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Abstract: Given k databases of unstructured entries, we propose a quantunittaig to find the common entries between those
databases. The proposed algorithm requirés+/N) queries to find the common entries, whétés the number of records for each
database. The proposed algorithm constructs an oracletogommon entries, and then uses a variation of amplituddificagion
technique with reliable behavior to increase the succestsaility of finding them.
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1 Introduction slot between those two schedules, in as minimum
communication bits sent as possible. Burhmetnal.

Givenk databases with unstructured entries, it is required®/gorithm  requires 0(VNlog;N)  communication
to find the joint entries between those databasescomplexity and@'(kyv/N) query calls, withk trails and
Considering this problem in classical computers, an€rror at most 2 [8]. Later in 2002, L. Grover proposed
intuitive approach is to count similar entries from those @an algorithm 9] to solve scheduling problem with
databases and store them in a memory which keeps track (véNlog, N) computation complexity.
of each entry and its number of occurrences, and then |5 2012, Tulsi proposed a quantum algorithir] to
iterate over this memory and observe when the number ofind a single common element between two sets in
occurrences of certain entries equaktoThis procedure  ¢(,/N) using an ancilla qubit to mark the common
requires at most’(kN) steps. solution with phase-shift and applying amplitude
Quantum  computers 1[2,3] are inherently amplification algorithm to increase the success
probabilistic devices which promise to significantly probability of the desired result.
accelerate certain types of computations compared to
classical computerdl], by utilizing quantum phenomena
like entanglement and superposition. Many quantu
algorithms have emerged recently, for example, N ;
Deutch-Jousza algorithnb] that tests whether a given betweenn two sets of size"2and 2" elements in
Boolean function is a balanced Boolean function or aﬁ(.v 2m+_/§2),wherep is the numbe_r of common entries,
constant Boolean function, using only a single oracle call.usinga similar algorithm proposed ii].
P. Shor introduced a polynomial-time algorithr@] [to The aim of this paper is to propose a quantum
factorize a composite integer to its prime factors. L. algorithm to find the common matches between gixen
Grover presented a quantum algorithi} fo search for  databases each of entries. Each given database uses a
an entry in an unstructured list of entries in quadraticblack-box to identify its elements. The proposed
speed-up compared to classical computers. algorithm can find a match among the common entries
In 1998, Burhmaret al. introduced an algorithmg] using a new oracl&y which is constructed from the set
that solves a problem similar to the common entriesof all given black-boxeh. The new oracl&y is then used
problem: given two remotely separated schedules ofalong with amplitude amplification technique based on
unknown free slots out ol = 2" slots, find a common partial diffusion operator, to increase the success

In 2013, Panget al. introduced a quantum algorithm
m[11] for set operations. In that paper, Pagigal. provided
a subroutine to find common intersected elements
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probability of finding the desired results. As well, the
algorithm works with probability of success at leagB2

The paper is organized as follows: Secti@depicts
an amplitude amplification algorithm with reliable
behavior used to solve the problem at hand. Sect®n
covers the construction of the oracldy. Section 4
introduces the proposed algorithm. Sectidanalyzes
the proposed algorithm. Sectidhcompares the proposed
algorithm to relevant literature, followed by a conclusion
in Section 7.

2 Amplitude amplification

Consider having a lidt of N = 2" of unstructured entries,
which has an oracl¥s that is being used to access those
entries. Each entrye L = {0,1,...,N— 1} in the listL is
mapped to either O or 1 according to any certain property
satisfied byi in L, i.e. f: L — {0,1}. The unstructured
search problem is stated as follows: find the emteyL
such thatf (i) = 1.

In 1996, Grover proposed a unique approach to solve
this typical problem with quadratic speed-up compared to
classical algorithms7]. The algorithm Grover proposed
takes advantage of quantum parallelism to solve this
problem by preparing a perfect superposition of all the
possibleN entries corresponding to the list after that it
starts marking the solution using phase shift-df using
the oracleU;, followed by amplifying the amplitude of
the solution using inversion about the mean operator. It
was shown in 7,13] that the algorithm requires/4/N
iteration to optimally L4] find a solution to the search

problem with high probability, assuming there is only one (16

solutioni € L that satisfies the oracléy.

