

x +Φ2
y

.
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Therefore

Du0(x) = div
(

∇Φ

|∇Φ |

)
=

Φ2
y Φxx−2ΦxΦyΦxy +Φ2

x Φyy

(Φ2
x +Φ2

y )
3/2 .

It is more instructive to make the computation when the
dimension is greater than two. In this case, carrying out
the differentiations yields, in compact form

Du0(x) =
1
|∇Φ |

(
I− ∇Φ⊗∇Φ0

|∇Φ |2

)
: D2

Φ =

1
|∇Φ |

ai j(p)D2
Φ

where ⊗ denotes a tensor product of vectors in Rn, n > 2
and

ai j(p) = δi j−
pi p j
|p|2 , p := ∇Φ ,

if |p| 6= 0 and δi j is the Kronecker delta function and ∇Φ⊗∇Φ

|∇Φ |2
is the matrix of the mean curvature levels of hypersurfaces
in R2 passing by Φ(x) in the region where |∇Φ | 6= 0. This
show that the condition of the regularity of the solution
is equivalent to H ′(∇g) satisfies criterion (I). This means
that, the levels areas are convex.

4. A Priori Estimates

The aim of this section is to investigate further regular-
ity for the solution obtained through Theorem 1. What we
want to show in this section is the following: By eliminat-
ing the method of characteristics, we wish to obtain a uni-
form estimate on the gradient that will ensure the spread of
the monotony in Eq. (8). To do this, since we do not require
our equation to have H convex, our technique consists in
using an auxiliary function, denoted Ψ with an initial con-
dition on the equation obtained, so that this one is positive
or null. One thus obtains a transport equation whose vec-
tor fields are at most linear growth. By exploiting this last
equation, one deduces the desired estimate. Interestingly,
the ideas we present in this paper provide a different proofs
of the talk of P-L. Lions [14]. It well-known that, gradient
estimates are easy to obtain in the case of one space di-
mension but not obvious at all higher dimension.

The following result is in the heart of matter in this
section.

Theorem 2.Let u be the solution of Eq. (8) and let assump-
tions (H1)-(H2) are fulfilled. Then, the monotonicity prop-
erties are propagated in Eq. (8). Moreover, one has the fol-
lowing a priori estimate:

|Dxu|6C(T ), on [0,T ]×R2.

Proof of Theorem 2. First we recall that there exists α > 0
such that ∀z ∈ R2, ξ ∈ R2:

(h′(z) ·ξ ,ξ )> α|h′(z) ·ξ |2.

A key tool here is the introduction of the following func-
tion:

W (x,ξ , t) = u(x, t)·ξ , ξ ∈ R2

which implies that

u(t,x) = ∇ξW (t,x,ξ )

and corresponding to taking the dot product of function u
in the direction ξ . Formally, from Eq. (8), one has

∂W
∂ t

+(h(∇ξW )·∇xW = 0,

W |t=0 = u0(x)·ξ
(39)

which is a scalar equation, i.e. a first-order Hamilton-Jacobi
equation, equivalent to Eq. (8). Correspondingly, we define

Z = ξ ·∇ξW .

Next, we express Eq. (39) in the term of Z and obtain:

∂Z
∂ t

+h ·∇xZ +(h′∇xW,∇ξ Z) = (h′∇xW,∇xW ). (40)

• First case. We make the assumptions on h and u0.
Assume that u0 is β -monotone. From (18), this is equiv-

alent to saying that

(u0)−1 >
1
α

so that provided h is monotone, this implies

u−1 >
1
α

I;

and consequently u is β -monotone. We deduce the esti-
mate

(Du(x)·ξ ,ξ )> α|Du(x)·ξ |2

and by Cauchy-Schwartz, we get

|Du(x)·ξ ||ξ |> (Du(x)·ξ ,ξ )> α|Du(x)ξ |2. (41)

From the formula (41) it follows that

|Du(x)ξ |6 1
α
|ξ | (42)

giving an a priori estimate on the size of the gradient. The
quantity which propagates in time is

(Du(t,x)ξ ,ξ )−α|Dxu(t,x)·ξ |2 > 0. (43)

The main ingredient in Krylov techniques is to translate
the term (Du(t,x)ξ ,ξ ) into ξ ·∇xW and |Du(x, t) · ξ |2 into
|∇xW |2. This leads us to handle the following expression
(much simpler in form):

Zβ = ξ ·∇xW −β |∇xW |2, β > 0.
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If we can show that Zβ is positive and bounded below, we
will derive a Lipschitz estimate allowing to obtain a priori
estimates.
On the one hand, in connection with the Hamilton-Jacobi
equation, we obtain

∂

∂ t
∇xW +(h ·∇x)∇xW +h′(W ) ·∇ξ ∇xW = 0,

W |t=0 = |Du0|6C0.
(44)

Note that, since ∇W is solution of a transport equation, the
norm |∇W | also verifies a transport equation. Then, taking
the squared norm, it follows

∂

∂ t
|∇xW |2 +(h ·∇x)|∇xW |2 +h′(W ) ·∇ξ |∇xW |2 = 0.

