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Abstract: In this note we give a straightforward proof of the fact that every continuous homomorphism from a C∗-algebra into a
weakly sequential complete Banach algebra is a finite rank operator. We also study Dieudonne type homomorphisms of the unital
C∗-algebras.
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1. Introduction

Recently, many authors have been interested in the struc-
ture of compact and weakly compact homomorphisms of
Banach algebras [4,5,7]. In particular, homomorphisms of
C∗-algebras have been studied extensively in the litera-
ture. In [5], Ghahramani proved that every compact homo-
morphism from a C∗-algebra is a finite rank operator. Ex-
tending this result, Galé-Ransford-White [4] proved that
every weakly compact homomorphism from a C∗-algebra
is a finite rank operator. Mathieu [7] give more elementary
proof of the Galé-Ransford-White result.

Let K be a compact Hausdorff space and let C (K)
be the space of all continuous functions on K. It is well
known [6] that an arbitrary bounded linear operator from
C (K) into a weakly sequentially complete Banach space
is weakly compact. Generalizing this result, Akemann-
Dodds-Gamlen [1] proved that an arbitrary bounded lin-
ear operator from a C∗-algebra into a weakly sequen-
tially complete Banach space is weakly compact. Com-
bining the Akemann-Dodds-Gamlen result with the Galé-
Ransford-White result, we can assert that every continuous
homomorphism from a C∗-algebra into a weakly sequen-
tial complete Banach algebra is a finite rank operator. In
this note, we give more elementary proof of the last result
without using of Akemann-Dodds-Gamlen Theorem. We
also study Dieudonne type homomorphisms of the unital
C∗-algebras.

2. C∗-Algebras

Let X be a complex Banach space and let X∗ be its dual.
A sequence (xn)n∈N in X such that (φ (xn))n∈N is a
Cauchy sequence of scalars for each φ ∈ X∗ is called a
weak Cauchy sequence. Recall that the space X is said
to be weakly sequentially complete if every weak Cauchy
sequence has a weak limit. In this section, we prove the
following

Theorem 1.Every continuous homomorphism from a C∗-
algebra into a weakly sequentially complete Banach alge-
bra is of finite rank.

For the proof we need some preliminary results.
Let A be an arbitrary complex unital Banach algebra

with the unit element 1A. We will denote by S (A) the set
of all normalized states on A, namely,

S (A) = {Φ ∈ A∗ : ∥Φ∥ = Φ (1A) = 1} .

An element h ∈ A is said to be Hermitian if Φ (h) ∈ R
for all Φ ∈ S (A). It is well known [2, Corollary 10.13]
that h ∈ A is Hermitian if and only if ∥exp (ith)∥ = 1
for all t ∈ R. For example, if A is a unital C∗-algebra,
then h ∈ A is Hermitian if and only if h is self-adjoint.
Furthermore, each a ∈ A can be written as a = h + ik,
where h and k are self-adjoint elements of A.

By Her (A) we will denote the set of all Hermitian
elements of A. It can be seen that Her (A) is a closed
real subspace of A. The algebra A is said to be a V-
algebra if each a ∈ A is of the form a = h + ik, where
h, k ∈ Her (A). The Vidav-Palmer Theorem [2, Theorem
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38.14] states that a V -algebra with involution defined by
(h+ ik)

∗
= h− ik is a C∗-algebra. Recall also that for an

arbitrary h ∈ Her (A),

∥h∥ = sup {|Φ (h)| : Φ ∈ S (A)} (1)

(see [2, Theorem 10.17 and Lemma 38.3]).
Let A be an arbitrary complex Banach algebra. It is

well known [3] that the second dual A∗∗ of A can be
equipped with two Banach algebra multiplications ◦ and
∗ (the first and the second Arens multiplication) which
extend the original multiplication in A (canonically em-
bedded into A∗∗). Namely, for a ∈ A, φ ∈ A∗, and
F,G ∈ A∗∗ we set < F ◦ G,φ >=< F,G · φ > and
< F ∗G,φ >=< G,φ · F >, where G · φ and φ · F are
functionals on A defined by < G · φ, a >=< G,φ · a >
and < φ · F, a >= < F, a · φ >. If F ◦ G = F ∗ G for
every F,G ∈ A∗∗, then A is said to be Arens regular. For
example, C∗-algebras are Arens regular [3].

Lemma 1.Let A be a unital C∗-algebra and let B be an
arbitrary complex Banach algebra. If there exists a con-
tractive homomorphism ω : A 7→ B with dense range,
then B is also a C∗-algebra and B is ∗-isomorphic to a
quotient C∗-algebra of A.