Boyer et al. later generalized Grover's quantum
search algorithm to fit the purpose of finding multiple
solutions M to the oracleUs, i.e. Vp, for which
1< p<M<3N/4, f(ip) = 1, to require a number of
m/4./N/M iterations of the algorithm1[2]. For the case
of unknown number of solution®! to the oracle, an
algorithm [15 was proposed to find such numbpt.

However, the generalized quantum search algorithm has

shown to exponentially fail in the case f > 3N/4 [12,

13.

Youneset al.introduced a variation of the generalized wh
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Fig. 1: Quantum circuit for the quantum search algorithif][

1.Prepare a quantum register with+ 1 qubits in a
uniform superposition:

1t
%)=~ i;}II>®IO>-

2.lterate the algorithm fort/(2v/2)\/N/M times by
applying the partial diffusion operatdf on the state
Ut|@) in each iteration, such that it performs the
inversion about the mean on a subspace of the system,
where

1)

Y = (H @ 1)(200)(0] - Iy ) (@ 1), (2)

At any iterationq > 2, the system can be described as
follows [16]:

+eaXig (@ 11),

©)
where the amplitudesy, bq and cq are recursively
defined as follows:

169) = aq 3ot (i) ®(0)) + b x5 (Ii) @ 10))

aq = 2<aq> - aq—la bq - 2<aq> - Cq—la Cq = _b(islv

and

(@) = ((1-ae-+ () 6

For this algorithm, the success probability is as follows

sir? ((q+1)6)
si? (6)

sin? (q6)
sin? (6)

P = (1_cos(e))( ) (6)

where cog6) =1—M/N, 0< 6 < 1/2, and the required
number of iterations is given by [L6]:

()

o= | 2| < N
L2l T 22V M’

ere| | is the floor operation.
Although Youneset al. variation of quantum search

guantum search algorithni§] with reliable behavior in
case of multiple solutions to the oratle,i.e.1 <M <N,

and requireg’(1/N/M) oracle calls.

In the case of known multiple solutioisfor a listL of
sizeN = 2", Youneset al.algorithm is outlined as follows:

algorithm runs slower compared to Grover’s algorithm by
/2 for smallM/N, but Youneset al. algorithm is more
reliable with high probability than generalized Grover
search algorithm for multiple match&4 [16] such that
1<M<N.
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3 Constructing the oracleUr either 0 or 1, it is required to find the common solutions
M between them. It will be required to reserve 3 auxiliary

In this section, the given set of oraclewiill be utilized o qybjts. An illustration of this circuit is shown in Figur@.
construct the oraclgy which will be used for finding the

common solutiondM between the oracles in the det
assuming that all the given oracles are Nf= 2"
unstructured entries, given thats the number of inputs
to all of the given oracles. For the sake of simplification xg) — —
we will provide a simple illustration for the oracldy | x;) - -
assuming that the size of the $eis only k = 2 oracles, ce Ce c : :
and after that we will propose the generalized form of the x;) Ua Us Ua —{ Ug —
oracleUp for multiple oracles > 2. coe c c : :

Definition 1.Let's assume having a Boolean function‘?(”*2
that maps a vector of size n to eithé or 1, i.e. [ %01

)

)
f:{0,1}" — {0,1}. An oracle 4 is defined to perform |Xn) d U &
such mapping. We say that{Uis an operator on|Xni1) ‘
n+t+ q+ 1 qubits, taking the controd — n— 1 qubits | xn42) @

and targets the qubit with the index -At; this
configuration will be denoted a%;"*Us. Such defined

oracle can be illustrated as follows: Fig. 3: A quantum circuit for the proposed oradlig for k = 2

functions.

A quantum circuit for the oraclgy can be constructed

|Xo) as follows:
AL n= e U U e
[Xn-1) where the operatdd, represents the functiofx (x):
[Xn)
Xeety) fi(X) = fa(x) - fa(x), ©)
Xnt) such that is the AND logic operation, ande {0,1}".
X ti1) To clarify the effect of the proposed oradlg, let's
analyze that effect on a uniform superposition as follows:
’Xn+t+q>

1.Register PreparationPrepare a quantum register of
size n+ 3 qubits in the state0), where the last 3
qubits will be utilized as extra space to compute the
oraclesUa, Ug and the common solutions between

Fig. 2: A quantum circuit representing the ora&gn*luf.

