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Abstract: In a previous study, we presented two rankings, Ranking(I) and Ranking(II), and their mathematical structures. In the present
paper, a new ranking, denoted as Ranking(III), is presented, and a solution that avoids the rank inversion problem that may occur when
applying Ranking(I) or Ranking(II) is given.
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1. Review

In general, a ranking is obtained through either competi-
tion or trial for a certain set of elements. Such sets, which
are referred to herein as constructed sets and are denoted
by C, include baseball teams and students in a class. The
process of determining the ranking usually takes the re-
sults of data for either competition or trial into account.
For example, if the set C is a class of students and the
competition or trial is an examination in some subject, the
ranking will be based on the scores achieved by the stu-
dents. The simplest method is to generate the ranking ac-
cording to the score. This ranking scheme has the advan-
tage of simplicity and provides an understanding of overall
trends of a class. However, in a large-scale examination,
say more than 100 students, it is not unusual for several
students to achieve the same score, because such exami-
nations designed to be easy to grade, e.g., multiple-choice
examinations. As a result, several students will achieve the
same score. In this situation, the grader would like to be
able to provide precise grades for students who achieve the
same scores. As a solution to this problem, we have pre-
sented two new ranking methods[?][?]. These two ranking
methods are outlined below:

Ranking (I)
This ranking is constructed by comparing examinees. Each
of rankings in C has the characteristic whereby the exami-
nees who achieved high scores for each question have uni-
formly high rank.

Ranking (II)
This ranking is constructed by comparing examinees and
questions. Each of the rankings in C has the characteristic
whereby the examinees who achieved high scores for dif-
ficult questions receive a higher rank than any examinees
who achieved low scores for difficult questions.

In the present paper, we present a method of generat-
ing Ranking(III), which is formed as the unified ranking
of Ranking(I) and Ranking(II). Using Ranking(III), a new
ranking that can reflect a more complicated situation than
using either Ranking(I) or Ranking(II) is obtained.

As mentioned above, Ranking(I) and Ranking(II) can
determine a clear ranking even among examinees who
achieved identical scores. However, irregular results may
simultaneously occur in both Ranking(I) and Ranking(II),
such that the generated rankings do not depend on the
actual data (rank inversion phenomenon). In the present
study, we also present a technique by which to address this
problem.

In Section 2, Ranking(I) and Ranking(II) are described
in outline. In Section 3, we present the method of apply-
ing Ranking(I) and Ranking(II). In Section 4, the model
of Ranking(III) is shown, and the characteristics of Rank-
ing(III) are presented. In Section 5, we present the method
of controlling the rank inversion phenomenon using actual
data.
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2. Ranking(I) and Ranking(II)

This section presents simple explanations of Ranking(I)
and Ranking(II) (detailed explanations are provided in
[?]). A constructed set of elements, which are the objects
of ranking through either competition or trial, is defined as

C = {c(1), c(2), · · · , c(n)}.

The basis behind generating either Ranking(I) and Rank-
ing(II) is the construction of an irreducible matrix M =
{m[i, j]} comparing two values of c(i) and c(j) through
either competition or trial and to apply the power method
to M.

2.1. Ranking(I)

In this subsection, a simple review of Ranking(I) is pre-
sented.

Let M(I) = {m(I)(i, j)}1≤i,j≤n be a matrix generated
by comparing two elements in C through either competi-
tion or trial. Each element in M(I) is determined in accor-
dance with the following conditions:

Matrix M(I) is irreducible and primitive.
The value of m(I)(i, j) represents the non-negative ratio

of superiority of c(i) over c(j).
The ratio of superiority is determined depending on a

common rule through either competition or trial among el-
ements in C

From (2.1b) of Condition 2.1, no element of matrix
M(I) is negative, and so M(I) is non-negative. A matrix
M(I) that satisfies Condition 2.1 is referred to as evalua-
tion matrix(I) corresponding to C. Then, we have the fol-
lowing remark and definition.

Remark.[?][?] From the Perron-Frobenius Theorem and
Conditions 2.1-(2.1a) and 2.1-(2.1b), there exists an eigen-
vector rM(I)

= T(x1, x2, · · · , xn), the elements of which
are all positive, that corresponds to the largest positive
eigenvalue λM(I)

of M(I).

Definition 1.The eigenvector rM(I)
, denoted in Remark

2.1, is referred to as the ranking vector corresponding to
matrix M(I) and is normalized with respect to l2 − norm.

In the present study, each element in the initial vector is
equal to 1 in the application of the power method. Next,
the properties of each element in the ranking vector are
given.

2.1.1. Process of generating the ranking vector for M(I)

In this subsection, the mathematical meaning of each ele-
ment in the ranking vector during the process of generat-
ing the ranking vector is described. From (2.1a) of Con-
dition 2.1, we can generate the ranking vector for M(I)

using the power method. Then, the initial vector is given
as r0 = T(1, 1, · · · , 1) and

M(I)r0 ≡ r1 = T
(
r1(1), r1(2), · · · , r1(n)

)
. (1)

In Eq. (1), the vector p[1]M(I)
is calculated as follows:

p[1]M(I)
=

r1
||r1||2

= T
(
p[1]M(I)

(1), p[1]M(I)
(2), · · · , p[1]M(I)

(n)
)
.

