
Appl. Math. Inf. Sci.6, No. 1, 99-102 (2012) 99

Applied Mathematics & Information Sciences
An International Journal

c© 2012 NSP
Natural Sciences Publishing Cor.

Semiring Orders in a Semiring

Jeong Soon Han1, Hee Sik Kim2 and J. Neggers3

1 Department of Applied Mathematics, Hanyang University, Ahnsan, 426-791, Korea
2 Department of Mathematics, Research Institute for Natural Research, Hanyang University, Seoal, Korea
3 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U.S.A

Received: Received May 03, 2011; Accepted August 23, 2011
Published online: 1 January 2012

Abstract: Given a semiring it is possible to associate a variety of partial orders with it in quite natural ways, connected with both
its additive and its multiplicative structures. These partial orders are related among themselves in an interesting manner is no surprise
therefore. Given particular types of semirings, e.g., commutative semirings, these relationships become even more strict. Finally, in
terms of the arithmetic of semirings in general or of some special type the fact that certain pairs of elements are comparable in one
of these orders may have computable and interesting consequences also. It is the purpose of this paper to consider all these aspects in
some detail and to obtain several results as a consequence.
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The notion of a semiring was first introduced by H. S.
Vandiver in 1934, but implicitly semirings had appeared
earlier in studies on the theory of ideals of rings ([2]).
Semirings occur in different mathematical fields, i.e., as
ideals of a ring, as positive cones of partially ordered rings
and fields, in the context of topological considerations, and
in the foundations of arithmetic, including questions raised
by school education. Semirings have become of great in-
terest as a tool in different branches of computer science
([4]).

By a semiring([1]) we shall mean a setR endowed
with two associative binary operations called anaddition
and amultiplication(denoted by+ and·, respectively) sat-
isfying the following conditions:

(i).addition is a commutative operation,
(ii).there exists0 ∈ R such thatx+0 = x andx0 = 0x =

0 for eachx ∈ R, and
(iii).multiplication distributes over addition both from the

left and from the right.

1. Preliminaries

There are two ways to define a partially ordered set on a
set: (i) weak inclusion: reflexive, anti-symmetric and tran-
sitive; (ii) strong inclusion: irreflexive and transitive, and

they are equivalent (see [7]). J. Neggers et al. ([5, 6]) dis-
cussed the notion of semiring order in semirings, and ob-
tained some results related with the notion of fuzzy left
ideals of the semirings.

Suppose thatR is a semiring. Define a relation<R on
R as follows:

x <R y provided x + y = y and xy = x, x 6= y.

Thus, since0+ y = y and0y = 0, it follows that if y 6= 0,
then0 <R y always, i.e.,0 is a unique miminal element.

L1. x <R y andy <R x is impossible.
L2. x <R y andy <R z impliesx <R z.
The set(R,<R) is a poset with unique miminal ele-

ment 0. We shall refer to it as thesemiring orderof R. A
non-empty subsetI of a semiring order(R, <R) is called
anorder idealif x ∈ I, y <R x imply y ∈ I.

Example 2.1.LetR+ be the collection of non-negative
real numbers with the usual operations“+” and“·”. Then
(R+, +, ·) is a semiring. Also, ifx <R+ y thenx + y = y
meansx = 0 and y 6= 0. In particular, if x 6= y, and
x 6= 0, y 6= 0, thenx ◦ y, i.e.,x andy are incomparable.
Hence,(R+−{0}, <R+) is an antichain. We shall consider
R+ to be anantichain semiring.

Example 2.2.LetR+ be the collection of non-negative
real numbers. Define operations“⊕” and“¯” byx⊕y :=
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max{x, y}, x¯y := min{x, y}. Then we are dealing with
a semiring. Indeed, suppose thatx <R+ y. Thenx ⊕ y =
y and x ¯ y = x. If r ∈ R+, thenx <R+ y implies
r ¯ x <R+ r ¯ y as well. Hence(r ¯ x) ⊕ (r ¯ y) =
r ¯ y = r ¯ (x⊕ y). Thus(R+,⊕,¯) is a semiring.

In this case, ifx < y in R+, then alsox <R y in the
semiring order, whence the two orders are the same since
an order extension of a chain is precisely the chain itself.
Thus, we shall consider(R+,⊕,¯) to be achain semiring.

J. Neggerset. al. [6] obtained that ifµ : R → L is an
L-fuzzy left ideal of the semiring(R, +, ·), thenµt is an
order ideal of(R, <R) and any finite order idealI is a level
subset ofµ. Moreover, they proved that ifµ : R → L is an
L-fuzzy left ideal of a finite chain semiring(R, +, ·) then
the collection of order ideals of(R, <R) is the collection
of level subsets ofµ. Furthermore, this collection is lin-
early ordered by set inclusion. This paper is a continuation
of [6] on the study of semiring orders in a semiring.