For the problem of finding common entriksbetween them:
K oracles, the problem statement can be defined as follows:
P [60) = 10" [0) . (10)
Definition 2.Consider having a se¥ of k > 2 lists, 2 = 2 Register Initialization Apply Hadamard gates on the
{Lo,---,Lx_1}. Eachlistl € Z is of N= 2" unstructured first n qubits to get a uniform superposition of all the

entries, which has an oraclejthat is being used to access ~ PossibleN = 2" states:
those entries in |. Each entry ie Lj = {0,1,--- ,N—1}
in the list Lj is mapped to eithed or 1 according to any

certain property satisfied by i injl.i.e. fj : Lj — {0,1}. |$1) = H*"|¢ho)
The common elements problem is stated as follows: find = H®"|0)*" |0)®3
the entry ic Lj such thatvLj € 2, fj(i) = 1. 1 N1
==75 [H®|0)*3. 11

_ N go li) ©10) (11)
3.1 Constructing the oraclegfor two
databases 3.Applying the Oracle W. Apply the oracleUp on the

register to mark all its possible solutions in the first
Given thatk = 2 oracles,Ua and Ug, which map the extra qubit, where non-solutions will be marked with
elements of black-box functionfx and fg of n input to |0) and the solutions will be marked witfh):
(© 2018 NSP
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3.2 The oracle | for more than two databases

62) = 07" MUA $1)

1 Nt . ) Given thatk > 2 oracles ofn input qubits andk + 1
= ﬁ Z) i) @[ fa(i)) @ 0)*<. (12) auxiliary qubits, we illustrate the circuit of the oradlg
1=

in Figure 4.
4 Applying the Oracle . Apply the oracleUg on the
register to mark all its possible solutions in the second
extra qubit, where the non-solution states will be
marked with|0) and the solution states will be marked
with [1): I%) I H ] I J
) Tuo [l s [ Un |7 U0 [JUn [ Uea |

|p3) = 2:{1_1UB|¢2>

1 N—-1
== Y l)ye|fai)) @) ®[0). (13) & &
\/Ni;H [ fa(i)) @ | fa(i)) ® |0) ‘X\xzi o b
e . .
5.Applying the Operator Y. Apply the operatotx on S : Uk s
the register to mark all possible common solutigpn§Kfl>
between the oraclés$y andUg in the third extra qubit, ) X
K U

where non-common solutions will be marked with
and the common solutions will be marked wjth:
Fig. 4: A quantum circuit for the proposed oradly for k
functions.
|ba) =15 Ukl b3)
1 N—-1
=—= > lha[fal)) @[fs(i)) @ [fk()), (14)
VN iZO The oracldJy can be generally defined as follows:
wheref, (i) is defined as in Equationd).
6.Applying WUa. Apply both the oraclesUgUa to K-l o1 Nonk—1 K=l on1
remove any entanglement between the solutions of Up = I_Ln+j Uj X Us % I_Ln+j uj, (@17)
both oracles from the first and the second extra qubits, 1= 1=

and reset them to their initial staj@)“?: .
whereUy represents the functiofx (x) such that

195) = 00 U x 07 U )

T nt+l K—1
N-1 fo(X) = A fi(x), 18
:%Z}M@W?@HKU». (15) % j/:\o i 4o

Ignoring the reset extra qubits, the stagg) can be  and represents the AND logic operation.

rewritten as follows: The general system in a uniform superposition for
K > 2 after a single iteration, can be generally described

1 N—l// . 1 N—l/ )
|¢5>:W ; (|I>®|0>)+W ; (I ©11)), as follows:

(16)
where 3" are all the possible uncommon solutions _ iN’l. oK .
between the oraclésy andUg marked with|0), and 1#) = VN & @07 ® [ (i)- (19)

3’ are all the possible common solutions between
those oracles marked witth).

