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Abstract: Given κ databases of unstructured entries, we propose a quantum algorithm to find the common entries between those
databases. The proposed algorithm requiresO(κ

√
N) queries to find the common entries, whereN is the number of records for each

database. The proposed algorithm constructs an oracle to mark common entries, and then uses a variation of amplitude amplification
technique with reliable behavior to increase the success probability of finding them.
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1 Introduction

Givenκ databases with unstructured entries, it is required
to find the joint entries between those databases.
Considering this problem in classical computers, an
intuitive approach is to count similar entries from those
databases and store them in a memory which keeps track
of each entry and its number of occurrences, and then
iterate over this memory and observe when the number of
occurrences of certain entries equal toκ . This procedure
requires at mostO(κN) steps.

Quantum computers [1,2,3] are inherently
probabilistic devices which promise to significantly
accelerate certain types of computations compared to
classical computers [4], by utilizing quantum phenomena
like entanglement and superposition. Many quantum
algorithms have emerged recently, for example,
Deutch-Jousza algorithm [5] that tests whether a given
Boolean function is a balanced Boolean function or a
constant Boolean function, using only a single oracle call.
P. Shor introduced a polynomial-time algorithm [6] to
factorize a composite integer to its prime factors. L.
Grover presented a quantum algorithm [7] to search for
an entry in an unstructured list of entries in quadratic
speed-up compared to classical computers.

In 1998, Burhmanet al. introduced an algorithm [8]
that solves a problem similar to the common entries
problem: given two remotely separated schedules of
unknown free slots out ofN = 2n slots, find a common

slot between those two schedules, in as minimum
communication bits sent as possible. Burhmanet al.
algorithm requires O(

√
N log2N) communication

complexity andO(k
√

N) query calls, withk trails and
error at most 2−k [8]. Later in 2002, L. Grover proposed
an algorithm [9] to solve scheduling problem with
O(

√
εN log2N) computation complexity.

In 2012, Tulsi proposed a quantum algorithm [10] to
find a single common element between two sets in
O(

√
N) using an ancilla qubit to mark the common

solution with phase-shift and applying amplitude
amplification algorithm to increase the success
probability of the desired result.

In 2013, Panget al. introduced a quantum algorithm
[11] for set operations. In that paper, Panget al. provided
a subroutine to find common intersected elements
between two sets of size 2n and 2m elements in
O(

√

2m+n/C), whereC is the number of common entries,
using a similar algorithm proposed in [12].

The aim of this paper is to propose a quantum
algorithm to find the common matches between givenκ
databases each ofN entries. Each given database uses a
black-box to identify its elements. The proposed
algorithm can find a match among the common entries
using a new oracleUh̄ which is constructed from the set
of all given black-boxes̄h. The new oracleUh̄ is then used
along with amplitude amplification technique based on
partial diffusion operator, to increase the success
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probability of finding the desired results. As well, the
algorithm works with probability of success at least 2/3.

The paper is organized as follows: Section2 depicts
an amplitude amplification algorithm with reliable
behavior used to solve the problem at hand. Section3
covers the construction of the oracleUh̄. Section 4
introduces the proposed algorithm. Section5 analyzes
the proposed algorithm. Section6 compares the proposed
algorithm to relevant literature, followed by a conclusion
in Section 7.

2 Amplitude amplification

Consider having a listL of N = 2n of unstructured entries,
which has an oracleU f that is being used to access those
entries. Each entryi ∈ L = {0,1, ...,N−1} in the listL is
mapped to either 0 or 1 according to any certain property
satisfied byi in L, i.e. f : L → {0,1}. The unstructured
search problem is stated as follows: find the entryi ∈ L
such thatf (i) = 1.

