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Abstract: In this paper we propose the class of AND-NOT networks for modelingpical systems and show that it provides

several advantages. Some of the advantages include: Any finite éhalaystem can be written as an AND-NOT network with similar
dynamical properties. There is a one-to-one correspondencedredD-NOT networks, their wiring diagrams, and their dynamics.
Results about AND-NOT networks can be stated at the wiring diagramvétreut losing any information. Results about AND-NOT

networks are applicable to any Boolean network. We apply our results ¢mke&n model of Th-cell differentiation.

Keywords: Steady states, AND-NOT logic, NAND gate, Boolean model

1 Introduction different regulators 15,16,17]. This fact motivated the
study of conjunctive Boolean networks, that is, networks

Discrete models have a long and successful history inWhose logical rules are constructed using exclusively the

systems biology, beginning with Boolean network AtNtD operator 5],’ vlvhere expllcndfolrmulasé) for dste?dyth
representations of molecular network$ &nd their later states are given, also, upper and lower bounds for the

generalization, so-called logical modelg].[ They are ”“”?ber _and length of limit cycles are provided. But
conjunctive Boolean networks cannot account for

qualitative, time-discrete models that focus attention on.nhibit v requlation and the resulting neqative feedback
the qualitative features of the system, such as the Wiringi ory reguiation a € resulting negative feedbac

diagram, and are particularly suitable for the analysis of oops, which are common in gene regulatory networks.

steady state behavior of molecular networks. However, aéAIIO\:ngr tihe N?r;r OA‘ﬁ[r)aﬁgT”:] et‘\(/jvd'rt:(on to rth; ﬁ\NIch
models become larger it is increasingly difficult to operator (i.e. using ) etworks), can make the

analyze them. In order to keep the analysis of SuChfamlly of networks sufficiently general to be useful for

networks tractable, many studies have focused on specifi@mde'Ing 18]
classes of networks such as: single-switch, unate, nested For a formal argument that the family of AND-NOT
canalizing, threshold, AND, AND-OR, and linear networks is general enough for modeling, we will show
networks B,4,5,6,7,8,9,10,11,12,13,14]. In order to be  that any discrete model (finite dynamical system, to be
useful for modeling, a family of networks has to be precise) can be represented by an AND-NOT network.
“sufficiently general” for modeling biological interactie  More precisely, we present an algorithm that assigns to a
and “simple enough” for theoretical analysis. In this papergiven general discrete model an AND-NOT network
we propose the family of AND-NOT networks as such which has the same number of steady states, together with
family. AND-NOT networks are a particular the class of an algorithmic correspondence between steady states of
Boolean networks that are constructed using only thethe two networks. This is achieved by adding nodes to the
AND (A) and NOT () operators. network as needed. The potential drawback of this
A biological justification for the use of AND-NOT algorithm is of course that the network size can
networks is that there is evidence that for genes that ar@otentially get significantly larger, thereby potentially
regulated by more than one other gene, the differenihegating any computational advantage gained by the
binding sites exhibit synergistic effects between thespecialized logic. However, since molecular networks
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have typically small in-degree, this growth in the numberwhere PAN = { }. If P=N = { }, then h is the constant
of network nodes to be added is modest in the case ofunction 1. If ie P (i € N, respectively) we say that i or x
molecular network models. We demonstrate this throughs a positive (negative regulator of h or that it is an
an analysis of several published models and randonactivator (repressor). AnAND-NOT network is a

networks. Boolean network (BN),
To argue that AND-NOT networks are simple enough f = (fq,..., fs) : {0,1}" — {0,1}", such that if is an
for theoretical analysis, we will show how using the AND-NOT function for all i= 1,...,n. AND-NOT

specialized logic of AND-NOT networks can provide networks are also calledigned conjunctive networks
better theoretical results. For example, 9]} it was

shown that an upper bound for the number of steadyPefinition 3. The wiring diagram of an AND-NOT
states can easily be computed for AND-NOT networksnetwork is defined by a graph & (Vg, Eg) with vertices
(which is not true for arbitrary networks). Also, iaq, it ~ Vo = {L....,n} (or {x1,...,%}) and edges E given as
was shown that the exact number of steady states ofollows: (i, j,+) € Eg ((i, ], —) € Eg, respectively) if xis
AND-NOT networks are encoded in the topological @ positive (negative, respectively) regulator gf Notice
features of the wiring diagram, and that, in some casesthat nodes corresponding to constant functions have
the problem of finding the exact number of steady statedn-degree zero. Also, the wiring diagram of an AND-NOT
can be transformed to the prob|em of f|nd|ng maximal network contains all the information about the network;
independent sets of the wiring diagram, which has beerthat is, we only need to specify the wiring diagram in
extensively studiedZ1,22,23,24,25,26,27,28,29,30]. In  order to define an AND-NOT network.

this paper we will show how the specialized logic of :
AND-NOT networks can give us better upper bounds for Example 1. C0n5|der6 the 5 Boolean  network
the number of steady states; more precisely, we providd = (f1,---: fe) : {0,1}> — {0,1}" given by

an upper bound for AND-NOT networks that improves on X) = (X2 A Xq A —X5, X1 A Xg A X3 A —X5, 1, X6 A X1 A
previous upper bounds. Furthermore, we show how thig *6:X6/\ 7X1,1). Itis easy to see thaft is an AND-NOT
upper bound for AND-NOT networks can actually be Network. Its wiring diagram is shown in Figute

used for general networks. We use our results to analyze a

Boolean model of Th-cell differentiation. Another

theoretical advantage of AND-NOT networks is that they

are in a one-to-one correspondence with their wiring

diagrams. This observation has several implications, one l<—>2¢—3

of which is the possibility to relate dynamic network

properties with features of the wiring diagrarh, Z20].

