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1 Introduction

The method of approximative Hamiltonians is one of the most helpful method in sta-
tistical physics. It has been shown within the framework of the method that, for a number
of nonlinear problems, model Hamiltonians are equivalent to approximative ones in terms
of the thermodynamic variables [5-8], [18]. This method consists of substituting some
operator-expressions by functions from nonlinear equations arised from the conditions of
self-consistency. The problem is regarded as being solvable if the solution of this nonlinear
equation exists.

A new approach to the approximative Hamiltonian method (AHM) was developed by
D. Ya. Petrina and E. D. Belokolos [4]. The new AHM was used to investigate the Fröhlich
Hamiltonian, which gives an account of interactions of electrons having a countable set of
phonon modes. The results, obtained for the first time by applying the inverse scattering
method, revealed a powerful way of improving the AHM. The authors have succeeded in
proving that a) the model Fröhlich type Hamiltonian is equivalent to the approximative one
and b) the self-consistency agrees well with the equations of the Peierls-Fröhlich problem,
which may be exactly solvable by the finite zone potentials [2], [12],[13] derived from the
inverse scattering method [1], [15],[17] in one-dimensional case.

A large number of articles devoted to study of the Dicke model is available [9], [11],
[16]. Here, we investigate the Dicke model with the Petrins-Belokolos’s method. This
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method offers the advantage that it is easy to simplify the construction of the self-consistent
equation and the structure of approximative Hamiltonians [7], [9], [10]. In addition, the
AHM allows the exact solution of the self-consistent equation to be found and, the approx-
imative Hamiltonian for the Dicke model to be defined in terms of one-zone potential.

2 Construction of Approximative Hamiltonian for the Dicke Model

Consider a model system confined in a glass Λ ∈ R1 of a finite volume |Λ| < ∞. We
assume that the Hamiltonian [7] describes the system given by

H =
M∑

k=1

ωkb+
k b−k + εSz +

1√
|Λ|

M∑

k=1

λk(b−k J+
k + b+

k J−k ), (2.1)

where ωk ≥ ω0 > 0, Sz =
∑N

j=1 σz
j , J±k =

∑N
j=1(σ

±
j + µkσ∓j ), σ±j = σx

j + iσy
j and

{σx
j , σy

j , σz
j }N

j=1 are the Pauli matrices.

σx
j =

[
0 1
1 0

]
, σy

j =

[
0 −1
1 0

]
, σz

j =

[
1 0
0 −1

]
,

correspond to spin 1/2, that is, dim HL = 2N ; ε ∈ R1, |µjk| ≤ C, k =
1, 2, . . . ,M ; λk ≡ λ(k) are real numbers (the constants of interaction, involving k-mode).

The model describes the interaction of electromagnetic field with N two-level
molecules placed in a resonator Λ, having M normal frequencies {ωk}M

k .
The system under study consists of two interacting subsystems B and L. A state space

of the system H is governed by the tensor product of proper Hilbert spaces

H = HB ⊗HL
of pairs of functions Φ = ΦB ⊗ ΦL ∈ H, , whose scalar product is given by

(Φ1, Φ2) = (ΦB1 , ΦB2)(ΦL1 , ΦL2).

The subsystem L contains N particles and satisfies the stability condition

H(ΛN ) ≥ −NC,

where C is the constant for any Λ and N . The subsystem B is a free boson field with finite
number of mode M and energies ωα ≥ ω0 > 0 (α = 1, 2, . . . , M),

[bα1 , bα2 ] = δα1,α2 , α1, α2 = (1, 2, . . . , M),

where b+
α and b−α are the creation operator and the annihilation operator for bosons in α

mode. For M < ∞

B = ⊗M
i=1Bi, Bi = B, i = 1, 2, . . . , M (2.2)
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and, consequently, Φ = ΦB ⊗ ΦL = ⊗M
i=1Φ

i
B ⊗ Φi

L,

b+
α1

= I ⊗ I ⊗ · · · ⊗ b+ ⊗ · · · ⊗ I, (2.3)

and
b−α2

= I ⊗ I ⊗ · · · ⊗ b− ⊗ · · · ⊗ I, (2.4)

where the operators b+ and b− stand for α1 and α2 in the tensor product, respectively.
The domain