In 1996, Grover proposed a unique approach to solve
this typical problem with quadratic speed-up compared to
classical algorithms [7]. The algorithm Grover proposed
takes advantage of quantum parallelism to solve this
problem by preparing a perfect superposition of all the
possibleN entries corresponding to the listL, after that it
starts marking the solution using phase shift of−1 using
the oracleU f , followed by amplifying the amplitude of
the solution using inversion about the mean operator. It
was shown in [7,13] that the algorithm requiresπ/4

√
N

iteration to optimally [14] find a solution to the search
problem with high probability, assuming there is only one
solutioni ∈ L that satisfies the oracleU f .

Boyer et al. later generalized Grover’s quantum
search algorithm to fit the purpose of finding multiple
solutions M to the oracle U f , i.e. ∀p, for which
1 ≤ p ≤ M ≤ 3N/4, f (ip) = 1, to require a number of
π/4

√

N/M iterations of the algorithm [12]. For the case
of unknown number of solutionsM to the oracle, an
algorithm [15] was proposed to find such numberM.
However, the generalized quantum search algorithm has
shown to exponentially fail in the case ofM > 3N/4 [12,
13].

Youneset al. introduced a variation of the generalized
quantum search algorithm [16] with reliable behavior in
case of multiple solutions to the oracleU f , i.e.1≤ M ≤ N,
and requiresO(

√

N/M) oracle calls.

In the case of known multiple solutionsM for a listL of
sizeN = 2n, Youneset al.algorithm is outlined as follows:

|0〉 /n H⊗n
U f Y

/n

|0〉
︸ ︷︷ ︸

O(
√

N/M)

Fig. 1: Quantum circuit for the quantum search algorithm [16].

1.Prepare a quantum register withn+ 1 qubits in a
uniform superposition:

|ϕ〉= 1√
N

N−1

∑
i=0

|i〉⊗ |0〉. (1)

2.Iterate the algorithm forπ/(2
√

2)
√

N/M times by
applying the partial diffusion operatorY on the state
U f |ϕ〉 in each iteration, such that it performs the
inversion about the mean on a subspace of the system,
where

Y = (H⊗n⊗ I)(2|0〉〈0|− In+1)(H
⊗n⊗ I). (2)

At any iterationq≥ 2, the system can be described as
follows [16]:

|ϕq〉= aq∑N−1
i=0

′′(|i〉⊗ |0〉
)
+bq∑N−1

i=0
′(|i〉⊗ |0〉

)
+ cq∑N−1

i=0
′(|i〉⊗ |1〉

)
,

(3)
where the amplitudesaq, bq and cq are recursively
defined as follows:

aq = 2〈αq〉−aq−1, bq = 2〈αq〉− cq−1, cq =−bq−1,
(4)

and

〈αq〉=
((

1− M
N

)
aq−1+

(M
N

)
cq−1

)

. (5)

For this algorithm, the success probability is as follows
[16]:

Ps =
(
1− cos

(
θ
))(sin2((q+1

)
θ
)

sin2(θ
) +

sin2(qθ
)

sin2(θ
)

)

, (6)

where cos
(
θ
)
= 1−M/N, 0< θ ≤ π/2, and the required

number of iterationsq is given by [16]:

q=
⌊ π

2θ

⌋

≤ π
2
√

2

√

N
M
, (7)

where⌊ ⌋ is the floor operation.
Although Youneset al. variation of quantum search

algorithm runs slower compared to Grover’s algorithm by√
2 for smallM/N, but Youneset al. algorithm is more

reliable with high probability than generalized Grover
search algorithm for multiple matchesM [16] such that
1≤ M ≤ N.
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3 Constructing the oracleUh̄

In this section, the given set of oraclesh̄ will be utilized to
construct the oracleUh̄ which will be used for finding the
common solutionsM between the oracles in the seth̄,
assuming that all the given oracles are ofN = 2n

unstructured entries, given thatn is the number of inputs
to all of the given oracles. For the sake of simplification,
we will provide a simple illustration for the oracleUh̄
assuming that the size of the seth̄ is only κ = 2 oracles,
and after that we will propose the generalized form of the
oracleUh̄ for multiple oraclesκ ≥ 2.