The main reason behind applying each oracle for the
second time on its target qubit when callidg, is thatthe 4 The proposed algorithm
solutions of that specific oracle are still entangled with
their target qubit. Discarding that qubit at the stage of
amplifying the common solutions will drastically affect In this section, we will propose the algorithm to find the
the desired outcome of the algorithd7]. So to getrid of  common solutionsVl; such that 1< M¢ < N, amongk
this entanglement, applying each oracle on its respectiveracles, based on Younes$ al. amplitude amplification
target qubit is necessary to remove such correlation anelgorithm. An illustration of the circuit is shown in Figure
maintain a valid result. 5.
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5.2 In case of unknown matches M

0) —#"{Hen
0) /X Up v An algorithm for estimating the number of matches was
‘O> presented in 15, known as quantum counting The
10) ) proposed oracleUy can be used with the quantum
VR counting algorithm to estimate the number of matches
_ ﬁ( WMC) _ Mc, before executing the proposed algorithm.
Fig. 5: Quantum circuit for the proposed algorithm. In [16], another algorithm was presented by Younes

et al. to search for a match in a database, with unknown
number of matchel! such that < M < N. Youneset al.
The algorithm is carried quantum mechanically asalgorithm can be combined with the proposed oradje
follows: to find a common match, when the number of matches is
unknown in advance.

Algorithm 1 *
1. Construct the oracl. 6 Comparison with other literature
2: Set the quantum register @ " and the extra + 1 qubits

to |0).
3: Apply the Hadamard gates to the firsqubits to create the
uniform superpositio% SN @ |0y O,

In 2012, Tulsi proposed an algorithrh that given two
oracles that can identify the elements of two sets with the
same size, the goal is to find a common element between

4: lterate over the following = 2—%\/,\,,Ecsteps: those two sets. The success of finding that single element
is further enhanced using a variation Tulsi introduced of
1. Apply the oracléJp. Grover’s amplitude amplification algorithm, with some
2. Apply the diffusion operatoy. restrictive conditions.

5: Measure the output.
The Proposed Algorithm.

6.1 Single common solution amplification

In the case of a single common solution betwees 2
5 Analysis of the proposed algorithm oracles, Tulsi’s algorithm is found to be optimal with
restrictions, and require§(1/N) oracle calls. However,

the proposed algorithm requires the same oracle calls

In this section, we will discuss the behavior of the = . - "
proposed algorithm with respect to all possible scenariosﬁj( N) but with no restrictive conditions. In the case of
for any given databases single common solution whek > 2 oracles which was

not covered by Tulsi 10], the proposed algorithm is
found to requireZ(k+/N) oracle calls.

5.1 In case of known number of common
matches between databases 6.2 Multiple common solutions amplification

Given thatk > 2 oracles, a single call to the oratlgwill ~ In the case of multiple common solutions betwees: 2
execute each given oradé exactly 2 times. After the ~oracles, the expected oracle calls of the proposed
amplitude amplification of the desired common solutions,algorithm is &(\/N/Mc), when M¢ is 1 < Mc < N.
the total number of oracle caltg for all given oracles can  Tulsi’s algorithm can be used to cover the case of multiple

be expressed as the following sum: solutions whenk = 2, but the problem becomes
exponentially harder wheM. > 3N/4 [12,13]. In the
dc—1 case of multiple common solutions between> 2
= z 2x K oracles, this case is not covered by Tuldi(]] however,
p=0 the proposed algorithm require§(k+/N/M;) oracle
n calls.
=2XKx ——=+/N/M
2V/2 /Me
T
BV N/Me 20 7 Perspective

So, for any givenk oracles with the same size, the In this paper, we proposed a quantum algorithm to find
number of oracle call to solve the common matchesthe common entries betweendatabases. Each database
problem using the proposed algorithmgk /N /Mc). uses an oracle to access its entries. It is shown that the
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given oracles is used to construct another oracle that
exhibits the behavior of finding only the common entries
between those databases. The constructed oracle is used
to mark the common entries with entanglement, then an

amplitude amplification algorithm is applied to increase
the success probability of finding the common entries.

It is found that in order to find the common matches
given k databases, it will require’(k/N/M;) oracle
calls. As well, It is found that the performance of the
proposed algorithm is more reliable in the case of
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multiple matches and quadratically faster than otherquantum computations and quantum algorithms.
literature solving this problem, and handles the generaHe is an active member in a research group
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proposed oracle can be extended usih§ fo count the

number of common entries between any given oracles, or

find a match as in12,16], when the number of common

entriesM; is unknown.
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