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Abstract: It is well known that for the model with a single trailing-edge control surface, trajectory control of either 
the plunge displacement or the pitch angle (but not of both) can be achieve by the controller design and there exist 
internal dynamics describing the residual motion in aeroelastic closed-loop systems. The internal dynamics of 
aeroelastic depend on the model parameters including the free stream velocity and spring constant. Motivated by the 
limited effectives of using single control surface, improvements in control of limit-cycle oscillation by using leading- 
and trailing-edge control surface are investigated. Moreover, two control surfaces provide flexibility in shaping both 
the plunge and the pitch responses.   This study uses the dynamic sliding mode control (DSMC) to achieve system 
stability and eliminate the phenomenon of limit cycle response. Compared to the conventional sliding mode control 
design, the proposed control law preserves not only the robustness of the system but also avoids chattering 
phenomenon. Simulation results are presented which show that these controllers are effective in regulating the 
response to origin in state space in spite of controller input with saturation. 
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1. Introduction 
The aeroelastic system contains the nonlinear 

interactions generated by structure, inertial force and 
aerodynamics, which can lead to unsteady phenomena 
such as flutter and limit cycle oscillation, and result in 
unstable effects to aircrafts. When a dynamic system 
consists of nonlinear behaviors, system trajectory tends 
to be in some specific states called ‘the attractors’ of the 
system. The common attractors are dots that mostly 
appeared in some state points or circulate on ‘the rings’ 
that composed by a group of system states. This type of 
‘dots’ or ‘rings’ can be named as the ‘fixed points’ or 
the ‘limit cycle oscillations, respectively. The reason 
why limit cycle oscillations would occur in the 
aeroelastic system is yet not apparent, but it is most 
believed that the effect of structural nonlinearity and 
aerodynamics is the major cause of such phenomenon. 
This infers that the nonlinearity in the structural spring 

constant leading to limit cycle oscillations can be 
proved by testing its system stiffness. If the limit cycle 
oscillations constantly occur in the aeroelastic system, 
the aircraft wing structure will suffer continuing 
impairment, even worst, bring about catastrophic 
consequences to the aircraft. Therefore, to provide a 
practical controller to eliminate such flutter and limit 
cycle oscillation phenomena is one of the important 
tasks in the aircraft industry. 

 
The dynamics of an aeroelastic system varies with 

the external force exerted, which is lift and moment, 
due to the aerofoil with the influence of the pitch angle 
and the plunge displacement. A wealth of effort had 
been put into the dynamic analysis either by numeric 
analysis or experiments. Recently, many researchers 
have been done to investigate and analysis aeroelastic 
dynamics [1-7]. It shows that the dynamic behavior of 
aeroelastic system is very complex. Other than the 
study on the issue of system dynamics, the design of a 
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control law as a way to prohibit flutter is as well a 
major concern in an aeroelastic system. Among the 
prior works, there had been a great number of relevant 
control law designs, in which the system is modeled as 
the one merely with a trailing edge control input such as 
nonlinear adaptive control [8], feedback linearization 
[9], and adaptive feedback linearization [10], adaptive 
neural network approach [11], among many others [12-
15].  

 
Sliding mode control (SMC) [16] provides an 

effective alternative to deal with uncertain chaotic 
systems, and has been successfully applied in 
controlling nonlinear system [17]. In the traditional 
SMC, it is assumed that the control can be switched 
from one value to another infinite fast, and this is 
impossible due to finite time delays and limitations in 
practical system. This non-ideal switching result in an 
undesirable phenomenon called chattering. The 
boundary layer approach is introduced to eliminate 
chattering around the switching surface and the control 
discontinuity within this thin boundary layer is 
smoothed out. If systems uncertainties are large, the 
sliding mode controller would require a high switching 
gain with a thicker boundary layer to eliminate the 

higher chattering effect resulting. However, if we 
continuously increase the boundary layer thickness, we 
are actually reducing the feedback system to a system 
without sliding mode. To tackle these difficulties, a 
dynamic sliding mode control (DSMC) is applied to 
deal with the chattering phenomenon. The approach is 
one of the most popular nonlinear techniques of control 
design. DSMC has received attention in recent years 
[18-19]. Introducing extra dynamics into a sliding 
surface helps to solve many difficulties in practice, such 
as flight control design and timescale separation of 
control loops in a multi-loop system. 

 
In this work, a control strategy for aeroelastic 

systems that addresses unsteady phenomenon, such as 
flutter and limit cycle oscillation suppression problem is 
developed. The proposed strategy is an input-output 
control scheme which comprises two sliding mode 
controllers and two integrators. Based on this proposed 
method, the dynamic sliding mode control concept is 
used to obtain a continuous control input. Simulation 
results show that the proposed controller can eliminate 
the flutter undergone in an aeroelastic system, with a 
continuous control input. 