2. Some semiring orders

In this section we introduce several semiring orders in
semirings, and investigate some relations between them.

Proposition 3.1.Let (R, +, ·) be a semiring andx, y ∈
R. If we define a relation<+ onR by x <+ y if and only
if x + y = y, x 6= y, then it is a partial order.

Proof. Clearly,<+ is irreflexive. If x <+ y, y <+ z,
thenx + y = y, y + z = z, x 6= y, andy 6= z. Hence
x + z = x + (y + z) = (x + y) + z = y + z = z. We
claim thatx 6= z. Assume thatx = z. Thenz = y + z =
y + x = x + y = y, a contradiction. Hencex <+ z,
proving the proposition. ut

Since0 + x = x for anyx ∈ R, 0 <+ x for anyx ∈
R − {0}. Hence(R, <+) is a poset with unique minimal
element 0.

Proposition 3.2.Let (R, +, ·) be a commutative semir-
ing andx, y ∈ R. If we define a relation<· onR byx <· y
if and only if xy = y, x 6= y, then it is a partial order.

Proof.Clearly,<· is irreflexive. Ifx <· y, y <· z, then
xy = x, yz = y, and hencexz = (xy)z = x(yz) =
xy = x. We claim thatx 6= z. Assume thatx = z. Then
x = xy = zy = yz = y, a contradiction, since(R, ·) is
commutative.

Since0x = 0 for any x ∈ R, 0 <· x for any x ∈
R − {0}. Hence(R,<·) is a poset with unique minimal
element 0.

Example 3.3.Let R := {0, 1, 2, 3} be a set with the
following tables:

+ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 2

· 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 3 3

Then(R, +, ·) is a non-commutative semiring. We can see
that2 <· 3, 3 <· 2, but not3 <· 3, i.e.,<· is not a partial
order onR.

Even though we obtained the posets as in Propositions
3.1 and 3.2, they were made by just one binary operation in
semirings, while semirings were defined by two binary op-
erations. This means the partial orders discussed in Propo-
sition 3.1 and 3.2 have some defects.

The semiring order<R discussed in section 2 is an in-
tersection of<+ and<· in a (not necessarily commutative)
semiring, i.e.,<R=<+ ∩ <·.

Proposition 3.4.Let (R, +, ·) be a semiring withxy =
x ⇒ x + y = y, ∀x, y ∈ R. Then<· is a partial order on
R.

Proof.Let x <· y, y <· z. Thenxy = x, yz = y, x 6=
y, y 6= z. By assumptionx+y = y, y+z = z. This means
thatx <R y, y <R z. Since<R is a partial order,x <R z,
provingx 6= z. Hencex <· z.

We define another semiring order on commutative
semirings as follows.

Theorem 3.5.Let (R, +, ·) be a commutative semiring
andx, y ∈ R. Define a binary relation<B onR byx <B y
if and only if x + y + xy = y, xy = x, x 6= y. Then
(R, <B) is a poset.

Proof. Let x <B y andy <B z. Thenx + y + xy =
y, xy = x, x 6= y andy + z + yz = z, yz = y, y 6= z,
and hencexz = (xy)z = x(yz) = xy = x. We claim
thatx 6= z. Assume thatx = z. Thenz = y + z + yz =
y + x + yx = x + y + xy = y, a contradiction. Moreover,

x + z + xz = x + (y + z + yz) + xz

= (x + y + xz) + z + yz

= (x + y + x) + z + yz

= (x + y + xy) + z + yz

= y + z + yz

= z.

Hencex <B z.
Proposition 3.6. If (R, +, ·) is a commutative semir-

ing, then<R⊆<B .
Proof. If (x, y) ∈<R, thenx + y = y, xy = x, x 6= y.

Hencex + y + xy = x + y + x = y + x = x + y = y,
proving(x, y) ∈<B .

Note that<R = <B does not hold in non-commutative
rings in general. See the following example.

Example 3.7.Let R := {0, 1, 2, 3} be a set with the
following tables:

+ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 2

· 0 1 2 3
0 0 0 0 0
1 0 0 1 1
2 0 1 2 2
3 0 1 3 3

Then (R, +, ·) is a non-commutative semiring. Since3 ·
2 = 3, 3 + 2 + 3 · 2 = 2, 3 <B 2. But 3 + 2 = 3 6= 2
implies that3 6<R 2.
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Proposition 3.8.If (R, +, ·) is a commutative semiring
with x + x = x for all x ∈ R, then<R = <B .