An entry p[1]M(I)
(i) in p[1]M(I)

is referred to as the first
potential for c(i) in C, and p[1]M(I)

is referred to as the
first potential vector for M(I). Elements p[1]M(I)

(i) (i =

1, · · ·n) in p[1]M(I)
represent the total degree of superiority

of c(i) to other elements c(j) (including the superiority of
c(i) to c(i)). Then, calculating M(I)p[1]M(I)

, we obtain

M(I)p[1]M(I)
= T

(∑n
k=1 m(I)(1, k) p[1]M(I)

(k), · · · ,∑n
k=1 m(I)(n, k) p[1]M(I)

(k)

)
≡ r2 = T

(
r2(1), r2(2), · · · , r2(n)

)
. (2)

Thus, the value of r2(i) in r2, where the corresponding
element c2(i) has a high rate of superiority to other ele-
ments having high first potentials, becomes characteristi-
cally larger than that of r2(j), where the corresponding el-
ement c2(j) has a high rate of superiority to other elements
having low first potentials. As in the case of generating
p[1]M(I)

, p[2]M(I)
is obtained by normalizing r2, referred

to as the second potential vector. Thus, the characteristic
of {r2(i)} (i = 1, · · · , n) mentioned above is retained by
{p[2]M(I)

(i)}, (i = 1, · · · , n). This characteristic is usually
satisfied in each stage of p[3]M(I)

, p[4]M(I)
,· · ·. Therefore,

for the vector
p[k]M(I)

= T
(
p[k]M(I)

(1), p[k]M(I)
(2), · · · , p[k]M(I)

(n)
)
,

we have the following property:

Property 1. The value of element p[k]M(I)
(i) in p[k]M(I)

,
where the element corresponding to c(i) has a high rate
of superiority to the elements having high (k − 1) poten-
tials {p[k−1]M(I)

(t)}, becomes larger than that of element
p[k]M(I)

(j), where the element corresponding to c(j) has
a high rate of superiority to elements having low (k − 1)
potentials {p[k−1]M(I)

(s)}.

The matrix M(I) is assumed to be irreducible and
primitive. From the iteration of these manners above, we
can generate the ranking vector rM(I)

, defined in Definition
1, corresponding to the largest positive eigenvalue λM(I)

.
This iteration process is identical to generating the process
of rM(I)

by the power method. Therefore, we have
lim
k→∞

p[k]M(I)
= rM(I)

.

We refer to
p[∞]M(I)

≡ lim
k→∞

p[k]M(I)

as the final potential for M(I). A vector p[∞]M(I)
is gener-

ated through the successive transition of each step’s poten-
tials for all elements in C. Thus, we obtain another prop-
erty for rM(I)

as follows:
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Property 2. The value of c(i) in rM(I)
is determined based

on its superiority to elements {c(j)}, which have relatively
high potentials.

In the present paper, a ranking that is ordered accord-
ing to the highest-value element in rM(I)

is referred to as
Ranking(I) for M(I) in C.

2.2. Ranking(II)

In this section, Ranking(II) is described. Unlike Rank-
ing(I), two constructed sets, C = {c(1), c(2), · · · , c(n)}
and D = {d(1), d(2), · · · , d(m)}, are needed in order
to determine Ranking(II). A matrix M(II) is generated
by evaluating the superiority of c(i), (i = 1, · · · , n)
to d(j), (j = 1, · · · ,m) and then applying the Perron-
Frobenius theorem. The conditions for generating M(II)

are as follows:

(2.2a) Matrix M(II) is irreducible.
(2.2b) The value of m(II)(i, n+j) is the non-negative ratio of

superiority of c(i) to d(j), and the value of m(II)(n +
j, i) is the non-negative ratio of superiority of d(j) to
c(i).

(2.2c) The superiority is determined by maintaining the con-
ditions such that
m(II)(i, n+ j) +m(II)(n+ j, i) = h(const) > 0.

(2.2d) The ratio of superiority is determined based on a com-
mon rule for either competition or trial among all 1-
paired elements that do not belong to the same set.

(2.2e) The ratio of superiority is assumed to be zero among
all 1-paired elements that belong to the same set.

From Conditions 2.2-(2.2b) and 2.2-(2.2e), no element
of M(II) is negative, and so M(II) is non-negative. A
matrix M(II) = {m(II)(i, j)}1≤i,j≤n+m, which satisfies
Condition 2.2 is referred to as evaluation matrix (II) for
constructed sets C and D. As for the case of evaluation
matrix (I), we have the following remark and definition:

Remark. From the Perron-Frobenius Theorem and (2.2a),
(2.2b), and (2.2e) of Condition 2.2, there exists an eigen-
vector rM(II)

= T(x1, x2, · · · , xn+m), the elements of
which are all positive, that corresponds to the largest posi-
tive eigenvalue λM(II)

of M(II).

Definition 2. The vector rM(II)
, denoted in Remark 2.2, is

referred to as the ranking vector corresponding to the ma-
trix M(II).

Evaluation matrix M(II) has the following form:

M(II) =

(
0 V
W 0

)
, (3)

where

V =

m(II)(1, n+ 1) · · · m(II)(1, n+m)
...

. . .
...

m(II)(n, n+ 1) · · · m(II)(n, n+m)

 ,

W =

 m(II)(n+ 1, 1) · · · m(II)(n+ 1, n)
...

. . .
...

m(II)(n+m, 1) · · · m(II)(n+m,n)

 .

The sizes of V and W are [n × m] and [m × n], re-
spectively. Here, a property for M(II) is given.

Property 3. Matrix M(II) is not primitive and has a period
of 2.

2.3. Characteristics of the ranking vector for
M(II)

In this subsection, the mathematical properties of each el-
ement in ranking vector rM(II)

are given. As is mentioned
in Property 3, the matrix M(II) has a period of 2. There-
fore, we cannot obtain the characteristics of each element
in rM(II)

by the transition of successive potential in apply-
ing the power method for the case of M(I). Therefore, we
present the following theorems concerning M(II).