Also, from a given signed wiring diagram one can do—5<«—6

unambiguously construct and AND-NOT network, which N~

implies that all algorithms or results can be stated at the

“wiring diagram level.” Fig. 1: Wiring diagram of the AND-NOT network in Example

2 Definitions As mentioned in the introduction, some other families

of networks that have been studied in the past are
SR e single-switch, linear, AND, AND-OR, unate and nested
V\fre denote _il = 1 ¢ (g € Esh canalyzing functions3, 4,5,6,7,8,9,12]. Each family has
=4 i+ € Eej and s own advantages; however, for the purpose of modeling
lim ={J:(,,-) € Es}.That is, | is the set of all pjg|ogical systems and for theoretical analysis, it is of
incoming edges for node i, and Iresp. | is the subset  interest to have the following properties: First, networks
of positive, resp. negative, edges. All graphs in the rest ogenerated using these families should be able to admit a
the paper will be signed directed graphs unless notedsign assignment; that is, it should be possible to
otherwise. determine the sign of an interaction. Second, in principle,

In order to simplify the graphical representation, we !t should be genera}I enough to model all networks; tha}t is,
denote two negative (positive) edges betweandj by a it should be possible to model any type of regulation.
bidirectional negative (positive) edge—e (<« ). If the Third, for theoretical analysis, it would be useful to have
edges have different signs we denote thene-by. a one-to-one correspondence between wiring diagrams
Definition 2. An AND-NOT function is a Boolean and networks. This property would allow complete

. i i encoding of a network in its wiring diagram. The family
function, h: {0,1}" — {0,1}, such that h can be written ¢ jinear functions satisfies the third property but not the

Definition 1. For a signed directed graph & (Vg, Eg),

in the form first two. The family of AND functions satisfies the first
h(Xq, ..., %) = /\Xj/\ /\ X, and third property bu_t not the _second. The family of
jep jeN AND-OR functions satisfies the first property but not the
@© 2013 NSP
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last two. Single-switch, unate, and nested canalyzingAND-NOT network g, such that there is a bijection
functions satisfy the first two properties but not the third. between the steady statesfondg.

On the other hand, AND-NOT networks satisfy all We proceed by induction. First, consider the
three properties. The first property is satisfied because theonjunctive normal form off,; fo =wi AW A== AW,
sign of a regulation is given by the presence or absence ofvherew; is of the formw;(x) = siX1 V X V -+ V SuXy
the NOT operator. The third property follows from the with 5 € {id,—} (id =identity function). Notice that-w;
fact that if the positive and negative edges @re given is an AND-NOT function. Then, define the BN
by P andN, resp., then the function for nodés uniquely  k = (kg,...,kqr) @ {0,1}™" — {0,1}™" in variables
given by fi = AjcpXj A Ajen —Xj. The second property is  (X,...,%a,Y1,...,¥r) by  ki(xy) = fi(x) for
given by the fact that any finite dynamical system canbei = 1,....n— 1, ky(X,y) = =y1 A =y2 A --- A =y, and
expressed as an AND-NOT network. More precisely, ki(x,y) = —wi(x) fori=n+1,...,n+r.

Theoreml guarantees that steady states are preserved if We now check that the function
we rewrite a general finite dynamical system as ang(x) = (x,~wi(X),...,~W;(X)) gives a one-to-one
AND-NOT network. correspondence between steady states fofand k.

Suppose thaf (x) = x, then

k(p(x)) = k(f1(X),..., faca(X),w1(X) A Wo(X) A ... A
3 Results Wr (X),W1(X), ..., Wr (X))

= k(f1(X), ..., fnm1(X), fn(X), W1 (X), ..., W (X)) =
In this section we show why AND-NOT networks are a (X,~Wi(X),...,~W(X)) = @(X); that is, @(x) is a steady

good framework for modeling biological systems. statek. Now, suppose thdt(x,y) = (x,y) and notice that
in this casey; = ki(x,y) = —wi(x); then (x,y) = @(X).
Also, F0 = (R, faea (%), Ta(X))

3.1 AND-NOT networks are general enough for = (Ki(%,y),..-,kn-106Y),Wi(X) A Wa(X) A - A Wi (X))

modellng = (Xla“-;xn—bﬁyl Aoy A e A ﬁyl’)

= (X1,.. -, X-1,kn(X,y)) = (X1,...,X—1,%) = X. That is,

One issue that can potentially arise when only usingx Is a steady state off. Thereforek = (ky,....knr) is a

certain classes of networks is that one can have difficult;F’N wherek,), -, knir are AND-NOT functions and such
- 1Ihat there is a one-to-one correspondence between the

steady states df andk. By induction, it follows that there

is an AND-NOT networkg : {0,1}™ — {0,1}™ together

with a bijection between the steady stated @indg.
Therefore, there is a bijection between the steady

states ofh and g. Furthermoreg and the bijection are

given algorithmically.

AND networks does not allow modeling negative
interactions. Another example is that the family of linear
networks, does not allow modeling signed interactions. In
order for a family of networks to be useful for modeling,
is has to allow modeling any type of interaction.