Proof. If x <B y, thenxy = x, x+ y +xy = y, x 6= y
and hencex+y = x = x+y = x+y+x = x+y+xy = y,
proving thatx <R y. From Proposition 3.6, we obtain the
proposition.

Proposition 3.9.Let (R, +, ·) be a semiring andx, y ∈
R. If x <B y, y <B x, thenx + x = y + y.

Proof. Let x <B y, y <B x. Thenx + y + xy =
y, xy = x, x 6= y andy + x + yx = x, yx = y, y 6= x.
It follows thaty = x + y + xy = x + y + x = 2x + y.
Similarly,x = 2y+x. Hence2y = y+y = (2x+y)+y =
2x + 2y = 2y + 2x = 2x.

For Boolean algebras it is unfortunately the case that
2x = 0 for all x, so that the particular argument above
will not work. It is also true however thatxy = yx so that
x + y + xy = y, y + x + yx = x immediately yields
y = x. Thus the general condition is a sort of “weak com-
mutativity rule”: if x + y + xy = y, y + x + yx = x and
xy = x, yx = y, thenx = y. This suggests that the con-
dition “x + y + xy = y, y + x + yx = x impliesx = y”
may also be interesting. Thus, e.g., ifR contains a mul-
tiplicative identity1R, then the condition above becomes:
(1R + x)(1R + y) = 1R + y, (1R + y)(1R + x) = 1R + x
implies1R + x = 1R + y.

Let (R, +, ·) be a semiring andx, y ∈ R. Define a
binary relationρ2 onR by

x ρ2 y ⇔ 2x + y = y, x 6= y

A semiring(R, +, ·) is called aρ2-semiringif ρ2 is a par-
tial order onR.

Example 3.10.Let X := {0, 1, 2, 3} be a set with the
following Cayley tables:

+ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 3 1
3 3 3 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 3
3 0 1 3 2

Then it is easy to show that(X, +, ·) is aρ2-semiring.
Example 3.11.Let X := {0, 1, 2, 3} be a set with the

following Cayley tables:

+ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 2

· 0 1 2 3
0 0 0 0 0
1 0 0 1 1
2 0 1 2 2
3 0 1 3 2

Then the semiring(X, +, ·) is not aρ2-semiring, since
2ρ23 and3ρ22, but2 6= 3.

Proposition 3.12.If (R, +, ·) is a commutative semir-
ing, then<R ⊆ <B ∩ ρ2.

Proof.If x <R y, thenxy = x and hencex+y+xy =
x + y + x = x + y = y. Hence<R ⊆ ρ2. By Proposition
3.6, the conclusion follows.

Proposition 3.13.Let (R, +, ·) be a semiring withx+
x = y + y ⇒ x = y, ∀x, y ∈ R. Then (R, +, ·) is a
ρ2-semiring.

By Proposition 3.13, we see that(R, ρ2) is a poset.

3. Order computations

Proposition 4.1.Let (R, +, ·) be a semiring. If<R is a
semiring order, thenx 6<R 2x for anyx ∈ R.

Proof.Assume that there existsx ∈ R such thatx <R

2x. Thenx + 2x = 2x, x(2x) = x, butx 6= 2x. It follows
thatx = x(2x) = x(x + x) = x2 + x2 = 2x2, i.e.,x =
2x2. Hencex = 2x2 = x(2x) = x(x+2x) = x2 +2x2 =
x2 + x. Since2x2 = x, we obtain2x3 = x(2x2) = x2

and hence4x3 = 2x3 + 2x3 = x2 + x2 = 2x2 = x,
i.e.,4x3 = x. Sincex + 2x = 2x, i.e.,3x = 2x, we have
3x3 = 2x · x2 = 2x3 = x2. Thus3x3 = x2. Moreover,
if we addx to each side of3x = 2x, then4x = 3x +
x = 2x + x = 3x. If we multiply 4x = 3x3 by x2, then
4x3 = 3x3. Hence we obtainx2 = 3x3 = 4x3 = x. It
follows thatx = 2x2 = 2x, a contradiction.

Theorem 4.2.Let (R, +, ·) be a semiring and let<R

be a semiring order. Ifx ∈ R such that2x <R x, then
(2n + 1)x = x, 2nx = 2x for any natural numbern.

Proof. Assume that2x <R x. Then 2x + x =
x, (2x)x = 2x, but2x 6= x. It follows that3x = x, 5x =
3x + 2x = x + 2x = 3x = x. By induction, we obtain
(2n+1)x = x for any natural numbern. Since2x+x = x,
we havex + (2x + x) = x + x, i.e., 4x = 2x. Hence
4x + 2x = 2x + 2x = 4x = 2x. By induction, we have
2nx = 2x for any natural numbern.