Theorem 1. For a matrix M(II) =

(
0 V
W 0

)
, ma-

trices VW and WV are irreducible in M2
(II) =(

VW 0
0 WV

)
.

Theorem 2. If s1 = T(x1, · · · , xn, y1, · · · , ym), ||s1||2 =

1 is the ranking vector for a matrix M(II) =

(
0 V
W 0

)
corresponding to the largest positive eigenvalue α, then

s2 = T(x1, · · · , xn,−y1, · · · ,−ym)

is also an eigenvector for M(II) corresponding to an
eigenvalue −α.

The matrix M(II) has a period of 2 and does not con-
verge to the eigenvector corresponding to the largest posi-
tive eigenvalue α in the application of the power method.
However, the form of the eigenvector s2 corresponding to
the eigenvalue -α was determined by Theorem 2. Then,
the following corollary for M(II) is taken in the process of
applying the power method.

Corollary 1. Let rM(II)
=

T(x1, x2, · · · , xn, y1, · · · , ym), ||rM(II)
||2 = 1 be the

ranking vector corresponding to the largest positive

eigenvalue α for a matrix M(II) =

(
0 V
W 0

)
. Then, if

the power method is applied to M(II), the following two
vectors are obtained:

w1 = 1
wf1

T
(
(c1 + c2)x1, · · · ,

(c1 + c2)xn, (c1 − c2)y1, · · · , (c1 − c2)ym
)
,

w2 = 1
wf2

T
(
(c1 − c2)x1, · · · ,

(c1 − c2)xn, (c1 + c2)y1, · · · , (c1 + c2)ym
)
.

(4)

where wf1 and wf2 are constants to normalize the vectors
w1 and w2, respectively, with respect to l2 − norm.
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If the following iteration, (5), is applied to evaluation ma-
trix M(II) with initial vector u0 = T(1, 1, · · · , 1),

vM(II)[k+1] ≡ M(II) uM(II)[k], a

uM(II)[k+1] ≡
vM(II)[k+1]

||vM(II)[k+1]||,
(5)

k = 0, 1, · · ·n− 1

then the n-th potential for M(II) is defined in a similar
manner by applying the power method to M(I) as follows:

p[n]M(II)
≡ uM(II)[n],

but lim
n→∞

p[n]M(II)
= p[∞]M(II)

oscillates between w1 and
w2 in Corollary 1. Then, from the process of generating w1

and w2 for M(II), we can assume that, in Eq. (4), c1 > c2.
Next, we have the following property:

Property 4. In Eq. (4) of Corollary 1, denoting{
w1 = T

(
w1(1), w1(2), · · · , w1(n+m)

)
,

w2 = T
(
w2(1), w2(2), · · · , w2(n+m)

)
,

where all w1(i), w2(i), (i = 1, · · · , n +m) are positive,
the following equations are satisfied:

1√∑n
v=1 w1(v)2

T
(
w1(1), · · · , w1(n)

)
=

1√∑n
v=1 w2(v)2

T
(
w2(1), · · · , w2(n)

)
=

1√∑n
v=1 x

2
v

T(x1, · · · , xn),

1√∑m
v=n+1 w1(v)2

T
(
w1(n+ 1), · · · , w1(n+m)

)
=

1√∑m
v=n+1 w2(v)2

T
(
w2(n+ 1), · · · , w2(n+m)

)
=

1√∑m
v=1 y

2
v

T(y1, · · · , ym).

Since the k-th potential p[k]M(II)
for M(II) in the pro-

cess of applying the power method is denoted as follows:

p[k]M(II)

= T
(
p[k]M(II)

(1), · · · , p[k]M(II)
(n),

p[k]M(II)
(n+ 1), · · · , p[k]M(II)

(n+m)
)
,

each element of p[k]M(II)
(i) (1 ≤ i ≤ n) represents the

k-th potential for c(i) and is calculated as follows:

p[k]M(II)
(i) =

m∑
v=1

m(II)(i, n+ v)p[k−1]M(II)
(n+ v). (6)

In Eq. (6), the value of p[k]M(II)
(i) indicates that the ele-

ment c(i), which has a high degree of superiority to {d(j)}
with high potentials {p(II)k−1(n+v)}1≤v≤m, is becoming

larger. Similarly, the k-th potential of d(j) (n + 1 ≤ j ≤
n+m) is

p[k]M(II)
(n+ j) =

n∑
v=1

m(II)(n+ j, v)p[k−1]M(II)
(v). (7)

This means that the value of element d(j), which has rel-
atively high superiority to {c(i)} having high potentials
{p[k−1]M(II)

(i)}1≤i≤n, is becoming larger. From Corollary
1, the final potential p[∞]M(II)

oscillates between w1 and
w2, and the ratios of the relation among the first through
n-th elements in w1 and w2 are identical and the relation
among the (n+ 1)-th through (n+m)-th elements in w1

and w2 are identical (see Property 4). Therefore, we can
redefine the k-th potential for C, denoted by p[k](C), and
k-th potential for D, denoted by p[k](D), as follows:

p[k](C) =
1√∑n

v=1 p[k]M(II)
(v)2

T
(
p[k]M(II)

(1),

· · · , p[k]M(II)
(n)
)
,

p[k](D) =
1√∑n+m

v=n+1 p[k]M(II)
(v)2

T
(
p[k]M(II)

(n+ 1),

· · · , p[k]M(II)
(n+m)

)
.