Here we show that the family of AND-NOT networks
is general enough for modeling. More precisely, we show
that for any finite dynamical system, there exists an AND-
NOT network (possibly with more nodes) such that they
share key dynamical properties.

The transformation of finite dynamical systems to
Boolean networks has been discussed3i].[So, in the
rest of the paper we will focus on Boolean networks and
AND-NOT networks.

Theorem 1. Let h= (hy,...,hy) : S— S be a finite ] 5 5

dynamical system, where=SX; x --- x X, and all X’s Example 2. Consider the BNf : {0,1}°> — {0,1}° given

are finite. Then, there exists an AND-NOT networkPY fi =XV X, f2 =x1AXs, f3 = (X2 V X)) A Xs,

g: {0,1}™ — {0,1}™ such that there is a bijection f4 = X3V xs, f5 = X3. The wiring diagram off is given in

between the steady states of h and g. Furthermore, g anffigure 2 (left). In order to transform this BN to an

the bijection between steady states is givenAND-NOT netyvork we introduce the variabbg with

algorithmically. We say that g is an AND-NOT Boolean functionfs = =Xz A X4 and f7 = =x3 A =%s.

representation of h. Variablesxg andx; will be used ing; andgs. Notice that
sincex, V —X4 appears again ifi, we can simply reusgs

Proof. A simple proof uses the facts that any finite to keep the number of extra variables as small as possible.

dynamical system can be written as a Boolean networkThen the AND-NOT network isg : {0,1}7 — {0,1}7

[31], and that any Boolean function has a conjunctive given byg; = —Xs, 02 = X1 A X3, g3 = —Xg A X5, 04 = —X7,

normal form. Os = X3, Os = X2 A X4, 7 = —X3 A —Xs. The wiring

In [31], the authors proved algorithmically that for diagram ofg is shown in Figure (right).

any finite dynamical systerh, there exists a Boolean

network f (possibly with more nodes) such thatand f An additional step in the transformation that can keep

have the same number of steady states. Furthermore, tHbe number of extra variables small is given by the

bijection of steady states is also given algorithmically. following proposition.

Therefore, we only need to show that there exists and

© 2013 NSP
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Fig. 2: Wiring diagram of the BN network and the AND-NOT
networkg in Example2.

I 1\/4\

2=-—>=3

2

Proposition 1. Let f: {0,1}" — {0,1}" be a BN and
define g: {0,1}" — {0,1}" by g= N¢o f o Ny, where
Ni(X1,. .3 Xn) = (X2, ooy Xke1, =Xk Xk 2y - - -, Xn). Then f
and g are dynamically equivalent.

Proof. It is enough to notice thal is invertible with
inverseNk. Then,g" = N¢o f" o N; that is, evaluating is
equivalent to evaluating.

If some functions of a BN are OR-NOT functions,
then we can use Propositidrto transform the BN into a

BN in the same number of variables such that the

OR-NOT functions become AND-NOT functions. Also,
Propositionl can be used to transform constant functions
fx = 0 into constant function$, = 1 (if fx = 0, then the
k-th coordinate function ofNk o f o N¢ is the constant
function 1).

Example 3. Consider the BN : {0,1}3 — {0,1}3 given
by fi = Xp, f2 = X1V —X3, f3 = X2 A x3. The wiring
diagram off is in Figure3 (left). Sincef;, is an OR-NOT
function, we can transform it to a AND-NOT function
using Propositioril. Considerg = Ny o f o Np, given by
9(x) = No(f(x1,7X2,%3)) = No(—X2,X1 V X3, X2 A X3)
(—\Xz, ﬂ(X]_ V —\Xg), X2 AN Xg)

= (—Xg, X1 A X3, =X2 A X3), With wiring diagram shown in
Figure 3 (right). Then,f is dynamically equivalent to an
AND-NOT network. Notice that the effect of this
transformation on the wiring diagram is simple, we
simply change the signs of the edges around node 2.

/1 /1
20 > 2 <@

Fig. 3: Wiring diagram of the BN network and the AND-NOT
networkg in Example3.

As mentioned in 31], an advantage of transforming

the information of the role of feedback loops to the wiring
diagram. In this case, the wiring diagram is not only a
rough representation of the network, but it encodes all the
information of the network; in this sense the wiring
diagram “becomes” the network. This has the potential to
reduce the problem of studying the structure of the state
space graph (which has" Z2lements) to studying the
structure of the wiring diagram of the AND-NOT
representation (which has > n elements). This can help

in understanding the precise role of the network topology
in the network dynamics. A similar approach was used
successfully to study conjunctive and linear networks [
4].

3.2 The variable growth in AND-NOT
representation is small

For practical purposes it is important to obtain an estimate
of how much the AND-NOT representation can increase
the number of variables. For arbitrary Boolean networks,
the number of extra nodes can be exponential in the
number of nodes. However, Boolean models of biological
systems are not arbitrary and are actually very sparse with
very low in-degree (typically described by a power law
distribution B2,33]). We will now show that in practice
the number of variables introduced by the algorithm can
be small.