  

2. Aeroelastic systems modeling  
Illustrated in Fig. 2.1 is an aeroelastic system 

model where the wing is of two freedoms. The dynamic 
equation of an aeroelastic system can be expressed as 
[20] 
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In this study, it is assumed that the spring term 

)(αα αk⋅ is nonlinear; a hard spring in fact, is defined 

as 

                 3
21)( αααα α kkk +=⋅  .                        (2.5) 

In the case of a symmetric wing structure, that is, 

0=
αmc , it is a model validated experimentally, 

applicable to a low frequency, subsonic flight case.  In 
this section, the nonlinearity of an aeroelastic system is 
detailed. To begin with, its dynamics is revealed by 
numeric simulation, and for convenience sake, defining 

pbsUc
2

1 ρ=  and 
psbUc
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2 ρ= , the lift term in 

Eq. (2.2) and moment term in Eq. (2.3) are rewritten as 
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    Selecting the state variables as αα &== 21 , xx , 

hxhx &== 43 , the dynamic equation can be converted 

into a state space form as   
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where the parameters are defined in the follows.  
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When the initial condition ][)0( αα &&hhx =  

]degree/s0m/s0degree10m02.0[=  is given and the 

flight speed U is choose as )/(0625.19 sm , the 

simulated parameters are selected in Table 2.1 and 
the numerical simulation results are shown in Fig. 
2.2 

     
As referred to in the preceding section, it then follows 
form the simulations that a bounded limit cycle 
oscillation, referred to as the flutter phenomenon, will 
induce a structural fatigue or deterioration of  the flight 
response in the long run, though a short term effect 
does cause little damage to the wing structure. The 
wing is simulated to demonstrate a repeated flutter of 
invariant amplitude, leading to a need to design a 
controller as a means to obviate the likely damage to 
the wing structure. An aeroelastic state space 
representation, as previously expressed in Eq. (2.7), 
requires the angles β  and γ , against the trailing and 

leading edges respectively, as the control inputs for the 
suppression purpose of the wing flutter. That is, the 
plunge displacement as well as the pitch angle is made 
converge from the initial conditions toward the origin, 
that is     
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Table 2.1. Simulation parameters for an aeroelastic 

system. 
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Fig. 2.1. An aeroelastic system model with two 
freedoms, the plunge displacement and the pitch angle. 

 
Fig. 2.2. Open loop responses of an aeroelastic system; 
(a) Time response of the pitch angle. (b) Time response 
of the plunge displacement.  

(b) 
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3. DSMC design 

In the case of a sliding mode control, there exists a 
task of greatest difficulty in practice, that is, a 
phenomenon of chattering likely accompanied with the 
control input signal. A concept of boundary layers, 
proposed by Burton [16], is adopted as a conventional 
way to rid the control input of the chattering problem at 
the cost of accuracy, an approach not applicable to 
meeting high accuracy requirement. This is due to the 
fact that a higher level of noise may still remain in the 
control input in particular at a high frequency domain 
even with the boundary layer design technique. 

As illustrated in Fig. 3.1, a dynamic sliding mode 
control (DSMC) is newly proposed by Bartolinini as an 
effective manner to eliminate the flutter problem. 
Incorporating an integrator in the front end, the original 
system turns into an augmented system with the 

derivative uw &=  of the original control input as the 

system input. As a consequence of high frequency noise 
filtered out of the input w  by this integrator, essentially 

as a low pass filter, unlike the original system, the true 

system input ∫= dtwu   is gained effectively to 

remove the flutter occurrence. Hence, the use of a 
DSMC is of a double advantage of eliminating flutter 
problem and maintaining the system accuracy. In 
addition, the high frequency component of external 
disturbance existing in w  is filtered out, for which the 

disturbance effect is remarkably reduced. 
 

s

1 uw

 
Fig. 3.1. The schematic of a dynamic sliding mode 
control (DSMC) system. 

 

4. Application of DSMC to aeroelastic systems 

It is intended that an application of the DSMC idea, as 
referred to previously, to an aeroelastic system yields a 
specified response clear of the flutter problem. The 
aeroelastic system state space is represented as Eq. 
(2.7). For the sake of the following design brevity, 
define 
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By way of a change of variables, Eq. (2.7) is turned into 
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Through the idea of DSMC, the differentiation of the 

original control inputs 1u , 2u  results in the control 

states 11 uw &= , 22 uw &= , and then the augmented 

system is formulated as  
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Equation (4.4) can be separated into two parts, i.e.  
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An insight into Eqs. (4.5a) and (4.5b) reveals that 1w , 