(8)

Therefore, we have the final potential for C as x(C)M(II)

and that for D as y(D)M(II)
, as follows:

x(C)M(II)
=

1√∑n
v=1 x

2
v

T(x1, · · · , xn) = lim
k→∞

p[k](C),(9)

y(D)M(II)
=

1√∑m
v=1 y

2
v

T(y1, · · · , ym) = lim
k→∞

p[k](D).(10)

Finally, from Eqs. (6), (7), (9), and (10), the following
property of Ranking (II) for M(II) is obtained:

Property 5. Among the elements belonging to C, the rank
of element c(i), which has a high superiority to {d(j)}
having high potential, is increasing, and among the ele-
ments belonging to D, the rank of element d(j), which
has a high superiority to {c(i)} having high potential, is
increasing.

3. Application of Ranking(I) and Ranking(II)

In this section, examples of the application of Ranking(I)
and Ranking(II) are given. Table 1 lists actual data repre-
senting the distribution of scores achieved by 20 exami-
nees on a certain examination. The examination was con-
structed with four questions and 10 points are assigned to
each question. Let C = {c(1), c(2), · · · , c(20)} be the
set of examinees that is ordered according to the total
score. Let D = {d(1), d(2), d(3), d(4)} be the set of ques-
tions, and let s(i, j) be the points obtained by examinee
c(i) on question d(j). The common problem in applying
Ranking(I) and Ranking(II) is how the evaluation matrices
ought to be created in accordance with the characteristics
of the given data. Thus, the methods of generating M(I)

and M(II) are presented in the next subsection.
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3.1. Application of Ranking(I)

In this subsection, a method by which to create an evalua-
tion matrix for Ranking(I) is presented. Based on the value
s(i, j), an evaluation matrix M(I) is created using the fol-
lowing equation:

m(I)(i, j) =
1

m

∑m
v=1 s(i, v)∑m

k=v

{
s(i, v) + s(j, v)

}
.

(11)

The value m(I)(i, j) indicates the superiority of c(i) with
respect to c(j) considering the distribution of scores for
each question between two examinees. The superiority of
c(i) with respect to c(i) is 0.5. However, in calculating Eq.
(11), if c(i) obtained no points for question d(k), then the
superiority of c(j), (j ̸= i) with respect to c(i) is not de-
pendent on the points obtained by c(j), and the superiority
of c(j) with respect to c(i) is equal to 1 for guestion d(k).
In order to avoid this situation, s(i, j) is modified as fol-
lows:

s′(i, j) = s(i, j) + µ, µ > 0 (12)

and apply s′(i, j) to Eq. (11). Determination of the value
µ in Eq. (12) depends on the grader, and, in the present
study, µ = 1, which indicates 10% of the full score for
each question, is assigned. From Conditions (11) and (12),
all entries in M(I) are positive, and consequently, matrix
M(I) satisfies Condition 2.1.

The column r(I) in Table 2 represents the ranking vec-
tor for M(I) in applying Ranking(I) to Table 1, and the
column Rank.(I) is the ranking according to the highest
value among entries in r(I).

3.2. Application of Ranking(II)

Unlike the method of applying Ranking(I), an evaluation
matrix M(II) is created based on the superiority of exami-
nee c(i) with respect to question d(j). The actual data used
to create the M(II) is based on the value s′(i, j) instead of
s(i, j). This is because if c(i) obtained no points for d(j),
the potential for c(i) with respect to d(j) does not increase
regardless of the existence of d(j)’s potential in the power
method. And then, s′(i, j) is modified as follows:

s′′(i, j) =
s′(i, j)

k + 2µ
, (13)

where k is the full score each for question. Based on the
value of s′′(i, j), the superiority of c(i) with respect to
d(j) is represented as s′′(i, j) and the superiority of d(j)
with respect to c(i) is represented as 1 − s′′(i, j). Thus,
an evaluation matrix M(II) can be created and a ranking
vector is generated. The column rM(II)

in Table 2 lists
the ranking vector and the column Rank.(II) lists the or-
der which is ranked by the highest value among entries in
rM(II)

. In columns Rank.(I) and Rank.(II), ∗ indicates that
the rank inversion phenomenon corresponds to each rank-
ing.

Table 1 Scores for each student.

Ques.1 Ques.2 Ques.3 Ques.4 Total Rank
c(1) 5 10 8 9 32 1
c(2) 8 9 6 9 32 1
c(3) 4 8 10 7 29 3
c(4) 5 8 7 9 29 3
c(5) 6 6 7 9 28 5
c(6) 6 8 5 8 27 6
c(7) 8 7 4 7 26 7
c(8) 8 5 4 9 26 7
c(9) 4 4 7 10 25 9
c(10) 5 4 8 8 25 9
c(11) 8 6 3 8 25 9
c(12) 3 8 7 6 24 12
c(13) 5 4 5 9 23 13
c(14) 5 4 8 5 22 14
c(15) 3 8 7 4 22 14
c(16) 0 7 7 7 21 16
c(17) 3 4 6 7 20 17
c(18) 5 0 5 9 19 18
c(19) 0 4 6 6 16 19
c(20) 4 3 4 5 16 19
Mean 4.75 5.85 6.2 7.55 24.35

Table 2 Rankings for each evaluation matrix.

rM(I)
rM(II)

