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Abstract: In this paper we address the class of anti-uniform Huffman (AUH) codes, also named unary codes, for sources with finite
and infinite alphabet, respectively. Geometric, quasi-geometric, Fibonacci and exponential distributions lead to anti-uniform sources
for some ranges of their parameters. Huffman coding of these sources results in AUH codes. We prove that, in general, sources with
memory are obtained as result of this encoding. For these sources we attach the graph and determine the transition matrix between
states, the state probabilities and the entropy. We also compute the average cost for these AUH codes.
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1. Introduction

Let (p1, p2, . . . , pn) be the probability distribution of an
message sourceξn =

{
s1, s2, . . . , sn

}
. It is well known

that the Huffman encoding algorithm [1] produces an opti-
mal binary prefix-free code forξn. A binary Huffman code
is usually represented by a binary tree, whose leaves cor-
respond to the source messages. The two edges emanating
from each intermediate tree node (father) are labeled either
0 or 1.The length between the root and a leaf is the length
of the binary codeword associated with the corresponding
message. We denote byvi, i = 1, 2, . . . , n, the codeword
representing the messagesi, and the length ofvi by li.
The optimality of Huffman coding implies thatli ≤ lj ,
if pi > pj . For related literature on Huffman coding and
Huffman trees, we refer the reader to [2]−[6].

Anti-uniform Huffman (AUH) codes were firstly intro-
duced in [7]. A Huffman code representing a finite source
ξn satisfyingp1 ≥ p2 ≥ · · · ≥ pn > 0 is an anti-uniform
code, ifli = i, i = 1, 2, . . . , n−1 andln = ln−1. A source
ξn having an anti-uniform Huffman code is called an anti-
uniform source. These sources were extensively analysed,
concerning bounds on average codeword length, entropy
and redundancy for different types of probability distribu-
tions [7]−[10]. The AUH sources appear in a wide vari-
ety of situations in the real world, because this class of
sources have the property of achieving minimum redun-
dancy in different situations and minimum average cost in

highly unbalanced cost regime [11], [12]. These properties
determine a wide range of applications and motivate us to
study these sources from an information theoretic perspec-
tive. One example is the telegraph channel with the alpha-
bet

{
. − }

in which dashes are twice as long as dots [13].
Another is the

{
a, b

}
run− length− limited codes used

in magnetic and optical storage, in which the binary code-
words are constrained so that each 1 must be preceded by
at leasta, and at mostb, 0′s [14]. The binary Huffman
codes, constrained so that all codewords must end in a 1,
are used for group testing and self-synchronizing codes
[15], [16]. As another example, binary codes whose code-
words contain at most a specified number of 1′s are used
for energy minimization of transmissions in mobile envi-
ronments [17]. AUH sources can be generated by several
probability distributions. It has been shown that sources
with geometric, quasi-geometric, Fibonacci and exponen-
tial distributions lie in the class of AUH sources for some
regimes of their parameters [7], [18] - [20]. Related topics
were addressed in [21], where the authors studied weakly
super increasing (WSI) and partial WSI sources in con-
nection with Fibonacci numbers and golden mean, which
appeared extensively in modern science and have applica-
tions in coding and information theory.

The paper is organized as follows. In Section 2 we
present the Huffman encoding of an antiuniform source
and the graph of the resulting memory source. We show
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that, in general, by employing Huffman coding, a source
with memory results. The entropy and the average cost of
the code are also derived. In Sections 3 we compute the
code entropy, as well as the average cost for AUH codes
corresponding to sources with geometric, quasi-geometric,
Fibonacci and exponential distributions, respectively. We
conclude the paper in Section 4.

2. Entropy and average cost of AUH codes

Let us consider a discrete and memoryless source, charac-
terized by the distribution:

ξn :
(

s1 s2 . . . sn

p1 p2 . . . pn

)
, (1)

p1 ≥ p2 ≥ · · · ≥ pn (2)
n∑

i=1

pi = 1 (3)

If [7]
n∑

k≥i+2

pk ≤ pi, 1 ≤ i ≤ n− 3 (4)

the source becomes anti-uniform.
After a binary Huffman encoding of the source with

the distribution in (1), that fulfils (4), the graph in Fig. 1 is
obtained. The structure of codewords resulting from binary
Huffman encoding is:

s0 → v0 → 1
s1 → v1 → 01
s2 → v2 → 001

..............................
sn−1 → vn−1 → 00 . . . 0︸ ︷︷ ︸

n−2

1

sn → vn → 00 . . . 00︸ ︷︷ ︸
n−1

The lengthli of the codeword associated with the mes-
sagesi is the number of edges on the path between the root
and the nodesi in the Huffman tree.