Table 1: Number of extra variables introduced by the AND-NOT
representation. The number of nodes folnd its AND-NOT
representationg, are denoted by, m, respectively. The BNs
were taken from34, 35,36,37,38].

n m | % increase
12 | 13 8%
12 | 15 20%
14 | 15 7%
20 | 24 20%
23 | 26 13%
28 | 28 0%
40 | 43 7.5%

In order to study this question, we have applied the
procedure to several published models in the literature
and studied the question using randomly generated
Boolean networks. The first study shows that the increase
in the number of variables for published models is modest
(Tablel). The number of variables was increased by 14%
on average with a maximum value of 4 extra nodes. In
order to determine the number of extra nodes introduced
by our algorithm for more general BNs, we did a

finite dynamical systems into Boolean networks is that it statistical analysis. To mimic wiring diagrams coming

can provide insight into the role of feedback loops by

from biological systems, the edges followed a power law

disentangling them. In this sense, transforming finitedistribution and we considered the maximum in-degree
dynamical systems into AND-NOT networks can pass allless than or equal t§ for K =1,...,10 (see Appendix A

© 2013 NSP
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Table 2: Average number of extra variables introduced by the Our first result in this section is an application 88]

AND-NOT representation for random BNs. Theorem 3.2] to the family of AND-NOT networks (see
in-deg< K | % increase Appendix B for the proof).
K=1,2 0%
K=3 5.2% Theorem 2. Let W be the wiring diagram of an AND-
K=4 10.8% NOT network, and suppose J intersects all strong positive
K=5 16.2% feedback loops of W. Then, the number of steady states is
K=6 20.8% at mostzm_
K=7 24.8%
K=8 28.6% Example 4. Consider the AND-NOT network with
K=9 32.3% wiring diagram given in Figure4. The only strong
K=10 36.1% positive feedback loops arél,2} and {1,3,5}. Since

J = {1} intersects them, Theorethguarantees that there
are at most 8! = 2 steady states.

for details). The results of this second study are shown in  |ntuitively, Theorem?2 is telling us which positive
Table 2. For example, all networks where nodes havefeedback loops contribute to the presence of steady states;

in-degree bounded by = 2 can be transformed to it says that they have to be strong. We also provide a
AND-NOT networks without increasing the number of slight generalization of Theoren2. We need the

nodes. For networks where nodes have in-degree boundeg|llowing definition.

by K = 4, our method increases the number of nodes by A feedback loofC of a graphW is calledinconsistent

10.8% on average (see Appendix A for details). It is if there is a verteske such that there is a positive path of

important to mention that in both tables, the growth in thethe formke — iy — -+ — iy — tc fromkec totc € Cand a

number of extra nodes is far less than exponential. negative path of the fortkc — j1 — -+ — jr —e Uc, from

kc to uc € C such thake — tc, ke —e Uc are not edges in

Cand|lj,|=...=|lj,| = 1. When such vertel does not

. exist, we say that is consistent

3.3 ANP'NOT networks can be useful in For example, consider the graj in Figure5. The

theoretical analysis positive feedback loop3, 4} is inconsistent because of the
paths 1— 3 and 1— 2 —e 4. The positive feedback loop

As mentioned in the Introduction, the specialized logic of {5 6} is inconsistent because of the paths;3 — 5 and
AND-NOT networks can be used to obtain better L —® 6. Also, the positive feedback loofd, 2,4,3,5} is
theoretical results. Such results can arise directly (8,g. nconsistent because of the paths B — 5Sand 1 2 —e
20) or by applying results about general Boolean 4. Then, the only consistent feedback loops{r} and
networks to the family of AND-NOT networks. In this {1,3,5}.
section we show examples of the latter. First, we need the
following definitions.
Let C be a feedback loop of a grajgh We say thaC
is astrong feedback loop if there are no edges of the form
k—i,k—e jin G\Csuchthai,jeC. 1—3——=>5
For example, consider the gra@in Figure4. The 1 I
feedback loop{3,4} is not strong because of the edges
13, 1—e 4; {56} and{1,2,4,3,5} are not strong 2——e4 6
because of the edges2 5, 1 —e 4. All other feedback Wi
loops are strong.

Fig. 5: Wiring diagram of the AND-NOT network in Exampte

- Ta We say that a set C {1,...,n} dominatesa graphw
1—3——=5 if J intersects all consistent positive feedback loops and
I for each feedback loo@ that is inconsistent and strond,
intersect<C or J contains at least orlg:.. For example, the
2—e4 6 set{1} dominates the grapl in Figure5.
G With these definitions we have the following theorem
that gives an upper bound on the number of steady states

) _ N using topological features of the wiring diagram (see
Fig. 4: Graph with only one strong positive feedback loop. Appendix B for the proof).

© 2013 NSP
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Theorem 3. Let W be the wiring diagram of an
AND-NOT network, and suppose J dominates W. Then
the number of steady states is at m@&t

Boolean —™™-» Dyn. Proj

It is not difficult to see that the bound given by Thm. 1 Thm. 1

Theorem2 is greater than or equal than the bound given

by Theorem 3. The next example shows that the AND-NOF-—= Dyn. Proj
inequality is in some cases strict. '

Example 5. Consider the BN : {0,1}° — {0,1}° given Fig. 6: Extension of theorems about AND-NOT network to all

by Boolean networks.

fi =X A Xs,

f2 = X1,

f3 = X1 A —Xq,

fq = —Xo A\ —Xs, variables, f : {0,1}?% — {0,1}?3. Below is the list of
fs = X3 A —Xg, Boolean functions. The wiring diagram is shown in
fe = — X1 A —Xs, Figure?.

x1 =GATA3 ,f; = (Xl\/le)/\—!Xzz;