TB =
M∑

k=1

ωkb+
k b−k ⊗ I

is defined by the domains of infinite operators b+ and b−. The operators b+ and b− have
dense domains D(b+) and D(b−). So the domains D(b+

k ) and D(b−k ) are also dense in the
space HB, i.e. the operators b+

k and b−k are self conjugated [7].
The operator HL on H takes the form

HL = I ⊗HL(ΛN )

and, consequently, the operator H0 given by

H0 = HB + HL

is selfconjugated [7] and has the domain

D(H0) = D

( M∑

k=1

ωkb+
k b−k

)
⊗D(HL(ΛN )).

Here HL is equal to

Hl =
N∑

j=1

εσz
j +

M∑

k=1

λk(b−k J+
k b+

k J−k ).

The operators (Jk)M
k=1 are operators acting on space H and satisfying the condition:

(1/|Λ|)|Jk|HL(∗N ) ≤ C.

Performing the following change of variables in (2.1):

b+
k −→ (2π)3/2

(2π)3/2

√
|Λ|√
|Λ|b

+
k =

(2π)3/2

√
|Λ| b+(k), b−k −→ (2π)3/2

√
|Λ| b−(k),

J+
k −→ (2π)3/2

√
|Λ| J+(k), J−k −→ (2π)3/2

√
|Λ| J−(k), ωk −→ ω(k).

(2.5)

and using (2.5), the Hamiltonian (2.1) takes the form

H(Λ, N) =
N∑

k=1

ω(k)
(2π)3

|Λ| b+(k)b−(k) + ε

N∑

j=1

σz
j
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+
1√
|Λ|

M∑

k=1

λ(k)
(2π)3

|Λ| (b−(k)J+(k) + b+(k)J−(k)).

We substitute the summation by the integration according to the convention

(2π)3

|Λ|
∑

k

→
∫

dk.

Next we define the Hamiltonian by

H(Λ, N) =
∫

ω(k)b+(k)b−(k)dk + ε

N∑

j=1

σz
j

+
1√
|Λ|

∫
λ(k)(b−(k)J+(k) + b+(k)J−(k))dk,

where b+(k) and b−(k) depend on time through

b−(t, k) = ei(H−µ̃N)tb−(0, k)e−(H−µ̃N)t,

b+(t, k) = e−i(H−µ̃N)tb+(0, k)e(H−µ̃N)t,

b±(t, k)|t=0 = b±(0, k) ≡ b±(k),

where µ̃ - the chemical potential.
These operators satisfy the commutation relation

b−(k)b+(k′)− b+(k′)b−(k) = δ(k − k′). (2.6)

Consider the motion equation

i
∂

∂t
b−(t, k) = [H, b−(t, k)].

Using (2.6) we can rewrite it as

(i
∂

∂t
b−(t, k))t=0 = ω(k)b−(k) +

λ(k)√
|Λ|J

−(k).

By similar arguments we find

(i
∂

∂t
b+(t, k))t=0 = ω(k)b+(k) +

λ(k)√
|Λ|J

+(k).