li = i, i = 1, 2, . . . , n− 1 (5)

ln = ln−1 (6)

The average codeword length is determined with

ln =
n∑

i=1

pili =
n−1∑

i=1

ipi + (n− 1)pn (7)

In Fig. 1, sn+i, i = 1, 2, . . . , n − 2 denote the inter-
mediate nodes in the graph, also called parents. The prob-
ability of a parent is obtained as the sum of the two sibling
probabilities. Denoting bypn+i the probabilities of inter-
mediate nodes, we have

Figure 1 The graph of binary Huffman encoding for the source
ξn with distribution in (1)

pn+i =
n∑

k=n−i

pk; i = 1, 2, . . . , n− 2 (8)

The branches between succesive nodes have the prob-
abilities equal to the ratio between the probability of the
node in which the branch ends and the probability of the
node from which it starts.

For a sequence of messagessi, the source delivers a
string of binary symbols from the code alphabetX =
{x0 = 0, x1 = 1}. As the probabilities of the symbols
in the binary string depend on the node from which they
are generated, the setX, which is the output bitstream ob-
tained as result of binary Huffman coding, is a source with
memory.

When a terminal nodesi, i = 1, 2, . . . , n is reached,
the sourceξn will deliver another message and the source
with memoryX will generate another string of binary sym-
bols.

The graph attached to the source with memoryX can
be obtained from the Huffman encoding graph in Fig. 1, as
follows:

a) We link the terminal nodes with the graph root;
b) Each terminal nodesi, i = 1, 2, . . . , n, or interme-

diate onessn+i, i = 1, 2, . . . , n − 2, (excepting the root
of the encoding graph) will represent the statesSi, i =
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1, 2, . . . , 2n− 2, of the souce with memoryX. The set of
these states is denoted byS = {S1, S2, . . . , S2n−2}. The
graph of the source X is shown in Fig. 2.

The transition probabilities from the stateSi, to the
stateSj , that is,p(Sj |Si), is equal to the probability of
the branch between the nodesi and the nodesj . When
the source enters the stateSj from the stateSi, it gener-
ates either the symbolx0 = 0, or x1 = 1. Therefore, the
probability of delivering the symbolxj , j = 0, 1, from the
stateSi is the same as the probability to reach the stateSj ,
starting from the stateSi, that is:

p(x1|Si) = p(S1|Si) = p1, i = 1, 2, . . . , n (9)

p(x0|Si) = p(S2n−2|Si) =
n∑

k=2

pk, i = 1, 2, . . . , n (10)

p(x1|Sn+i) = p(Sn−i|Sn+i) =
pn−i
n∑

k=n−i

pk

,

i = 1, 2, . . . , n− 2 (11)

p(x0|Sn+i) = p(Sn+i−1|Sn+i) =

n∑

k=n−i+1

pk

n∑

k=n−i

pk

,

i = 1, 2, . . . , n− 2 (12)

Figure 2 The graph of the source with memoryX

Let πi, i = 1, 2, . . . , 2n−2, denote the stationary state
probabilities of the source with memory. They can be de-
termined by means of [22]

[π1, π2, . . . , π2n−2] = [π1, π2, . . . , π2n−2]T (13)

2n−2∑

i=1

πi = 1 (14)

Considering (7), from (13) and (14) we obtain the state
probabilities as:

πi =
pi

ln
, i = 1, 2, . . . , n (15)

πn+i =
1
ln

n∑

k=n−i

pk, i = 1, 2, . . . , n− 2 (16)

Generally, the entropy of the source with memory is
computed by [23]

H(X) = −
2n−2∑

i=1

2∑

j=1

πip(xj |Si)log p(xj |Si) (17)

whereπi are given in (15) and (16) andp(xj |Si) are given
in (9), (10), (11) and (12).

Considering (9), (10), (11) and (12) as well as the graph
in Fig. 2, the transition matrix between states is given in
relation (18), where the entries of the matrixT aretij =
p(Sj |Si).

Let c0 and c1 be the costs of storing or transmitting
symbols “0” and “1”, respectively, resulted after the binary
Huffman encoding of the sourceξn. The average cost is
determined by [9]

C =
n∑

i=1

pi[n0(i)c0 + n1(i)c1], (19)

wheren0(i) andn1(i) denote the number of 0′s and 1′s in
the codewordci.