X2 =|FN—B ,fz =0;

X3 =|FN—BR,f3 = Xo;

X4 =IFN—y , f4 = (X1aVX16V X20V X22) A =X19;
Xs =IFN—-yR , fs =xy;

Xe =I1L—10 ,fg =Xy

X7 =IL—10R , f7 = Xg;

Xg =IL—12 , fg =0

X9 =
X0 =1L — 18 ,flO
X11 = IL-18R , f11 = X130/ =X21;

Its wiring diagram is shown in Figur®. It is easy to
see that{1,3,5} intersects all strong positive feedback
loops. Then, Theorer@gives the upper bound2= 8. On
the other hand, sincél} dominates the wiring diagram,
Theorem3 gives the upper bound 2. That is, Theor8m
gave a better upper bound on the number of steady states.
Notice that in this case the actual number of steady states
is 2, namely, 000101 and 111010.

One might argue that having better results for
AND-NOT networks is not enough to justify their use.
After all, since we are considering a smaller family of

1l
o

Boolean networks we should of course obtain stronger §12 - :Il:in ’ ]]:12 - il A/\ﬁx)l(s;,
results. However, the combination of Theoreand X13: IR;K ’ fl3: X12_ S
results about AND-NOT networks automatically 14 = » 4T D _

X15 = JAK1 R f15 = X5\ —X17;

generates theorems for all Boolean networks.
Furthermore, such combination can in some cases provide
stronger results. This deserves further explanation which
is illustrated in Figure6. Consider a theorem about
Boolean networks that gives us information about certain
dynamical properties, “Thm.”. On the other hand,
consider a similar theorem about AND-NOT networks,
“Thm.*”. Then, given a Boolean network we have two
choices, we can apply Thm. fg or, we can use Theorem
1 to find the AND-NOT representation df, then apply
Thm*, and then use Theorerh to obtain information
about the original Boolean network In Section3.4 we
use a published Boolean model to show that the latter ca
give stronger results.

For example, combining Theoretnand 3 we obtain
the following theorem.

x16 = NFAT | f15 = Xp3;

X17 =S0C3 | f17 = X8V Xp2;

X1g = STATL | fig = X3V X5,

X19 = STAT3 |, f19 = X7;

Xo0 = STAT4 , Too = X9 A —Xq;

X1 = STATe , fo1 = X3,

X2 =T —bet , foo = (X18V X22) A =Xq;

Xo3 = TCR s f23 =0.

Using our algorithms we obtain the AND-NOT

network, g : {0,1}°6 — {0,1}2®, shown in Figures. It

turns out that the sef1,22} dominates the wiring
iagram ofg (see Appendix C for details). Then, by
heorem4, the number of steady states bfis at most

22 = 4. On the other hand, all previous results about

steady states (e.g8,[L9]) give 8 as the upper bound. That

is, using the AND-NOT representation can provide a

Theorem 4. Let f be any Boolean network and suppose better upper bound, even for general Boolean networks.

that J dominates the wiring diagram of its AND-NOT The actual number of steady states of the model is 3 (see

representation. Then, f has at m@st steady states. [36] for details).

We now show that this theorem can in fact provide a

better upper bound for the number of steady states. ) .
4 Discussion

3.4 Application to Th-cell differentiation The results presented in this paper, together with other
results in the literature, support that the family of

We apply our results to the BN model proposed 3%][ AND-NOT networks are general enough for modeling
for Th-cell differentiation. The model is a BN in 23 and simple enough for theoretical analysis. Given any

© 2013 NSP
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actually contained in the network’s wiring diagram.
w& Specifically, there is a one-to-one correspondence
23 10 8 (4 Q12 . between AND-NOT networks and graphs, so that the

6
network can be reconstructed unambiguously from the
J L" i wiring diagram. In fi0] the authors followed a similar
16 11 9 5 ?13 7

approach to successfully study cascading effects. Second,

due to this correspondence, we can state all results about
2 L 14 20~ 151 | =21 19/ reformulated as questions about graphs; then, one can use
l ‘ J l tools from graph theory and combinatorics to study them
3

means that questions about AND-NOT networks can be

AND-NOT networks using wiring diagrams only. This
(e.g. antichains, posets, inclusion-exclusion pringiple

independent sets 5J20]). This deserves further

622‘ 18’ Cl — investigation.
* Finally, we point out that AND-NOT networks are

special cases of so-calledested canalyzingBoolean
networks. They are Boolean networks where each
Fig. 7: Wiring diagram of the Th-cell differentiation model. Boolean function can be written in the form
h =y, 010, 02(¥i305(- . ))), whereij € {1,....n} (nis
the number of nodes)y; € {A,V}, andy;; € {X. ;i )
These were first mtroduced i1Q,11] as good candidates

yoq for models with “biologically meaningful” regulatory
jl rules, and have since been studied extensivelyl 3hthis
. concept was generalized to multi-state models, and it was
23 10 8 4 12, . shown there that the large majority of regulatory rules that

this form. It was shown furthermore that nested
canalyzing networks have dynamic properties one would
expect to find in biological networks, such as short limit

116 £1J Lg 5 13
|l

6
l appear in published models of biological networks are of
7

L cycles and a small number of attractors. Thus, the results
2 14 20— 15/ =2 19- in the present paper imply that in order to study the steady
i ‘ Ji state behavior of general network models, one can focus
2 17¢—25 18/ —1 on the very restrictive class of nested canalyzing networks
‘ oo ‘e . [14]_, mstantlate_d as AND.-NOT networks and make use of
7 ] I their very special properties.
25 2

Fig. 8: Wiring diagram of the AND-NOT representation of the Appendix A
Th-cell differentiation model.