Definition 1.Let’s assume having a Boolean function f
that maps a vector of size n to either0 or 1, i.e.
f : {0,1}n → {0,1}. An oracle Uf is defined to perform
such mapping. We say that Uf is an operator on
n+ t + q+ 1 qubits, taking the control0 → n− 1 qubits
and targets the qubit with the index n+ t; this
configuration will be denoted as0→n−1

n+t U f . Such defined
oracle can be illustrated as follows:

|x0〉

U f
|x1〉

...
...

|xn−1〉
|xn〉 ...

...|xn+t−1〉
|xn+t〉

|xn+t+1〉 ...
...∣

∣xn+t+q
〉

Fig. 2: A quantum circuit representing the oracle0→n−1
n+t U f .

For the problem of finding common entriesM between
κ oracles, the problem statement can be defined as follows:

Definition 2.Consider having a setZ of κ ≥ 2 lists,Z =
{L0, · · · ,Lκ−1}. Each list Lj ∈Z is of N= 2n unstructured
entries, which has an oracle Uj that is being used to access
those entries in Lj . Each entry i∈ L j = {0,1, · · · ,N−1}
in the list Lj is mapped to either0 or 1 according to any
certain property satisfied by i in Lj , i.e. fj : L j → {0,1}.
The common elements problem is stated as follows: find
the entry i∈ L j such that∀L j ∈ Z , f j(i) = 1.

3.1 Constructing the oracle Ūh for two
databases

Given that κ = 2 oracles,UA and UB, which map the
elements of black-box functionsfA and fB of n input to

either 0 or 1, it is required to find the common solutions
M between them. It will be required to reserve 3 auxiliary
qubits. An illustration of this circuit is shown in Figure3.

| x0〉

UA UB UA UB

| x1〉
. . . . . . . . . . .. . . . . . . . . . .

| xi〉
. . . . . . . . . . .
. . . . . . . . . . .

| xn−2〉
| xn−1〉
| xn〉 Uκ| xn+1〉

| xn+2〉

Fig. 3: A quantum circuit for the proposed oracleUh̄ for κ = 2
functions.

A quantum circuit for the oracleUh̄ can be constructed
as follows:

Uh̄=
0→n−1
n+1 UB×0→n−1

n UA×n→n+1
n+2 Uκ ×0→n−1

n+1 UB×0→n−1
n UA,

(8)
where the operatorUκ represents the functionfκ (x):

fκ(x) = fA(x) · fB(x), (9)

such that· is the AND logic operation, andx∈ {0,1}n.
To clarify the effect of the proposed oracleUh̄, let’s

analyze that effect on a uniform superposition as follows:

1.Register Preparation.Prepare a quantum register of
size n+ 3 qubits in the state|0〉, where the last 3
qubits will be utilized as extra space to compute the
oraclesUA, UB and the common solutions between
them:

|ϕ0〉= |0〉⊗n⊗|0〉⊗3. (10)

2.Register Initialization.Apply Hadamard gates on the
first n qubits to get a uniform superposition of all the
possibleN = 2n states:

|ϕ1〉= H⊗n|ϕ0〉
= H⊗n|0〉⊗n⊗|0〉⊗3

=
1√
N

N−1

∑
i=0

|i〉⊗ |0〉⊗3. (11)

3.Applying the Oracle UA. Apply the oracleUA on the
register to mark all its possible solutions in the first
extra qubit, where non-solutions will be marked with
|0〉 and the solutions will be marked with|1〉:
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|ϕ2〉= 0→n−1
n UA|ϕ1〉

=
1√
N

N−1

∑
i=0

|i〉⊗ | fA(i)〉⊗ |0〉⊗2. (12)

4.Applying the Oracle UB. Apply the oracleUB on the
register to mark all its possible solutions in the second
extra qubit, where the non-solution states will be
marked with|0〉 and the solution states will be marked
with |1〉:

|ϕ3〉= 0→n−1
n+1 UB|ϕ2〉

=
1√
N

N−1

∑
i=0

|i〉⊗ | fA(i)〉⊗ | fB(i)〉⊗ |0〉. (13)