Rank.(I) Rank.(II)
c(1) 0.252706 0.279733 2 2
c(2) 0.253880 0.286006 1 1
c(3) 0.241885 0.257901 4 3
c(4) 0.244273 0.255280 3 4
c(5) 0.241634 0.249009 5 5
c(6) 0.237474 0.243814 6 6
c(7) 0.232595 0.242308 7 7
c(8) 0.231076 0.237102 8 8
c(9) 0.226400 0.217842 11 *12
c(10) 0.228909 0.224786 9 10
c(11) 0.226422 0.231695 10 9
c(12) 0.223749 0.218082 12 *11
c(13) 0.220657 0.206376 13 *15
c(14) 0.217735 0.207931 14 *13
c(15) 0.214706 0.206846 15 14
c(16) 0.195399 0.184965 *17 16
c(17) 0.208082 0.182806 *16 17
c(18) 0.187857 0.173491 *19 18
c(19) 0.175465 0.146674 20 20
c(20) 0.191024 0.157500 *18 19

4. Ranking(III)

In this section, the matrix M(III), which is obtained by
unifying M(I) and M(II), is defined. The size of matrix
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M(III) is the same as that of M(II), and its shape is con-
structed from four block matrices as follows:

M(III) =

(
C V
W D

)
(14)

The matrix M(III) in Eq.(14) satisfies the following con-
ditions:

(3a) Each entry of two matrices C and D in M(III) satis-
fies Conditions 2.1(a) through 2.1(d).

(3b) Each entry of two matrices V and W in M(III) sat-
isfies Conditions 2.2(b) and 2.2(c) and has a positive
value.

The matrix M(III) is referred to as evaluation ma-
trix(III) corresponding to C and D. From Condition 4,
since M(III) is primitive, we have the following remark:

Remark. From the Perron-Frobenius Theorem and
Condition 4, there exists an eigenvector rM(III)

=
T(z1, z2, · · · , zn+m), the elements of which are all pos-
itive, corresponding to the largest positive eigenvalue
λM(III)

of M(III).

4.1. Processes of generating Ranking(III)

Since M(III) is primitive, rM(III)
is easily obtained using

the power method. However, the characteristics of the pro-
cesses of generating rM(III)

cannot be expressed as the
transition of the k-th potential, for example, in the man-
ner that M(I) and M(II) are performed. Then, for an ini-
tial vector uM(III)[0] = T(1, · · · , 1), we divide the vector
vM(III)[1] as follows:

vM(III)[1] ≡ M(III)uM(III)[0]

=



∑n

v=1
m(III)(1, v) +

∑n+m

v=n+1
m(III)(1, v)

...
...∑n

v=1
m(III)(n, v) +

∑n+m

v=n+1
m(III)(n, v)∑n

v=1
m(III)(n+ 1, v) +

∑n+m

v=n+1
m(III)(n+ 1, v)

...
...∑n

v=1
m(III)(n+m, v) +

∑n+m

v=n+1
m(III)(n+m, v)



=



∑n

v=1
m(III)(1, v)

...∑n

v=1
m(III)(n, v)∑n+m

v=n+1
m(III)(n+ 1, v)

...∑n+m

v=n+1
m(III)(n+m, v)



+



∑n+m
v=n+1 m(III)(1, v)

...∑n+m
v=n+1 m(III)(n, v)∑n
v=1 m(III)(n+ 1, v)

...∑n
v=1 m(III)(n+m, v)


(16)

The first through n-th entries in the vector that is the first
term in Eq. (15) represent the sum of superiority for c(i),
(i = 1, · · · , n) to elements c(k), (k = 1, · · · , n), depend-
ing on the comparison of superiority among only elements
in C. Furthermore, the (n+ 1)-th through (n+m)-th en-
tries in the vector that is the first term in Eq. (15) represent
the sum of superiority for d(j), (j = n + 1, · · · , n + m)
to elements d(s), (s = n + 1, · · · , n + m). On the other
hand, the vector that is the second term in Eq. (15) is
the same as the vector vM(II)[1] in Eq. (5). Then, gener-
ating a vector uM(III)[1] by multiplying vM(III)[1] in Eq.
(15) by 1/||vM(III)[1]||, the first term of the right-hand side
is denoted as pIM(III)[1]

and the second term of the right-

hand side is denoted as pEM(III)[1]
. We then define pM(III)[1],

which is referred to as the first potential for M(III), as fol-
lows:

pM(III)[1] ≡ uM(III)[1] = pIM(III)[1]
+ pEM(III)[1]

(17)

Furthermore, each of the two vectors in Eq. (17), pIM(III)[1]

and pEM(III)[1]
, is divided into two vectors as follows:

pIM(III)[1]
=

(
pIM(III)[1](C)

pIM(III)[1](D)

)
, (18)

pEM(III)[1]
=

(
pEM(III)[1](C)

pEM(III)[1](D)

)
The i-th entry of pEM(III)[1](C) in Eq. (18) represents the
total degree of superiority for c(i) to any other ele-
ments belonging to D, and, conversely, the j-th entry of
pEM(III)[1](D) represents the total degree of superiority for
d(j) to any other elements belonging to C. Thus, each
entry in pEM(III)[1]

represents the total degree of superior-
ity based on the comparison between elements of different
sets C and D. Then, pEM(III)[1]

is referred to as the first

external potential for M(III). Each entry in pIM(III)[1]
rep-

resents the total degree of superiority based on the com-
parison between elements of the same set. Then, pIM(III)[1]

is referred to as the first internal potential for M(III).
Next, vM(III)[2] is defined as follows:

vM(III)[2] = M(III) uM(III)[1]

=

(
C V
W D

) (
pIM(III)[1]

+ pEM(III)[1]

)
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=

(
C V
W D

)

(
pIM(III)[1](C)

pIM(III)[1](D)

)

+

(
pEM(III)[1](C)

pEM(III)[1](D)

)


=

(
CpIM(III)[1](C) +VpIM(III)[1](D)

DpIM(III)[1](D) +WpIM(III)[1](C)

)

+

(
CpEM(III)[1](C) +VpEM(III)[1](D)

DpEM(III)[1](D) +WpEM(III)[1](C)

)
. (19)

Then, uM(III)[2] is defined by multiplying vM(III)[2] by
1/||vM(III)[2]||, the vector corresponding to the first term in
Eq. (19) is defined as pIM(III)[2]

and the vector correspond-

ing to the second term in Eq. (19) is defined as pEM(III)[2]
.