Denote

< b−(t, k) >= lim
Λ→∞

Sp(b−(t, k)e−β(H−µ̃N))
Spe−β(H−µ̃N)

,

where β is the reverse temperature. We also assume that the correlation function exists in
an infinite volume.
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Then the equation for < b+(k) >HB and < b−(k) >HB are of the form

< b+(k) >HB = −λ(k) < J+(k) >HB
ω(k)

√
|Λ| ,

< b−(k) >HB = −λ(k) < J−(k) >HB
ω(k)

√
|Λ| , k = 1, 2, . . . ,M,

where λ(k)/ω(k) = const, As the operators J+(k) and J−(k) are related to σ via

J+(k) =
N∑

j=1

(σ+
j +µ(k)σ−j ) =

N∑

j=1

[
0 2
0 0

]

j

+µ(k)

[
0 0
2 0

]

j

=
N∑

j=1

[
0 2
2µ(k) 0

]

j

,

J−(k) =
N∑

j=1

(σ−j +µ(k)σ+
j ) =

N∑

j=1

[
0 0
2 0

]

j

+µ(k)

[
0 2
0 0

]

j

=
N∑

j=1

[
0 2µ(k)
2 0

]

j

,

where

σ+
j = σx

j + iσy
j =

[
0 1
1 0

]

j

+ i

[
0 −i

i 0

]

j

=

[
0 2
0 0

]

j

,

σ−j = σx
j − iσy

j =

[
0 1
1 0

]

j

− i

[
0 −i

i 0

]

j

=

[
0 0
2 0

]

j

,

it follows that

J−(k) = J+(k) det A = J+(k)|A| =
N∑

j=1

[
0 2
2µ(k) 0

]

j

[
1/µ(k) 0µ(k)
0 µ(k)

]

j

=
N∑

j=1

[
0 · 1/µ(k) + 2 · 0 0 · 0 + 2µ(k)
2µ(k) · 1/µ(k) + 0 2µ(k) · 0 + 0 · µ(k)

]

j

=
N∑

j=1

[
0 2µ(k)
2 0

]

j

≡ J−(k).

Here

|A| =
[

1/µ(k) 0
0 µ(k)

]

and
detA = 1.

From these conditions, we can find that

< J+(k) >HL=< J−(k) >HL

and

< b+(k) >HB=< b−(k) >HB= − λ(k)
ω(k)

√
|Λ| =< J−(k) >HL , (2.7)
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where

< J−(k) >HL=<

N∑

j=1

[
0 2µ(k)
2 0

]

j

> .

Furthermore, by denoting

η#(k) =
< J±(k) >HL

|Λ| ,

it follows from (2.7)

η#(k) = − ω(k)
λ(k)

√
|Λ| < b#(k) >HB .

For

W̃ (k) = −λ(k)
√

Λ
ω(k)

η(k),

we can express Eq.(2.7) in the form

< b+(k) >HB=< b−(k) >HB= W̃ (k), k = 1, 2, . . . , M.

We introduce the approximative Hamiltonian by

Happ(η, η∗) =
∫

ω(k)b+(k)b−(k)dk+ε
N∑

j=1

σz
j−

∫
λ2(k)
ω(k)

(J+(k)η(k)+J−(k)η∗(k))dk,

η(k) = {ηk}M
k=1 ∈ CM .

It is not difficult to prove that the equation for correlation function on approximative Hamil-
tonian defined as

b+(t, k)Happ = lim
Λ→∞

Sp(b−(t, k)e−β(Happ−µ̃N))
Spe−β(Happ−µ̃N)

,

where < b+(t, k) >Happ is assumed to exist as Λ →∞, satisfies the same motion equation
as that on model Hamiltonian.

It should be noted that the approximative Hamiltonian is also equivalent to the approx-
imative one discussed in [5].

H̃app(η, η∗) =
∫

ω(k)(b+(k) +
λ(k)

√
|Λ|

ω(k)
η∗(k))b−(k)

+
λ(k)

√
|Λ|

ω(k)
η(k)) + ε

N∑

j=1

σz
j −

∫
λ2(k)
ω(k)

(J+(k)η(k)

+ J−(k)η∗(k))dk − |Λ|λ
2(k)

ω(k)
|η(k)|2dk,

(2.8)

where η(k) = {ηk}M
k=1 ∈ CM . This fact can be directly proved by deriving the equation

for correlation function defined on Happ(η, η∗).