5.Applying the Operator Uκ . Apply the operatorUκ on
the register to mark all possible common solutions
between the oraclesUA andUB in the third extra qubit,
where non-common solutions will be marked with|0〉
and the common solutions will be marked with|1〉:

|ϕ4〉= n→n+1
n+2 Uκ |ϕ3〉

=
1√
N

N−1

∑
i=0

|i〉⊗ | fA(i)〉⊗ | fB(i)〉⊗ | fκ(i)〉, (14)

where fκ (i) is defined as in Equation (9).
6.Applying UBUA. Apply both the oraclesUBUA to

remove any entanglement between the solutions of
both oracles from the first and the second extra qubits,
and reset them to their initial state|0〉⊗2:

|ϕ5〉= 0→n−1
n+1 UB× 0→n−1

n UA|ϕ4〉

=
1√
N

N−1

∑
i=0

|i〉⊗ |0〉⊗2⊗| fκ(i)〉. (15)

Ignoring the reset extra qubits, the state|ϕ5〉 can be
rewritten as follows:

|ϕ5〉=
1√
N

N−1

∑
i=0

′′
(|i〉⊗ |0〉)+ 1√

N

N−1

∑
i=0

′
(|i〉⊗ |1〉),

(16)
where ∑′′ are all the possible uncommon solutions
between the oraclesUA andUB marked with|0〉, and
∑′ are all the possible common solutions between
those oracles marked with|1〉.
The main reason behind applying each oracle for the

second time on its target qubit when callingUh̄, is that the
solutions of that specific oracle are still entangled with
their target qubit. Discarding that qubit at the stage of
amplifying the common solutions will drastically affect
the desired outcome of the algorithm [17]. So to get rid of
this entanglement, applying each oracle on its respective
target qubit is necessary to remove such correlation and
maintain a valid result.

3.2 The oracle Ūh for more than two databases

Given thatκ ≥ 2 oracles ofn input qubits andκ + 1
auxiliary qubits, we illustrate the circuit of the oracleUh̄
in Figure 4.

| x0〉

U0 U1

..

Uκ−1 U0 U1

..

Uκ−1
| x1〉 .. ..

.. . .... . . .. . .... .

.. . .... . . .. . .... .
| xn−1〉 .. ..

|xn〉 ..

Uκ

..

|xn+1〉 .. ..
. . . . ..... . .. . . . ..... .
. . . . ..... . .. . . . ..... .

|xn+κ−1〉 .. ..

|xn+κ 〉

Fig. 4: A quantum circuit for the proposed oracleUh̄ for κ
functions.

The oracleUh̄ can be generally defined as follows:

Uh̄ =
κ−1

∏
j=0

0→n−1
n+ j U j × n→n+κ−1

n+κ Uκ ×
κ−1

∏
j=0

0→n−1
n+ j U j , (17)

whereUκ represents the functionfκ(x) such that

fκ(x) =
κ−1∧

j=0

f j(x), (18)

and
∧

represents the AND logic operation.
The general system in a uniform superposition for

κ ≥ 2 after a single iteration, can be generally described
as follows:

|ϕ〉= 1√
N

N−1

∑
i=0

|i〉⊗ |0〉⊗κ ⊗| fκ(i)〉. (19)

4 The proposed algorithm

In this section, we will propose the algorithm to find the
common solutionsMc such that 1≤ Mc ≤ N, amongκ
oracles, based on Youneset al. amplitude amplification
algorithm. An illustration of the circuit is shown in Figure
5.
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|0〉 /n H⊗n

Uh̄ Y|0〉 /κ

|0〉
︸ ︷︷ ︸

O(
√

N/Mc)

Fig. 5: Quantum circuit for the proposed algorithm.