We describe here the details of the study to determine

how many nodes are added by the construction of the

AND-NOT representation. To mimic wiring diagrams
finite dynamical system, it is possible to create ancoming from biological systems, the edges followed a
AND-NOT network such that they have similar power law distribution. More precisely, givéfixed and
dynamical properties. This has two implications: First, a parametey, the probability for a node to hade< K
this means that using AND-NOT networks in modeling nodes ispx = k™Y (up to a normalization factor). For
does not pose any technical restriction on the type ofexample, ifK = 4, the probabilities of having 1, 2, 3 and
interactions one can model. Second, every result about nodes arep; = clY =c¢, pp =27, ps = c37Y and
AND-NOT networks can be applied to general Boolean p, = ¢4, respectively, where = W S0
networks, which can give better results (e.g. Theo®m  that p; + pp + ps + ps = 1. Also, to mimic b|olog|cal
One potential drawback for this framework is that the regulation, we restricted our analysis to Boolean
AND-NOT representation can have more nodes.functions that admitted a sign assignment for the edges.
However, for networks that arise from modeling These Boolean functions are called unate, biologically
biological systems, this increase in the number of nodes isneaningful and regulatory functiong,p, 8].
modest (SectioB.2). Denote withe, the average number of extra nodes

Other advantages of using AND-NOT networks are introduced by a Boolean function kvariables. Then, a

the following: First, all information about the network is BN that follows the distribution mentioned above will
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have, on averaggner + p2& + --- + pce extra nodes.
Now, we need to estima.

Consider a Boolean functiorh, that depends ok
variables. Fork = 1 there are 2 functiond) = x; and

Then, the average number of extra nodes is

100(p1€1 + P2€2 + P3es + paes) =
100(.786 % 0 + .139% 0 + .0504% 1 + .0246% 2.35) ~
10.8%.

h = —x; and we do not need to introduce any new nodes;

thene; = 0. Fork = 2 there are 8 functions and they are
of the form h = s1x1 A X% or h = X1 V $X2, where
SX = X or sx = —x. For functions of the form
h = $1X1 A %2 we do not introduce any new nodes, and
for functions of the formh = s;x; V S5x» we can use
Propositionl to transformh to an AND-NOT function, so
we do not introduce new nodes either. Tren= 0. For

Appendix B

Here we prove Theore@and3. As mentioned in Section
3.3 Theorem2 is an application of39, Theorem 3.2] to
the family of AND-NOT networks. First we need the

k = 3, there are 72 functions. An exhaustive-searchfollowing definition.

analysis shows that of those 72 Boolean functions, 16

Let f: {0,1}" — {0,1}" be a Boolean network and

introduce 0 nodes, 48 introduce 1 node, and 8 introduce Fonsiderx € {0,1}". Then,W(x) = (V,E) is the graph
nodes; then the average number of extra nodes in this cag#ith verticesvV = {1, ..., n} and the following edges:

is g3 = 160148183 — 7 For k = 4, there are 1824

(j,i,4) e Eif x; =0andfi(x) < fi(x+e¢j), orif x; =1

Boolean functions. An exhaustive-search analysis show&nd fi(x—e;) < fi(x);

that of those 1824 functions, 32 introduce 0 nodes, 32

dj.i,—) € Eif xj; =0 andfi(x) > fi(x+ej), orif x; =1

introduce 1 node, 480 introduce 2 nodes, 960 introduce 2Nd fi(x—e€j) > fi(x);

nodes and 32 introduce 4 nodes; thus the average numb

of extra nodes in this case is

ey — 32:0£320:11480-21960:3132:4 _ > 35 Fork — 5 there

wihere g is the vector given by(ej)i = &; (J is the
Kronecker delta). Notice that ifj,i,+) or (j,i,—) is an
edge inW(x), then changing thg-th coordinate ofj

1824 . .
are 220608 functions and an exhaustive-search analysRfoduces a change irj. Notice that for AND-NOT

shows thates = 4.03. Fork = 6 there are approximately

networks we have that/(x) C W for all x; in fact, this is

5 x 10° functions and an exhaustive-search analysisfrue for more general networks.

would be unfeasible. However, we have the following
result.

Theorem A.1. The average number of extra nodes for
a unate function of k variables is at mostiC| k/2]); that
is, & < C(k, |k/2]). Where C is the binomial coefficient
and| | is the floor function.

Proof. Without loss of generality we assume the CNF of
the Boolean functiorf has no negative signs. Lét=wj A

... AW, be the CNF, wherw; has the formw; =x; V...V

xs. For each, defineS = {I : x; appears iw; }.

Now, if there arei, j such that§ C Sj, then we can
simplify wi Aw;j tow; (€.9.(X1V X2) A (X1 VX2 VX3) =X V
Xp). That is, we can simplify the CNF so th&t¢ S; for
alli # j.

Thus, Sy,...,S is a family of subsets of1,...,k}
such that no one is contained in the other. Sperner’
theorem §1] states that < C(k, |k/2|). This implies that
for any unate function irk variables, we need at most
< C(k,|k/2]) extra nodes to obtain the AND-NOT
representation. Therefore, < C(k, | k/2]).