Theorem 2.1. If the equation for the correlation function involving approximative Hamil-
tonian Happ(η, η∗) has a solution, then the equation for the correlation function involving
the model Hamiltonian H has the same solution.
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3 Proof of the Thermodynamics Equality

As a starting point for our proof we consider reduced free energies fλ(H),
fΛ(Happ(η, η#)) and show that the densities of thermodynamic potentials fΛ(H) and
fΛ(Happ(η, η∗)) are close. For this let us introduce terms with “source” ν =
{ν1, ν2, . . . , νM} ∈ C in Hamiltonian (2.1). In so doing, the self conjugation and sim-
plification of the Hamiltonian (2.1) are not broken [7].

H(ν) =
M∑

k=1

ωkb+
k b−k + ε

N∑

j=1

σz
j +

1√
|Λ|

M∑

k=1

λk(b−k J+
k + b+

k J−k )

−
√
|Λ|

M∑

k=1

(νkb+
k + ν∗kb−k ). (3.1)

Introducing νk and ν∗k via

νk =
(2π)3/2

√
|Λ| ν(k), ν∗k =

(2π)3/2

√
|Λ| ν∗(k),

and using (2.5), the Hamiltonian (3.1) takes the form

H(ν) =
∫

ω(k)b+(k)b−(k)dk+ ε

N∑

j=1

σz
j +

1√
|Λ|

∫
λ(k)(b−(k)J+(k) + b+(k)J−(k))dk

−
√
|Λ|

∫
(ν(k)b+(k) + ν∗(k)b−(k))dk.

The above considered procedure is useful to obtain the relation between
< b#(k) >H(ν)L/

√
|Λ| and < J#(k) >H(ν)L/

√
|Λ|. So, consider the motion equa-

tion for
b−(t, k) = ei(H(ν)−µ̃N)tb−(0, k)e−i(H(ν)−µ̃N)t,

(i
∂

∂t
b−(t, k))|t=0 = [H(ν), b−(k)].

Using the commutation relation (2.6) we get

(i
∂

∂t
b−(t, k))|t=0 = ω(k)b−(k) +

λ(k)√
|Λ|J

−(k) +
√
|Λ|ν(k)

or

(i
∂

∂t
< b−(t, k) >H(ν)L)|t=0 = ω(k) < b−(k) >H(ν)L

+
λ(k)√
|Λ| < J−(k) >H(ν)L +

√
|Λ|ν(k).

For b−(k) and < b−(k) > we find that

−b−(k)√
|Λ| =

λ(k)J−(k)
ω(k)|Λ| − ν(k)

ω(k)
,
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−< b−(k) >H(ν)L√
|Λ| =

λ(k) < J−(k) >H(ν)L

ω(k)|Λ| − ν(k)
ω(k)

.

Following the Hamiltonian (2.8) we construct the approximative Hamiltonian

Happ(ν, η) =
M∑

k=1

ωk(b+
k −

v∗k
ωk

√
|Λ|)(b−k −

vk

ωk

√
|Λ|) + HL − |Λ|

M∑

k=1

λ2
k

ωk

× (
J+

k

|Λ| ηk +
J−k
|Λ| η

∗
k) + |Λ|

M∑

k=1

λk

ωk
(ν∗k

J−k
|Λ| + νk

J+
k

|Λ| )− |Λ|
M∑

k=1

|vk|2
ωk

.

Next we estimate the difference H(ν)−Happ(ν, η).