The vector pM(III)[2], referred to as the second potential for
M(III), is defined as follows:

pM(III)[2] ≡ uM(III)[2] = pIM(III)[2]
+ pEM(III)[2]

(20)

As in Eq. (18), the elements in pIM(III)[2]
and pEM(III)[2]

are
divided between 1 through n elements and (n+1) through
(n+m), respectively, as follows:

pIM(III)[2]
=

(
pIM(III)[2](C)

pIM(III)[2](D)

)
,

pEM(III)[2]
=

(
pEM(III)[2](C)

pEM(III)[2](D)

)
(21)

From Eq. (21), the entries in pIM(III)[2]
and pEM(III)[2]

, which
corresponds to the element that has a high rate of superi-
ority to elements having high first internal or external po-
tentials, becomes larger. From the iteration with respect to
M(III) by Eq. (22), uM(III)[k] and pM(III)[k] are defined as
follows:

vM(III)[k+1] ≡ M(III) uM(III)[k],

uM(III)[k+1] ≡
vM(III)[k+1]

||vM(III)[k+1]||
,

pM(III)[k+1] ≡ uM(III)[k+1]

= pIM(III)[k+1] + pEM(III)[k+1]

(22)

k = 2, 3, · · ·
Since the matrix M(III) is primitive, an eigenvector rM(III)

of M(III), which is referred to as the ranking vector for
M(III), is taken from Eq. (22) as follows:

rM(III)
= lim

k→∞
pM(III)[k]

= pIM(III)[∞] + pEM(III)[∞] (23)

Here, rM(III)
= pM(III)[∞] is referred to as the ranking vec-

tor or the final potential vector for M(III), and pIM(III)[∞]

is referred to as the final internal potential vector. In addi-
tion, pEM(III)[∞] is referred to as the final external potential
vector. From Eqs. (22) and (23), we have the following
properties for rM(III)

.

Property 6. From the processes of generating rM(III)
, each

value in rM(III)
has the following properties:

(a)An element that has a high rate of superiority to other
elements with high internal potentials becomes larger
than an element that has a high rate of superiority to
other elements with low internal potentials.

(b)An element that has high rate of superiority to other
elements with high external potentials becomes larger
than an element that has high rate of superiority to
other elements with low external potentials.

4.2. Dependence of the final potential vector

In this subsection, the method for generating the indices
that represent the rate of dependence of pIM(III)[∞] and

pEM(III)[∞] over rM(III)
is presented. Using these indices,

the degree to which each value in rM(III)
is influenced by

the difference in superiority among elements belonging to
the same set or that among elements belonging to different
sets can be determined.

4.2.1. Method for generating indices of dependence

Based on the assumption, the following equation is satis-
fied:

||rM(III)
|| = ||pIM(III)[∞] + pEM(III)[∞]|| = 1.

Then, we have the following property.

Property 7. Form Eqs.(22) and (23), the following equa-
tion is satisfied:

rM(III)
= γ1 p

I
M(III)[∞] = γ2 p

E
M(III)[∞], γ1, γ2 > 0 (24)

Thus, from Eq. (24), we obtain the following equation:

||rM(III)
|| = ||pIM(III)[∞] + pEM(III)[∞]||

= ||pIM(III)[∞]||+ ||pEM(III)[∞]|| = 1.

Then, two indices of dependence, κI
M(III)

and κE
M(III)

, for
the final internal potential vector and the final external po-
tential vector over rM(III)

, respectively, are defined as fol-
lows:

κE
M(III)

= ||pEM(III)[∞]||, κI
M(III)

= ||pIM(III)[∞]||

Example 1 is presented to show the κE and κI for given
matrix M1(III).

Example 1. The matrix M1(III) is given as follows:

M1(III) =


0 0.1 0.1 1

6
5
6

0.1 0 0.1 1
3

2
3

0.1 0.1 0 1
2

5
12

5
6

2
3

1
2

0 0.1
1
6

1
3

7
12

0.1 0

 .
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From the distributions of the superiority of M1(III), the
superiorities of different elements belonging to C are even
valued and are equal to 0.1, and the superiority of an el-
ement with respect tot itself belonging to C is zero. Us-
ing the method of Ranking(III), ranking vectors rM1(III)

,
pEM1(III)[∞], and pIM1(III)[∞] are generated as follows:

rM1(III)

= T(0.375268, 0.403941, 0.410677, 0.621392, 0.375796)

pEM1(III)[∞]

= T(0.332046, 0.357416, 0.363377, 0.549821, 0.332513)

pIM1(III)[∞]

= T(0.0432222, 0.0465247,

0.0473006, 0.0715704, 0.0432833)

and, the indices of dependence, κE and κI are generated as
follows:

κE = ||pEM1(III)[∞]|| = 0.884823

κI = ||pIM1(III)[∞]|| = 0.115177

5. Controlling the rank inversion

As mentioned in Section 3, the advantage of Ranking(I)
and Ranking(II) is the ability to determine a clear rank-
ing, even if examinees belonging in C obtain the same
score. However, irregular results in rankings may also oc-
cur, such that generated rankings are not ordered to the
actual scores achieved by examinees (see Table 2). There-
fore, in this section, we will present methods for control-
ling the change of ranking with respect to both Ranking(I)
and Ranking(II). In order to simplify the explanation of
this method, we generate modified rankings, which com-
pletely solve the rank inversion problem, along with the
data given in Tables 1 and 2.