Considering the structure of the codewords for AUH
sources, (5) and (6), the average cost is

C =
n∑

i=1

pi[(i− 1)c0 + c1] + (n− 1)c0pn (20)

3. Case studies for distributions leading to
AUH sources

In the following we will analyze several source distribution
types. More precisely, we will determine the conditions
that should be respected by the distributions parameters so
that the resulting sources are AUH. We also compute the
entropy and average cost of the resulting codes.
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T =




p1 0 · · · 0 0 0 0 0 · · · 0

n∑

k=2

pk

p1 0 · · · 0 0 0 0 0 · · · 0

n∑

k=2

pk

...
...

...
...

...
...

...
...

...
...

...

p1 0 · · · 0 0 0 0 0 · · · 0

n∑

k=2

pk

0 0 · · · 0
pn−1
n∑

k=n−1

pk

n∑

k=n

pk

n∑

k=n−1

pk

0 0 · · · 0 0

0 0 · · · pn−2
n∑

k=n−2

pk

0 0

n∑

k=n−1

pk

n∑

k=n−2

pk

0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...

0 p2
n∑

k=2

pk

· · · 0 0 0 0 0 · · ·

n∑

k=3

pk

n∑

k=2

pk

0




(18)

3.1. AUH sources with geometric distribution

Let there be a discrete source characterized by the geomet-
ric distribution:

ξn :
(

s1 s2 · · · sn

p1 = 1− p p2 = p(1− p) · · · pn = pn−1(1− p)

)
,

(21)
In this case the source is not complete, because

n∑

i=1

pi = 1− pn. (22)

In order to get a complete source, we normalize the
probabilitiespi given in (21), obtaining:

ξnorm
n :

(
s1 s2 · · · sn

p1 = 1−p
1−pn p2 = p(1−p)

1−pn · · · pn = pn−1(1−p)
1−pn

)
,

(23)
For this source to become AUH, relation (4) is required

to be fulfilled. Replacing the probabilities from (23) in (4),
we obtain, as in [18]:

0 < p <

√
5− 1
2

(24)

The average codeword length results by replacing the prob-
abilitiespi from (23) into (7).

lnorm
n =

1
(1− p)(1− pn)

·

· [1− pn−1 − (n− 1)pn + (n− 1)pn+1] (25)

Theorem 1The entropy and the average cost of the source
with memory resulted by binary encoding of the AUH source
with geometric distribution are determined by:

Hn(X) = − 1
lnorm
n

[
log(1− pn)− log(1− p)−

− 1− npn−1 + (n− 1)pn

(1− pn)(1− p)
p log p

]
(26)

Cn =
1

1− pn

[
(1−pn−1)c0+

1− npn−1 + (n− 1)pn

1− p
pc1

]

(27)

Proof. The stationary state probabilities are obtained by
replacing the probabilitiespi from (23) into (16) and (17),
and considering (25):





πi = pi−1(1−p)

(1−pn)lnorm
n

, i = 1, 2, . . . , n

πn+i = pn−i−1(1−pi+1)

(1−pn)lnorm
n

, i = 1, 2, . . . , n− 2
(28)
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The probabilities to deliver the symbolsx0 = 0 andx1 =
1, from the statesSi, i = 1, 2, . . . , 2n−2, result by replac-
ing the probabilitiespi from (23) into (9)− (12):





p(x1|Si) = 1−p
1−pn , i = 1, 2, . . . , n

p(x0|Si) = p(1−pn−1)
1−pn , i = 1, 2, . . . , n

p(x1|Sn+i) = 1−p
1−pi+1 , i = 1, 2, . . . , n− 2

p(x0|Sn+i) = p(1−pi)
1−pi+1 , i = 1, 2, . . . , n− 2

(29)

Substituting (28) and (29) into (18), the relation (26) re-
sults.

Substituting (23) into (20), the relation (27) results.

When the number of messages,n, of the sourceξn in-
creases, whenn →∞, we obtain

l∞ =
1

1− p
(30)

H∞(X) = −p log p− (1− p) log(1− p) (31)

C∞ = c0 +
p

1− p
c1 (32)

3.2. AUH sources with quasi-geometric
distribution

Let there be a discrete source characterized by the quasi-
geometric distribution:

ξn :
(

s1 s2 · · · sn−1 sn

p1 = 1− p p2 = p
2 · · · pn−1 = p

2n−2 pn = p
2n−2

)
,

(33)
Following similar procedures as in the previous case,

we get:

– The range for the source parameter for the source to
be AUH

0 < p ≤ 2
3

(34)

– The average codeword length

ln = 1 +
2n−2 − 1

2n−3
p (35)

– The entropy of the source with memoryX

Hn(X) = A(p)
B(p) ,

A(p) = (1− p)n+1 log(1− p)+
+[1− npn−1 + (n− 1)pn]p log p,

B(p) = 1− pn−1 − (n− 1)pn + (n− 1)pn+1





(36)