On the other hand, writing Eq. (44) in term of Z gives

∂Zβ

∂ t
+h ·∇xZβ +(h′ ·∇xW ) ·∇ξ Zβ = (h′ ·∇W,∇W )> 0.

One thus has a first-order transport equation with terms
that are at most linear growth. We deduce a priori esti-
mate, under the assumptions regarding the monotonicity,
provided that

Zβ |t=0 > 0 then Zβ > 0,

i.e. we had thus shown a priori estimate. So no need to go
in reverse and we understand that it is a very simple proof
that the method of characteristics.

• Second case. We remove assumption (H2), that is, we
have any assumption on U0 but only that u0 is regular
bounded derivatives. In order to get the corresponding bound,
we must use Eq. (44) in term of Z. Thus, from assumptions
(H1)-(H2), we deduce

∂Zβ

∂ t
+h ·∇xZβ +(h′ ·∇xW ) ·∇ξ Zβ > α|h′·∇xW |2.

The main difficulty here is that we did not have any as-
sumption on u0, except for u0 with bounded regular deriva-
tives. If one looks at what occurs in t = 0, and writing Zβ

in u0, one obtains

Zβ = (Dxu0 ·ξ ,ξ )−β |Dxu0 ·ξ |2. (45)

On the other hand, we have

|Dxu0|6C0. (46)

The only information we have is that u0 is monotone; there-
fore we get the following estimate:

Zβ >−C0β |ξ |2, T ∈ (0,+∞)

following from the fact that, Dxu0 is bounded and it grows
linearly with ξ . We take the modulus squared, so a priori
it is quadratic, in which one loses positivity because of the

presence of the term −C0|ξ |2. It is a bit embarrassing. We
want to add a constant multiplied by |ξ |2, to retrieve pos-
itive terms. Therefore we introduce a new auxiliary func-
tion

Ψ = ξ ·∇xW−β |∇xW |2+γ|ξ |2, β > 0, γ > 0, (47)

in order to get a priori estimate. Next, we write the equa-
tion in the term of Ψ and estimate the latter. We get:

∂Ψ

∂ t
+(hi

j∂xiW )∂ξ jΨ +(h ·∇x)Zβ >−β̇ |∇xW |2 + γ̇|ξ |2

+ α |h′∇xW |2 +2γ (h′ ·DxW,ξ ), (48)

with the notation hi
j =

∂hi

∂ z j
. At time t = 0, we have Ψ > 0

provided that

γ(0)>C0β (0)

which is a condition on the initial values, natural to inter-
vene. We choose the applications t 7→ γ(t) to be increasing
and t 7→ β (t) decreasing γ > 0 and β > 0. Using Cauchy-
Schwarz and estimation (42), it follows

2γ(h′ ·DxW,ξ )>−α|h′ ·∇xW |2−
γ2

α
|ξ |2.

We fix T and try to have a bound on T ∈ (0,∞). The in-
equality (48) becomes, after simplification

∂Ψ

∂ t
+(hi

j∂xiW )∂ξ jΨ +(h ·∇x)Zβ >

−β̇ |∇xW |2 +
(

γ̇− γ2

α

)
|ξ |2.

Observe that, h is bounded increasing function; hi
j is bounded

and ∂xiW increases at most linearly with ξ (since u is bounded).
Thus, we have a vector field at most linear growth, such
that if we start with something positive, so we keep the
positivity. Therefore,

∂Ψ

∂ t
+(hi

j∂xiW )∂ξ jΨ +(h ·∇x)Zβ > 0 (49)

provided that

γ̇ >
γ2

α
.

If we choose β to be small, then we are led to solve the
equation  γ̇ =

γ2

α

γ(0) =C0β .

(50)

Thus

∀β > 0, Ψ > 0 on [0, t(γ)),

where [0, t(γ)) is the existence interval of γ . By doing this,
we get a transport equation which is positive or zero and
we find the expression (49). This completes the proof of
the Theorem 2. �
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