Before presenting the method used to solve the rank in-
version problem, we group examinees according to score.
Let

G = {G1, G2, · · · , Gk}

be the set of scores, and each element Gi is composed of
examinees who achieved identical scores Gi. The order
of elements in G is assumed to be arranged according to
score. As such, set G is an ordered set having following
properties:

Gi ∩Gj = ϕ,
k∑

i=1

|Gi| = n, (25)

where |Gi| is the number of elements.

5.1. Controlled ranking method for Ranking(I)

In this section, the method of controlling the change in
ranking with respect to Ranking(I), referred to as Modified
Ranking(I) method, is presented. Dummy elements c(n +
1), c(n+2), · · · belonging in C are added and the rankings
among c(1), c(2), · · · , c(n) are changed by controlling the
ratio of superiority for c(n + 1), c(n + 2), · · · to other
elements c(1), c(2), · · ·, c(n). Then, the ratio of superiority
of dummy elements to other elements c(1), c(2), · · ·, c(n)
is assumed to be same, and the ratio of superiority between
dummy elements is assumed to be even.

First, in order to incorporate the above assumption, the
evaluation matrix M(I) must be modified as follows:

M(I)R =


f + w(I)(1) · · ·

M(I)

... · · ·
f + w(I)(n) · · ·

f − w(I)(1) · · · f − w(I)(n) f · · ·
...

...
...

...
...

,

(26)

where M(I)R is the modified evaluation matrix, and the
value of f is the standard value obtained using the rule to
create an evaluation matrix M(I). In this case, the value of
f is determined to be 0.5 from the characteristics of cre-
ating M(I). The value f + w(I)(i) in matrix M(I)R repre-
sents the weight of examinee c(i) with respect to dummy
element c(n + 1). The steps of generating the matrix of
M(I)R are Step(I)1 through Step(I)4, as follows:

Step(I)1

Take one dummy element c(n + 1) and search the entry
from the low value in rM(I)

and select two entries, c(x)
and c(y), (x < y), for which the first rank inversion oc-
curred.
Step(I)2

Let G(i) and G(j), (i < j), be elements in G such that
G(i) belongs c(x) and G(j) belongs c(y). This means
that rank inversion does not occur among examinees who
belongs to ∪z>jGz or among examinees who belong to
∪i<z<jGz . In this case, in order to control the rank in-
version between c(x) and c(y), we add a uniform weight
d(I)[1] to examinees {c(p)} who belong to ∪i

z=1Gz , which
means that c(p) is superior to c(n + 1), and add a uni-
form weight −d(I)[1] to examinees {c(q)} who belong to
∪z≥jGz , which means that c(q) is inferior to c(n+1), un-
til the rank inversion between c(x) and c(y) is corrected
within 3 significant digits. Similarly, we then select ex-
aminees, c(u) and c(v), (u < v), for which the second
rank inversion occurred. Let G(k) and G(l), (k < l), be
elements in G such that G(k) belongs c(u) and G(l) be-
longs c(v). This means that rank inversion does not occur
among examinees who belong to ∪z>l or among exami-
nees who belong to ∪k<z<lGz . In this case, in order to
control the rank inversion between c(u) and c(v), we add a
uniform weight d(I)[2] to examinees belonging to ∪k

z=1Gz
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and a uniform weight −d(I)[2] to examinees belonging to
∪z≥lGz until the rank inversion between c(u) and c(v) is
corrected.
Step(I)3

If the rank inversion phenomenon among elements belong-
ing C is not completed within the value of f − w(I)(n),
(i = 1, · · ·n) is nonnegative, add more dummy elements
c(n+ 2) as per Eq. (26).
Step(I)4

Repeat Step(I)1 and Step(I)3 until all examinees’ rankings
are modified in accordance with the order of actual scores.

Perform Step(I)1 through Step(I)4, two dummy elements
were needed to solve the rank inversion problem in rM(I)

.
Each weight w(I)(i) corresponding to c(i) in Eq. (26) is
generated as follows:

w(I)(i) =

 d(I)[1] + d(I)[2] i = 1, · · · 16
d(I)[1] − d(I)[2] i = 17, 18

−d(I)[1] − d(I)[2] i = 19, 20
(27)

where d(I)[1] = 0.047, d(I)[2] = 0.24

From Eq. (27), the modified evaluation matrix M(I)R and
the modified ranking vector r′M(I)

= {r′M(I)
(i)} for M(I)R

are determined. The column r′M(I)
in Table 3 represents the

value of {r′M(I)
(i)} and MRank.(I) is the modified ranking

according to the order of values among {r′M(I)
(i)}. Com-

paring Rank and MRank.(I), MRank.(I) is ordered depend-
ing on the actual scores and is determined even among ex-
aminees who achieved the same scores.

5.2. Controlled ranking method for Ranking(II)

In this subsection, the method of controlling the change of
ranking with respect to Ranking(II), referred to as the mod-
ified Ranking (II) method, is presented. While Ranking(I)
is determined among elements belonging to C, Rank-
ing(II) is determined considering the relation between two
elements that belong to different sets C and D. Therefore,
in order to control the change in ranking, a method by
which to determine the weight of each element is needed.
As the target to order of elements is the examinee, we add
a weight to each element belonging to C. Then, we rewrite
the evaluation matrix M(II) in Eq. (3) as follows:

M(II)R =

(
C V
W 0

)
, (28)

where 0 is the zero matrix and

C =


0 w(II)(1) · · · · · · w(II)(1)

w(II)(2) 0 w(II)(2) · · · w(II)(2)
w(II)(3) w(II)(3) 0 · · · w(II)(3)

...
...