Proposition 4.3.Let (R, +, ·) be a semiring. If<R is
a semiring order, thenx 6<R x2 for anyx ∈ R.

Proof.Assume that there existsx ∈ R such thatx <R

x2. Thenx + x2 = x2, x · x2 = x, butx 6= x2. It follows
thatx = x3 = (x + x2)x = x2 + x3 = x2 + x = x2, a
contradiction.

Theorem 4.4.Let (R, +, ·) be a semiring and let<R

be a semiring order. Ifx ∈ R such thatx2 <R x, then
nx2 = x2 = xn for any natural numbern ≥ 2.

Proof. Assume thatx2 <R x. Thenx2 + x = x, x2 ·
x = x2, but x2 6= x. It follows thatx2 = x(x2 + x) =
x3 + x2 = x2 + x2 = 2x2 and hence3x2 = 2x2 + x2 =
x2 + x2 = 2x2 = x2. By induction, we obtainnx2 = x
for anyn ≥ 1.

Now,x4 = x·x3 = x·x2 = x3 = x2 andx5 = x·x4 =
x · x2 = x3 = x2. By induction, we obtainxn = x2 for
any natural numbern ≥ 2.

Proposition 4.5.Let (R, +, ·) be a commutative semir-
ing and let<R be a semiring order. Ifx ∈ R such that
xy <R x, thenxy + xn = xn for any natural numbern.

Proof. Assume thatxy <R x. Thenxy + x = x, xy ·
x = xy, but xy 6= x. SinceR is commutative,x2y =
xy. It follows that x2y + x2 = x(xy + x) = x2, i.e.,
xy + x2 = x2, and hencex2y + x3 = x3. Similarly, we
obtainxy + x4 = x2y + x4 = x(xy + x3) = x4. By
induction, we havexy + xn = xn.
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Next, we perform some computations as examples in-
volving the semiring order<B on a commutative semiring
R.

Proposition 4.6.Let (R, +, ·) be a commutative semir-
ing. If <B is a semiring order, thenx 6<B 2x for any
x ∈ R.

Proof.Assume that there existsx ∈ R such thatx <B

2x. Thenx+2x+x(2x) = 2x, x(2x) = x, butx 6= 2x. It
follows that3x + 2x2 = 2x, 2x2 = x and hence4x = 2x.
Thus2x = 2x2 + 2x2 = 4x2 = 2x2 = x, a contradiction.

Proposition 4.7.Let (R, +, ·) be a commutative semir-
ing and let<B be a semiring order. Ifx ∈ R such that
2x <B x, then5nx = nx for any natural numbern.

Proof.Assume that2x <B x. Then2x + x + 2x · x =
x, (2x)x = 2x, but 2x 6= x. It follows that3x + 2x2 =
x, 2x2 = 2x, proving that5x = x. By induction, we obtain
5nx = x for any natural numbern.

Proposition 4.8.Let (R, +, ·) be a commutative semir-
ing and let<B be a semiring order. Ifx ∈ R such that
x <B x2, thenx2n = x2, x2n+1 = x for any natural num-
bern.

Proof.Assume thatx <B x2. Thenx + x2 + x · x2 =
x2, x · x2 = x, but x 6= x2. It follows that x2 = x +
x2 +x3 = x+x2 +x = 2x+x2 andx3 = x(2x+x2) =
2x2+x3 = 2x2+x. Hencex4 = x(2x2+x) = 2x3+x2 =
2x + x2 = x2 andx5 = x · x4 = x · x2 = x3 = x, x6 =
x2, x7 = x3 = x consequently, proving the proposition.

Proposition 4.9.Let (R, +, ·) be a commutative semir-
ing and let<B be a semiring order. Ifx ∈ R such that
x2 <B x, then(2n + 1)x2 = x2, (2n)x2 = 2x2 for any
natural numbern.

Proof.Assume thatx2 <B x. Thenx2 + x + x2 · x =
x, x2 · x = x2, butx 6= x2. It follows thatx = x2 + x +
x3 = 2x2 + x and hencex2 = 2x3 + x2 = 3x2. Thus
5x2 = 2x2 + 3x2 = 2x2 + x2 = x2. By induction, we
have(2n + 1)x2 = x2 for any natural numbern.

Since4x2 = 3x2 + x2 = x2 + x2 = 2x2, 6x2 =
4x2 + 2x2 = 4x2 = 2x2 and8x2 = 6x2 + 2x2 = 2x2.
By induction, we obtain(2n)x2 = 2x2 for any natural
numbern.
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