Theorem B.1.39] Let f be a Boolean network and
suppose a and b are steady states of f. Then, there there
exists x such that \x) has a positive feedback loop with
vertices in the sefi : a # b }.

We now prove Theorerg.

Proof. Let ¢:{0,1}" — {0,1}" defined byg(x) = x;.
We will show that ifa # b are steady states @f, then
¢(a) # @(b). Considera # b steady states df; then, by
Theorem B.1., there exiskssuch thatV(x) has a positive
feedback loopC, with vertices in the sefi : & # b; }.
We claim thatC is a strong positive feedback loop of

W. By contradiction, suppose thereks {1,...,n} and
i, ] € Csuchthak — i andk —e j are edges ifW(x) but
not in C. Then,W(x) has edges of the forrfi;,i,+) and

S(Iz,j,i) where 11,12 # k. On the other hand, since

(k,i,+),(k,j,—) € C C W(x) € W, we have that
fi=xA...andf; = -xA.... We have two caseg =0
or xx = 1. In the casex = 0 we obtain thatf; = 0 for all
values of X,...,Xk-1,%1,---, % INn particular, W(x)

It is important to mention that the exhaustive-searchcannot have an edge of the folii, £) with | # k; this is

analysis done fok = 3,4,5 suggests thag is actually
much smaller tha@(k, |k/2]). In fact, we did a statistical
analysis fork = 6,...,10 using a total of 5000000

a contradiction. In the casg = 1 we obtain thatf; = 0
for all values ofxy,..., X 1,Xu:1,---,%y. IN particular,
W(x) cannot have an edge of the fofilp j, +) with | #Zk;

Boolean functions chosen at random (1000000 for eachhis is a contradiction as well. Therefof@js strong.

k). The analysis shows the following approximations:

€~ 532,67~ 704,63 ~9.32,69 ~ 12.24, €19 ~ 15.96.
Table2 shows a summary of our analysis fpe 2.5.

For example, iK = 4, then the fractions of functions with

1, 2, 3 and 4 variables are on average = .786,

p2 = .139, p3 = .0504 andps; = .0246, respectively.

SinceC is a strong positive feedback loopW, C must
intersect]. SinceC has all its vertices in the sét : g #
bi}, Jintersects the sdi : g # b }. Thereforep(a) = ay #
b; = ¢@(b). It follows that the restriction ofp to the set
of steady states is an injective function. Therefdfe,:
f(x) =x}| < [{0,1}MI| =2V,
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It is important to mention that Theorewas also
proven in fL9] using different techniques.

We now prove Theorer8.

Proof. Let f : {0,1}" — {0,1}" be an AND-NOT
network with wiring diagramW. Let C be a positive

feedback loop that is strong and inconsistent. Then, there

is a vertexkc such that there is a positive path of the form
ke — i1 — - =iy = tc fromkec totc € C and a negative
path of the formkc — j1 — -+ — j; —e Uc, from k¢ to

Uc € C such thatkc — tc, ke —e uc are not edges i€
and|lj,| =...=lj,| = 1. LetG be the graph obtained by
adding toW all edges of the fornkc — tc andkc —e uc
where C does not intersect J. Denote hy
g:{0,1}" — {0,1}" the AND-NOT network associated
to Z. We claim that the steady states bfand g are the

same. We prove this by induction on the number of extra

edges.

Suppose thatV andZ only differ in the edgek — t,
then, by definition we must also have a p&th> i; —
... — iy = t. Suppose thag(x) = x, we need to show that
fj(x) = x; for all j. SinceW andZ only differ in the edge
k —t we havef; = gj for j #t, gt = ft Axc and fy = X, A
.... Then,fj(x) = gj(x) = x; for j #t. It remains to show
that f; (x) = .. Consider first the case = 0, then,g;(x) =
0 andx; = 0 for somd € I". If i # k, we have that the edge
i—tisinWandfi =x, AXA...;then, fi(X) = x, AOA
...=0=x. If i =k, thenx, = 0 which implies thakj, =0
(because of the edde— i1); similarly, we obtain that;, =
0. Then,fi(x) =0A ... =0=x. Thatis, fi(X) = %. Now
consider the case = 1. Since 1=x = g(X) = ft(X) A X,
we havefi(x) = 1= x. A similar argument shows that if
f(x) = x, theng(x) = x. The proof for whetw andZ only
differ in the edgek —e t is analogous. By induction we
obtain thatf and the AND-NOT network obtained by a
completion oW have the same steady states.

Now, we claim thatJ intersects all strong positive
feedback loops oZ. LetC' be a strong positive feedback
loop of Z. Then we have two case8! is in W or it is not.
Consider the cas€’ C W. Then,C' is a strong positive
feedback loop inw. If C' is consistent inW, then it
intersects). If C' is inconsistent (and strong) W, then it
also intersectd. Now consider the case’ ¢ W. Then, at
least one edge df’ is of the formkc — tc or ke —e Uc

{4,5,15,18 12 13 219,20}
{4,5,15,18,12 13,21,1,6,7,19}
{4,5,15,18,12,13,21,1,20}
{4,5,15,18 12,13 21,1,22}
{4,5,15,18 17,13 21,11 14}
{4,5,15,18 17,13 21,9,20}
{4,5,15,18,17,13,21,1,6,7,19}
{4,5,15,18,17,13,21,1,20}
{4,5,15,18 17,13 21,1,22}
{4,5,15,18 22}

{4,5,15,18,22 17,13,21,11,14}
{4,5,15,18,22 17,13,21,9, 20}
{4,5,15,18 22, 17,13,21,1,6,7,19}
{4,5,15,18 22 17,13 21, 1,20}
{4,5,15,18,22 1,12 13,2111, 14}
{4,5,15,18/22,1,12,13 21 9,20}
{4,5,15,18 22 1,6,7,19}
{4,5,15,18 22 1,20}

{12,13 21, 1}

{13,21,1,22,17}

{22}

{22,1}

{1}

We will use the following two theorems (proven i8, [
19], respectively) that give upper bounds on the number of
steady states.