...
. . .

...
w(II)(n) w(II)(n) · · · w(II)(n) 0

 (29)

Table 3 Modified Rankings of Ranking(I) and Ranking(II).

r′M(I)
r′M(II)

Rank MRank.(I) MRank.(II)
c(1) 0.252768 0.280103 1 2 2
c(2) 0.253852 0.286299 1 1 1
c(3) 0.242784 0.258497 3 4 3
c(4) 0.244986 0.255870 3 3 4
c(5) 0.242548 0.249655 5 5 5
c(6) 0.238721 0.244496 6 6 6
c(7) 0.234223 0.242996 7 7 7
c(8) 0.232816 0.237832 7 8 8
c(9) 0.228495 0.218776 9 11 11
c(10) 0.230809 0.225668 9 9 10
c(11) 0.22853 0.232471 9 10 9
c(12) 0.226065 0.218499 12 12 12
c(13) 0.223202 0.206871 13 13 13
c(14) 0.220508 0.206185 14 14 14
c(15) 0.217729 0.205108 14 15 15
c(16) 0.199943 0.183410 16 16 16
c(17) 0.199398 0.181257 17 17 17
c(18) 0.180793 0.172004 18 18 18
c(19) 0.166957 0.145442 19 20 20
c(20) 0.181284 0.156158 19 19 19

From Eq. (28), the matrix M(II)R is one of the type of
M(III) in case of D is zero matrix in Eq.14. So the manner
to add the weight to each element in C can be explained
along with the characteristics of M(III). In order to control
Ranking(III), the rank inversion problem is addressed by
adding various weights to the first internal potentials cor-
responding to the elements belonging to C. The method of
controlling Ranking(II), denoted by MRank.(II), is given
by Step(II)1 through Step(II)3.

Step(II)1

As in Step(I)1, the entry is searched from the lowest value
in rM(II)

and two entries, c(x′) and c(y′), (x′ < y′), for
which the first rank inversion occurred, are selected.
Step(II)2

Let G(i′) and G(j′), (i′ < j′), be elements in G such
that G(i′) belongs c(x′) and G(j′) belongs to c(y′). In
this case, in order to control the rank inversion between
c(x′) and c(y′), we add a uniform weight d(II)[1] to ex-
aminees belonging to ∪i

z=1Gz until the rank inversion
between c(x′) and c(y′) is corrected within 3 significant
digits. Similarly, we select examinees, c(u′) and c(v′),
(u′ < v′), for which the second rank inversion occurred.
Let G(k′) and G(l′), (k′ < l′) be elements in G such
that G(′) belongs to c(u′) and G(l′) belongs to c(v′). This
indicates that rank inversion did not occur among exam-
inees who belong to ∪z>l′ or among examinees who be-
long to ∪k′<z<l′Gz . In this case, in order to control the
rank inversion between c(u′) and c(v′), we add a uniform
weight d(II)[2] to examinees belonging to ∪k′

z=1Gz until the
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rank inversion between c(u′) and c(v′) is corrected. From
Step(II)1 through Step(II)2, the values of w(II)(i) are ob-
tained as follows:

G(1) w(II)(1) = d(I)[1] + d(I)[2]
...

...
G(k′) w(II)(u

′) = d(I)[1] + d(I)[2]
...

...
G(l′) w(II)(v

′) = d(I)[1]
...

...
G(i′) w(II)(y

′) = d(I)[1]
...

...
G(j′) w(II)(x

′) = 0
...

...

Step(II)3

Repeat Step(II)1 and Step(II)2 until the rankings of all ex-
aminees are modified in accordance with the order of ac-
tual scores.

Perform Step(II)1 through Step(II)3 and generate each
weight w(II)(i) corresponding to c(i) in Eq. (29) as fol-
lows:

w(II)(i) =

d(II)[1] + d(II)[2] i = 1, · · · 11
d(I)[1] i = 12, 13

0 i = 14, · · · , 20
(30)

where d(II)[1] = 0.0023, d(I)[2] = 0.00054. From Eq.
(??), the modified evaluation matrix M(II)R and the mod-
ified ranking vector r′M(II)

= {r′M(II)
(i)} for M(II)R are

determined. The column r′M(II)
in Table 3 represents the

value of r′M(II)
, and MRank.(II) is the modified ranking

according to the order of the values among {r′M(II)
(i)}.

Comparing Rank and MRank.(II), MRank.(II) depends on
the actual scores and is determined even among examinees
who achieved the same score.

6. Conclusions

In a previous paper, we presented Ranking(I) and Rank-
ing(II) and their mathematical structures in [?]. We dis-
cussed the disadvantage whereby irregular results may oc-
cur in both Ranking(I) and Ranking(II), such that the gen-
erated rankings are not ordered according to the actual
data for each element. In order to address this problem,
we herein presented a method of generating Ranking(III)
which is formed as the unified ranking of Ranking(I) and
Ranking(II) and presented a solution by which to avoid
rank inversion in applying Ranking(I) and Ranking(II) to
given data. However, since Ranking(III) may be applied to
the rank inversion problem as well as problems in various
other fields, in a future study, we intend to examine various
applications using Ranking(III).
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