– The average cost of the source with memoryX

Cn =
(2n−1 − 1)pc1 + (2n−2 − p)c0

2n−2
(37)

Whenn →∞, we obtain

H∞(X) = − 1
1 + 2p

[(1− p) log(1− p) + p log p− 2p]

(38)
C∞ = 2pc1 + c0 (39)

In the special case, whenp = 1
2 , the sourceξn becomes

dyadic one. In this caseX becomes memoryless and then:

p(xj |Si) =
1
2
, j = 0, 1; i = 1, 2, . . . , 2n− 2 (40)

ldn = 2− 1
2n−2

(41)

Hdn(X) = 1 (42)

Cdn =
(2n−1 − 1)(c1 + c0)

2n−1
(43)

Imposingn →∞ in (41) and (43), we obtain

ld∞ = 2 (44)

Cd∞ = c0 + c1 (45)

3.3. AUH sources with Fibonacci distribution

Let there be a discrete and finite AUH source characterized
by the Fibonacci distribution

ξn :
(

s1 · · · sn−1 sn

p1 = fn−1
fn+1

· · · pn−1 = f1
fn+1

pn = f1
fn+1

)
, (46)

wherefn is thenth Fibonacci number defined as
{

f1 = f2 = 1
fn = fn−1 + fn−2, n ≥ 3 (47)

The sourceξn is also AUH, because relation (4) is fulfilled.
For this case we obtain:

– The average codeword length

ln =
fn+3 − 3

fn+1
(48)

– The entropy of the source with memoryX

Hn(X) =
fn+1

fn+3 − 3
log fn+1 − 1

fn+3 − 3

n−1∑

i=1

fi log fi

(49)

– The average cost of the source with memoryX

Cn =
fn+1 − f1

fn+1
c0 +

fn+2

fn+1
c1 (50)
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3.4. AUH sources with exponential distribution

The density probability function of exponential distribu-
tion is

f(x, λ) =
{

λe−λx, if x ≥ 0
0, if x < 0 (51)

We define the cumulative density function

F (i) = 1− e−λi (52)

and the probabilities

pi = F (i)− F (i− 1) = e−(i−1)λ(1− e−λ) (53)

Let us consider the sourceξn with exponential distribution

ξn :
(

s1 · · · sn

p1 = 1− e−λ · · · pn = e−(n−1)λ(1− e−λ)

)

(54)
For this case we obtain:

– The range for the source parameter for the source to
be AUH [8]

λ ≥ ln
(√

5 + 1
2

)
(55)

– The average codeword length

lnorm
n =

1
(1− e−λ)(1− e−nλ)

·

· [1− e−(n−1)λ − (n− 1)e−nλ + (n− 1)e−(n+1)λ
]
(56)

– The entropy of the source with memoryX

Hn(X) = − 1
lnorm
n

[
log(1− e−nλ)− log(1− e−λ)+

+
1− ne−(n−1)λ + (n− 1)e−nλ

(1− e−nλ)(1− e−λ)
λe−λ log e

]
(57)

– The average cost of the source with memoryX

Cn =
1

1− e−nλ

[
(1− e−(n−1)λ)c0+

+
1− ne−(n−1)λ + (n− 1)e−nλ

1− e−λ
e−λc1

]
(58)

Whenn →∞, we obtain

H∞(X) = −(1− e−λ)
[

log(1− e−λ) +
e−λ log e−λ

1− e−λ

]

(59)

C∞ = c0
e−λ

1− e−λ
+ c1 (60)

l∞ =
1

1− e−λ
(61)

4. Conclusion

In this paper we have considered the class of AUH sources
with finite and infinite alphabets. Performing a binary Huff-
man encoding of these sources, we show that sources with
memory result. For these sources we build the encoding
graph and the graph of the source with memoryX. The
graph of the source with memory is obtained from the en-
coding graph by linking the terminal nodes with the graph
root. The states of the source with memory correspond to
the terminal or intermediate nodes in the encoding graph,
excepting the root. We determined in the general case the
state probabilities of the source with memory, as well as
the transition probabilities between states. The entropy of
this source with memory is computed. We assumed the
costsc0 andc1 for the symbols “0” and “1”, respectively,
and compute the average cost for these Huffman codes.
Obviously, the Huffman encoding procedure assures min-
imum average length, but the average cost has not a mini-
mum value. If the costs of symbols “0” and “1” are equal
to unity, the average cost becomes equal to the average
length. We applied the results for several AUH sources
with geometric, quasi-geometric, Fibonacci and exponen-
tial distributions. We have also analyzed the limit cases,
when the source alphabet increases unlimited, that is,n →
∞.
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