Proof.Since ker (ω) is a closed two-sided ideal of
A, ker (ω) is self-adjoint. Hence the quotient alge-
bra Aker (ω) is a unital C∗-algebra. We can see that
the induced mapping ω̄ : A ker (ω) 7→ B, defined
by ω̄ (a+ kerω) = ω (a) is an contractive and in-
jective homomorphism with dense range. Hence, we
can suppose without loss of generality that ω is in-
jective. Next, we will prove that B is a C∗-algebra
and B is ∗-isomorphic to the algebra A. We can
easily see that ω (1A) is the unit element of B and
∥ω (1A)∥ = 1. Hence, B is unital. Now let h ∈ Her (A).
Since ω (exp (ith)) = exp (itω (h)) , t ∈ R,we have
∥exp (itω (h))∥ ≤ ∥ω∥ ∥exp (ith)∥ ≤ 1,for all t ∈ R.
It follows that ω (h) ∈ Her (B). Let us show that
B is a V -algebra. To see this, let b ∈ B be given.
Then, there exists a sequence (an)n∈N in A such that
ω (an) → b. Let an = hn + ikn (n = 1, 2, ...), where
(hn)n∈N and (kn)n∈N are the sequences in Her(A).
Then, we have that ω (hn) + iω (kn) → b. Hence, for
an arbitrary ε > 0, there exists an integer N such that
∥ω (hn)− ω (hm) + i (ω (kn)− ω (km))∥ ≤ ε,for
all n,m > N . Since {ω (hn)− ω (hm)} and
{ω (kn)− ω (km)} are in Her(B) , it follows that
for all Φ ∈ S (B) , |Φ (ω (hn)− ω (hm))| ≤
ε, |Φ (ω (kn)− ω (km))| ≤ ε.Taking into ac-
count (2.1), we obtain ∥ω (hn)− ω (hm)∥ ≤
ε, ∥ω (kn)− ω (km)∥ ≤ ε.Since Her (B) is a
real Banach space, there exist Hermitian elements l and
m in B such that ω (hn) → l and ω (kn) → m. Conse-
quently, we have b = l + im, where l,m ∈ Her (B).
Thus B is a V -algebra. By the Vidav-Palmer Theorem [2,
Theorem 38.14], B is a C∗-algebra with the involution
defined by b∗ = l − im. Furthermore, for an arbitrary

a = h+ ik ∈ A, we have

ω (a∗) = ω (h− ik) = ω (h)− iω (k)

= (ω (h) + iω (k))
∗
= (ω (h+ ik))

∗
= ω (a)

∗
.

Therefore, ω is a ∗-homomorphism. By [12, Corollary
1.2.6], ω is an isometry. Since ω has dense range, ω is
a surjective isometry. Hence ω is a ∗-isomorphism. This
completes the proof.

Proof(Proof of Theorem 1). Let A be C∗-algebra and
let B be a weakly sequentially complete Banach alge-
bra. Let ω : A 7→ B be a continuous homomorphism.
Since the space ω (A) is weakly sequentially complete,
we lose no generality if we assume that ω (A) = B. Fur-
thermore, since A is Arens regular and B is a weakly
sequentially complete, by [13, Theorem 4.1], B has the
unit element 1B . Let (ei)i∈I be an approximate iden-
tity for A such that supi ∥ei∥ ≤ 1. Then, (ω (ei))i∈I
is a bounded approximate identity for B. It follows that
ω (ei) → 1B . Let A ⊕ C be the C∗- unitization of A
with the norm ∥|a+ λ|∥ = sup∥b∥≤1 ∥ab+ λb∥ .Then the
mapping ω̃ : A⊕C 7→ B, defined by ω̃ (a+ λ) = ω (a)+
λ1B is a homomorphism with dense range. Moreover,
since ω̃ (a+ λ) = limi ω (aei + λei) , ∥ω̃ (a+ λ)∥ ≤
∥ω∥ supi ∥aei + λei∥ ≤ ∥ω∥ ∥a+ λ∥ .Hence, ω̃ is
bounded. This shows that ω can be extended to A ⊕ C as
a continuous homomorphism. Therefore, we may assume
that A has a unit element. Renorming B if necessary, we
can assume that ω is contractive. By the preceding lemma,
B is a C∗-algebra. But we know that weakly sequentially
complete C∗-algebras are finite-dimensional [11, Propo-
sition 2]. Hence, ω is a finite rank operator. The proof is
complete.