Theorem 5. Let W be the wiring diagram of a BN
network and suppose J is a set of vertices that intersects
all positive feedback loops in W. Then, the number of
steady states is at moat!.

Theorem 6. Let W be the wiring diagram of a BN
network and suppose J is a set of vertices that intersects
all functional positive feedback loops in W. Then, the
number of steady states is at mast.

It is easy to see that all positive feedback loops
intersect the se{1,4,22}. Therefore, Theorend gives
the upper bound®2= 8. Also, it is possible to show that
the functional positive feedback loops are
{4,5,15,18 12,13,21,11 14}, {22}, {22,1} and {1}
(e.g. using the GINsim software4?] ). Therefore,
Theorem6 gives the upper bound 8 as well.

We now analyze the AND-NOT network using our

for someC strong and inconsistent that does not intersectesylts. The positive feedback loops of the AND-NOT

J. Thenkc € J andJ intersectsC. In any case we obtain
thatJ intersects all strong positive feedback loop&of

Then, the number of steady stategpénd hencd, is
at most 2.

Appendix C

We first analyze the original BN using previous results. In

[36], the authors showed that the positive feedback loops

ofthe BN f: {0,1}%3 — f : {0,1}?2 are:
{4,5,15/18,12,13,21,11, 14}

network in Figure8 are the following (new nodes are in
bold).

{24,4,5,15,18,12,13,21,11, 14}
{24,4,5,15,18,12,13,21,9, 20}
{24,4,5,15,18 12,13,21,26,1,6,7,19}
{24,4,5,15,18 12,13 21, 26,1,20}
{24,4,5,15,18,12,13 21,26,1,22}
{24,4,5,15,18,17,13,21,11, 14}
{24,4,5,15,1817,13,21,9,20}
{24,4,5,15,18 17,13,21,26,1,6,7,19}
{24,4,5,15,18/17,13,21,26,1,20}
{24,4,5,15,18/17,13,21,26,1,22}
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{24,4,5,15,18 25,22} [8] J. Aracena, “Maximum number of fixed points in regulatory
{24,4,5,15,18,25,22,17,13 21,11, 14} Boolean networks,” Bulletin of Mathematical Biology
{24,4,5,15,18,25 22,17,13,21,9,20} vol. 70, no. 5, pp. 1398-1409, 2008.

{24,4,5,15,18 25,22,17,13,21,26,1,6,7,19} [9] L. Raeymaekers, “Dynamics of Boolean networks controlled
{247 47 57 157 187 257227 ]_77 13’217 267 172’0}7 by biologically meaningful functions,”J. Theor. Biol,
{24,4,5,15,18,25,22,1,12,13.21,11, 14} vol. 218 no. 3, pp. 331-341, 2002.

[10] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein,
{24,4,5,15,18,25,22,1,12,13 21,9,20} “Genetic networks with canalyzing Boolean rules are always

{24,4,5,15/18,25,22,1,6,7,19} stable,"PNAS vol. 101, no. 49, pp. 17102-17107, 2004.
{24,4,5,15,18,25,22,1,20} [11] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein,
{1213 21,1} “Random Boolean network models and the vyeast
{13,21,26,1,22,17} transcriptional network,PNAS vol. 100, no. 25, pp. 14796—
{2225} 14799, 2003.
{227 1} [12] A. Jarrah, B. Raposa, and R. Laubenbacher, “Nested
{1,26} canalyzing, unate cascade, and polynomial functions,”
Those feedback loops that contain 4 and 13 are Physica D:Nonlinear Phenomengol. 233 no. 2, pp. 167
inconsistent because of the paths -4 12 — 13, 174, 2007.

[13] D. Murrugarra and R. Laubenbacher, “Regulatory patterns

in molecular interaction networksJ. Theor. Biol, vol. 288,

pp. 66-72, 2011.

[14] D. Murrugarra and R. Laubenbacher, “The number of
multistate nested canalyzing functionBfiysica D accepted,

1—6—7— 19— 4; they are also strong. All other
positive feedback loops are consistent and intersect
{1,22}. That is,{1,22} intersects all consistent positive
feedback loops, and for each positive feedback |Gop

that is inconsistent and strongcontainskc = 1. Hence, 2012.

{1,22} dominates the wiring diagram df. Therefore,  [15)p H. Nguyen and P. D’haeseleer, “Deciphering principles
Theorem4 gives the better upper bound 2 4 on the of transcription regulation in eucaryotic genomedgl. Sys.
number of steady states 6f Biol., no. doi:10.1038/msb4100054, 2006.

[16] B. Gummow, J. Sheys, V. Cancelli, and G. Hammer,

“Reciprocal regulation of a glucocorticoid receptor-
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