2w  are two variables merely appearing in Eq. (4.5b), 

which can be fully replaced with 0| == equus&  in the 

sliding mode according to the equivalent control 
analysis, a fact irrespective of the system stability. 
Therefore, when designing a sliding vector, it merely 
takes Eq. (4.5a) into account, with the system states 

},,,{ 4321 xxxx , and the control inputs 1u , 2u . For 

the purpose of stabilizing Eq. (4.5a), both 1u  and 2u  

are defined as  
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where 1δ , 2δ , 3δ , 4δ  are made according to the 

specified characteristic roots to meet the system 

performance requirement. Then sliding vectors 1s , 2s  

are selected as 
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It can be clearly seen that as long as the sliding modes 

01 =s , 02 =s  are satisfied, Eq. (4.6) holds true. By 

use of a system representation of the sliding modes 

01 =s , 02 =s , Eq. (4.5b) and the equivalent control 

principle 0| == equus& , equivalent controls eqw1 , eqw2  

are expressed as 
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For the sake of approaching time reduction, a 
exponential approaching law as well as constant speed 
approaching law is employed in a approaching type 

such that control laws 1w , 2w  are designed as  

    )sgn()( 1111exp11 sskww eq ξ−−=               (4.11) 

    )sgn()( 2222exp22 sskww eq ξ−−=             (4.12) 

where 1expk , 2expk  represent the exponential 

approaching law , and 1ξ , 2ξ  the constant speed 

approaching law. Choosing a converging time of 4 sec, 

then the characteristic root is specified as i5.01±− , 

corresponding parameters as 25.11 =δ , 22 =δ , 

25.13 =δ , 24 =δ , exponential approaching law as 

501exp =k , 1752exp =k , and constant speed 

approaching lawas 21 =ξ , 1.02 =ξ . The simulation 

results will be discussed in full in the next section. 
 

5. Simulation results 

In this section, the feasibility of the control law design 
referred to in the preceding section is validated through 
numerical simulations. The aeroelastic system 
parameters, as tabulated in Table 2.1, in a terminal 
sliding control are simulated with the initial conditions 

]degree/s0m/s0degree10m02.0[][)0( == αα &&hhx

, a flight speed U of sm /0625.19 , and with 

references 0=dh  and 0=dα  respectively.  

   Shown in Fig. 5.1 are the simulation results of an 
unconstrained dynamic sliding mode control. It is noted 
that from Figs. 5.1(a) and (b) that with a choice of the 

conjugate pair i5.01±− , as well as a damping ratio 

of 0.9 roughly, rather than a furious oscillation during 
the transient state, the pitch angle and the plunge 
displacement both converge to the origin roughly at 
Time = 5 sec. 
     
Plotted in Figs. 5.1(e), (f), (g), (h) are the time 
responses of the controlled trailing, leading edges, the 

control laws 1w , 2w , respectively. Even though there is 

a chattering problem for the control law design, the 
trailing and leading edge angles, as the true inputs to 
the aeroelastic system, turn smooth through an 
integrator. Nevertheless, the smooth inputs are still 

beyond the confinement of 25±  o, a motivation to 

make an improvement as follows. 
    
 As illustrated in Fig. 5.2, integrated with an input 
saturation function in the front end, the dynamic sliding 

controller takes 1u , 2u  as true inputs, subsequent to 

the integration of the control laws 1w , 2w . Then 

derived from Eq. (4.1), the leading and trailing edge 

angles, i.e. γ  and β , are applied to the aeroelastic 

system through the saturation function. Both the control 

inputs γ , β  are indeed the internal states within the 

augmented system, and will be inevitably altered during 
the control process, for which the system response can 
be made as intended by no means. Thus, the control 

laws 1w , 2w  are modified in a way, as illustrated in 

Fig. 5.3, rather than altering the internal states γ , β . 

The modification is stated as follows. 
 
    Illustrated in Fig. 5.3 is the way to modify the control 

laws 1w , 2w , following the introduction of the 

saturation function. Firstly, )0(1w , )0(2w  are 

evaluated by Eqs. (4.11) and (4.12), then explicitly 

discovering )0(β& , )0(γ&  at 0t  as 
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Taking the trailing edge angle β  as an example in Fig. 

5.3, given )0(β&  and 0)0( =β , )1(β  is estimated as 

t∆⋅+= )0()0()1( βββ & . In this case, )1(β  does 

not exceed the saturation level, i.e. there is no need to 
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modify )0(1w , )0(2w . In the same manner, the 

control laws )1(1w , )1(2w  are evaluated, )1(β&  as 

well as )1(γ&  is found by Eq. (5.1), and then 

t∆⋅+= )1()1()2( βββ & . In the case of )2(β  

exceeding the threshold, i.e. an over steep slope )1(β& , 

)1(β&  is thus modified into 
saturation)1(β&  saturation.  