3. Dieudonne Type Homomorphisms

Let X and Y be two Banach spaces and let T : X 7→ Y be
a bounded linear operator. The operator T is said to be a
Dieudonne operator if T sends weakly Cauchy sequences
in X into weakly convergent ones (see [6]). For example,
if either X or Y is a weakly sequentially complete, then
every bounded linear operator T : X 7→ Y is a Dieudonne
operator. Assume that the operator T : XkerT 7→ Y is
defined by T (x+ kerT ) = Tx. One can easily see that
if T is a Dieudonne operator, then so is T . The following
example shows that the converse is not true in general.

Example Let G be a non-discrete locally compact abelian
group and let A (G) be the Fourier algebra of G. For a
compact subset K of G, we denote by A (K) , the algebra
of all functions on K which are the restrictions to K of the
functions in A (G) with the norm

∥f∥A(K) = inf
{

∥h∥A(K) : h |K = f
}
.

Clearly, the algebra A (K) can be identified with the
quotient algebra A (G) IK , where IK is the largest
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closed ideal in A (G) whose hull is K;IK =
{f ∈ A (G) : f (K) = {0}} .Recall that K is said to be
a Helson set if every f ∈ C (K) is the restriction to
K of a member of A (G). It can be seen that if K is
a Helson set, then A (K) is isomorphic to C (K). As is
known [10, Chapter 5], there exists a Helson set in any
non-discrete locally compact abelian group. Since A (G)
is a weakly sequentially complete, the canonical quotient
map π : A (G) 7→ A (K) is a Dieudonne operator. Now,
assume on the contrary that π is also a Dieudonne op-
erator. Since π is the identity operator on A (K), it fol-
lows that A (K) is a weakly sequentially complete. But
this is not possible if K is an infinite Helson set. We say
that T : X 7→ Y is a Dieudonne type operator if T is a
Dieudonne operator.

Proposition 1.If T : X 7→ Y is a weakly compact linear
operator, then T is a Dieudonne type operator.

Proof.Assume that T is weakly compact. Let π : X 7→
X kerT be the canonical quotient map. Then, T = T ◦ π.
Since π is open, every bounded subset of X/ kerT is the
image of some bounded set in X . It follows that T is also
a weakly compact operator. Thus we can assume that T
is injective. Let us show that T is a Dieudonne operator.
Let (xn)n∈N be a weakly Cauchy sequence in X . Since
the sequence (xn)n∈N is bounded, there exists a subse-
quence (xnk

)k∈N such that (Txnk
)k∈N is weakly conver-

gent. Since (Txn)n∈N is a weakly Cauchy sequence, it
follows that the sequence (Txn)n∈N converges weakly.

Let X be an infinite dimensional non-reflexive and weakly
sequentially complete Banach space (for instance, such as
L1 (µ)). Then the identity operator on X is a Dieudonne
operator but not weakly compact. Now assume that T :
X 7→ Y is a Dieudonne operator. We remark that if X
does not contain an isomorphic copy of ℓ1, then T is
weakly compact. To see this, let (xn)n∈N be a bounded se-
quence in X . By Rosenthal’s ℓ1-theorem [9], the sequence
(xn)n∈N has a weakly Cauchy subsequence (xnk

)k∈N .
Since T is a Dieudonne operator, the sequence (Txnk

)k∈N
is weakly convergent.

Let A and B be two Banach algebras and let θ : A 7→
B be a continuous homomorphism. We say that θ is a
Dieudonne type homomorphism if θ is a Dieudonne type
operator.

Corollary 1.Every Dieudonne type homomorphism from a
unital C∗-algebra into a Banach algebra is of finite rank.

Proof.Let θ : A 7→ B be such a homomorphism. We can
suppose without loss of generality that θ has dense range.
Renorming B if necessary, we can assume that θ is con-
tractive. By Theorem 2.1, B is a C∗-algebra and θ is a
∗-isomorphism between A ker θ and B. Let (bn)n∈N be

a weakly Cauchy sequence in B. Then,
(
θ
−1

(bn)
)
n∈N

is a weakly Cauchy sequence in A ker θ. Since θ is a
Dieudonne operator, it follows that the sequence (bn)n∈N

converges weakly. Hence, B is a weakly sequential com-
plete C∗-algebra. However, weakly sequential complete
C∗-algebras are finite-dimensional [11, Proposition 2].
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