The algorithm is carried quantum mechanically as
follows:

Algorithm 1 *
1: Construct the oracleUh̄.
2: Set the quantum register to|0〉⊗n and the extraκ +1 qubits

to |0〉.
3: Apply the Hadamard gates to the firstn qubits to create the

uniform superposition 1√
N

∑N−1
i=0 |i〉⊗ |0〉⊗κ+1.

4: Iterate over the followingqc =
π

2
√

2

√
N
Mc

steps:

1. Apply the oracleUh̄.
2. Apply the diffusion operatorY.

5: Measure the output.
The Proposed Algorithm.

5 Analysis of the proposed algorithm

In this section, we will discuss the behavior of the
proposed algorithm with respect to all possible scenarios
for any given databases.

5.1 In case of known number of common
matches between databases

Given thatκ ≥ 2 oracles, a single call to the oracleUh̄ will
execute each given oracleU j exactly 2 times. After the
amplitude amplification of the desired common solutions,
the total number of oracle callsqt for all given oracles can
be expressed as the following sum:

qt =
qc−1

∑
p=0

2×κ

= 2×κ × π
2
√

2

√

N/Mc

= κ × π√
2

√

N/Mc (20)

So, for any givenκ oracles with the same size, the
number of oracle call to solve the common matches
problem using the proposed algorithm isO(κ

√

N/Mc).

5.2 In case of unknown matches M

An algorithm for estimating the number of matches was
presented in [15], known as quantum counting. The
proposed oracleUh̄ can be used with the quantum
counting algorithm to estimate the number of matches
Mc, before executing the proposed algorithm.

In [16], another algorithm was presented by Younes
et al. to search for a match in a database, with unknown
number of matchesM such that 1≤ M ≤ N. Youneset al.
algorithm can be combined with the proposed oracleUh̄
to find a common match, when the number of matches is
unknown in advance.

6 Comparison with other literature

In 2012, Tulsi proposed an algorithm [10] that given two
oracles that can identify the elements of two sets with the
same size, the goal is to find a common element between
those two sets. The success of finding that single element
is further enhanced using a variation Tulsi introduced of
Grover’s amplitude amplification algorithm, with some
restrictive conditions.

6.1 Single common solution amplification

In the case of a single common solution betweenκ = 2
oracles, Tulsi’s algorithm is found to be optimal with
restrictions, and requiresO(

√
N) oracle calls. However,

the proposed algorithm requires the same oracle calls
O(

√
N) but with no restrictive conditions. In the case of

single common solution whenκ > 2 oracles which was
not covered by Tulsi [10], the proposed algorithm is
found to requireO(κ

√
N) oracle calls.

6.2 Multiple common solutions amplification

In the case of multiple common solutions betweenκ = 2
oracles, the expected oracle calls of the proposed
algorithm is O(

√

N/Mc), when Mc is 1 ≤ Mc ≤ N.
Tulsi’s algorithm can be used to cover the case of multiple
solutions when κ = 2, but the problem becomes
exponentially harder whenMc > 3N/4 [12,13]. In the
case of multiple common solutions betweenκ ≥ 2
oracles, this case is not covered by Tulsi [10], however,
the proposed algorithm requiresO(κ

√

N/Mc) oracle
calls.

7 Perspective

In this paper, we proposed a quantum algorithm to find
the common entries betweenκ databases. Each database
uses an oracle to access its entries. It is shown that the
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given oracles is used to construct another oracle that
exhibits the behavior of finding only the common entries
between those databases. The constructed oracle is used
to mark the common entries with entanglement, then an
amplitude amplification algorithm is applied to increase
the success probability of finding the common entries.

It is found that in order to find the common matches
given κ databases, it will requireO(κ

√

N/Mc) oracle
calls. As well, It is found that the performance of the
proposed algorithm is more reliable in the case of
multiple matches and quadratically faster than other
literature solving this problem, and handles the general
case of multiple databases with similar sizes. The
proposed oracle can be extended using [15] to count the
number of common entries between any given oracles, or
find a match as in [12,16], when the number of common
entriesMc is unknown.
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