 
    The idea of the improvement is made brief as follows. 
In the event that the input angle at the next instant 

)1( +t  exceeds the saturation level, then the slopes γ& , 

β& at the instant t are requested to be modified into 

saturationγ& , saturationβ& , or otherwise stay unchanged. 

According to the criterion, the control laws 1w , 2w  are 

given by Eq. (5.1), with which the modification is 
completed. The simulation results are presented in Fig. 
5.4. 
 
    As demonstrated in Figs. 5.4(a) and (b), the 
controlled pitch angle as well as the plunge 
displacement exhibits a large amplitude of oscillation 
during the transient state, and the settling time of 5 sec 
is extended into 7 sec as the effect of the confinement 
imposed on the inputs. It can be found that from Figs. 
5.4(e) and (f) as well that the leading edge angle is 

confined between 25± o for 2 sec or so, then 

converging to zero gradually. Compared with the above 
mentioned control strategy, the design of the control 

laws 1w , 2w  , in place of the direct design of the 

inputs γ , β , induces a degraded transient response 

attributed to a more unlikely expected system trajectory. 
However, the goal of the flutter elimination is as 
intended reached, elevating the feasibility in practical 
application. 
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Fig. 5.1. Time responses of an unconstrained wing 
control in the DSMC. (a) Time response of the pitch 
angle. (b) Time response of the plunge displacement. (c) 
Phase plane trajectory of the pitch angle. (d) Phase 
plane trajectory of the plunge displacement. (e) Time 
response of the trailing edge angle. (f) Time response of 
the leading edge angle. (g) Time response of the input 

1w .   (h) Time response of the input 2w  
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Fig. 5.2. A block diagram of the wing controlled 

between ]25 ,25[ oo−  in a dynamic sliding mode control. 
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Fig. 5.3. Modification of the trailing edge slope 
following the introduction of the saturation function. 
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Fig. 5.4. Time responses of a wing constrained between 

]25 ,25[ oo−  in a dynamic sliding mode control. (a) Time 

response of the pitch angle. (b) Time response of the 
plunge displacement. (c) Phase plane trajectory of the 
pitch angle.   (d) Phase plane trajectory of the plunge 
displacement. (e) Time response of the trailing edge 
angle. (f) Time response of the leading edge angle. (g) 

Time response of the input 1w .   (h) Time response of 

the input 2w . 

 
 
 

6. Conclusions 

This study used both controlled edges as inputs to 
analysis the performance of an aeroelastic system. 
Because of a spring with a nonlinear stiffness in an 
aeroelastic model, a limit cycle oscillation exists, 
leading to a fatigue in the wing structure as the 
consequence of a long term vibration with constant 
amplitude at an invariant frequency. Thus, the DSMC is 
proposed to suppress the limit cycle oscillation. In 
terms of a sliding mode control design, the switching 
between functions remains the biggest annoyance, due 
to which the chattering is unpleasantly incurred. 
Proposed in this work, the task is done by directly 
differentiating the input term in the dynamic sliding 
mode control. Subsequently, the derivative terms of the 
inputs are controlled in a sliding mode, and both control 
law designs are validated by simulations as those being 
able to effectively reduce chattering and suppress the 
limit cycle oscillation incurred in wing structures. 
 

Acknowledgements 

The financial support of this research by National 
Science Council, Taiwan, under the grant No. NSC 98-
2221-E-006-209-MY2 is greatly appreciated. 
 

Nomenclature 

h = the plunge displacement  

α = the pitch angle 

 γ = the angles of the leading edge  

β = the angles of the trailing edge 

L = lift aerodynamic term  
M = moment aerodynamic term 
U =the flight speed of the wing 

tm =the total weight of main wing and supporter alike 

wm  =the weight of main wing 

 αx  =the dimensionless distance between the center of 

mass and the elastic axis 

αI  =the moment of inertia 

b = the mid-chord 

αc , hc = the damping coefficients of the pitch angle 

and the plunge displacement  

hk , )(ααk = the spring stiffness coefficients of the 

plunge displacement and the pitch angle r 
ρ = the air density 

a  =the dimensionless distance between the elastic axis 

and the mid-chord 

ps =the Wind Span length 

αl
c , 

αmc  =the lift coefficient and moment coefficient 

per unit angle of attack  

(h) 

(g) 

(f) 

(e) 
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βl
c , 

βmc = the lift coefficient and moment coefficient 

per unit angle of the trailing edge. 

γl
c , 

γmc = the lift coefficient and moment coefficient 

per unit angle of the leading edge 

effmc
−α

, 
effmc

−β
, 

effmc
−γ

= the moment derivative 

coefficient for per unit angle of attack, trailing edge and 
leading edge 
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