HI(ν, η) = H(ν)−Happ(ν, η)

=
M∑

k=1

ωkb+
k b−k + HL +

1√
|Λ|

M∑

k=1

λk(b−k J+
k + b+

k J−k )

−
√
|Λ|

M∑

k=1

(νkb+
k − ν∗kb−k )−

M∑

k=1

ωk(b+
k −

ν∗k
ωk

√
|Λ|)(b−k −

νk

ωk

√
|Λ|)

−HL − |Λ|
M∑

k=1

λ2
k

ωk
(
J+

k

|Λ| ηk +
J−k
|Λ| η

∗
k)− |Λ|

M∑

k=1

λk

ωk
(ν∗k

J−k
|Λ| − νk

J+
k

|Λ| )

+ |Λ|
M∑

k=1

|νk|2
ωk

= |Λ|
M∑

k=1

λk

{(
b+
k√
|Λ| +

λk

ωk
η∗k −

ν∗k
ωk

)(
J−k
|Λ| − ηk

)

+
(

b−k√
|Λ| +

λk

ωk
ηk − νk

ωk

)(
J+

k

|Λ| − η∗k

)}
.

As known [7], for the difference operator HI(v, η), near-asymptotics between fΛ[H(ν)]
and fΛ[Happ(ν, η)] has been proved by Bogolyubov’s theorem. For all ν ∈ K, where
K = {(ν1, . . . , νM ) : Vk ∈ C}, |νk| ≤ K, k = 1, . . . ,M, k ≥ 0,

0 ≤ fΛ[Happ(ν, η)]− fΛ[H(ν)] ≤ ε(|Λ|−1/3).

Here

ε(|Λ|−1/3) =
1

|Λ|−1/3

{
M∑

k=1

C2 λ2
k

ωk
+

4
β0

M∑

k=1

(
λk√
ωk

C +
K√
ωk

)}

+
1

|Λ|1/2

M∑

k=1

ω
3/4
k√
θ0

√
λkC + Kβ

1/4
0 ,

where θ0 is a fixed temperature, β0 is a fixed β = 1/θ0. On the basis of the results obtained
we can formulate the next theorem.
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Theorem 3.1. Let operators HL, b#
k , J#

k in (2.1) satisfy the following conditions:

HL =
N∑

j=1

σz
j , HL = H+

L ,
1
|Λ| ||J

#
k || ≤ C,

b−k b+
k′ − b+

k′b
−
k = δkk′ , b#

k b#
k′ − b#

k′b
#
k = 0,

ωk ≥ ω0 > 0, λk ≥ 0, k = 1, . . . ,M

and let the reduced free energy for HL be bounded by constant

|fΛ(HL)| ≤ CL = const.

The approximative Hamiltonian in terms of the operators can be constructed as

Happ(η) =
M∑

k=1

ωkb+
k b−k − ε

N∑

j=1

σz
j − |Λ|

M∑

k=1

λ2
k

ωk
(
J+

k

|Λ| ηk +
J−k
|Λ| η

∗
k).

That is, in terms of (2.5) and ηk = (2π)3/2
√
|Λ|η(k), Happ(η) takes the form

Happ(η) =
∫

ω(k)b+(k)b−(k)dk − ε

N∑

j=1

σz
j −

∫
λ2(k)
ω(k)

(J+(k)η(k) + J−(k)η∗(k))dk,

where η(k) = {ηk}M
k=1 ∈ CM ). Then the following inequality

0 ≤ min
η∈CM

fΛ[Happ]− fΛ[H] ≤ 0(|Λ|−1/3)

is valid if and only if 0(|Λ|−1/3) → 0 as |Λ| → ∞ is uniform on temperature θ in the
range of 0 ≤ θ ≤ θ0, where θ0 is a fixed temperature.

4 Approximative Hamiltonian in Terms of One-Zone Potential

The expression for approximative Hamiltonian is defined in terms of finite-zone poten-
tial, which is supposed to stand for strong boson interactions. It should be mentioned that
the interaction is considered as being strong only under condition that particles have spins
of certain positioned momenta k = nk′ (for this reason all different spin boson interactions
are ignored).

The Hamiltonian

H =
M∑

k=1

ωkb+
k b−k + ε

N∑

j=1

σz
j +

1
|Λ|

M∑

k=1

∑
n

δkk′nλk(b−k J+
k + b+

k J−k ),

corresponds to the Dicke model Hamiltonian [7] at M=1, k = k′ is

HD = ωb+b− + ε

N∑

j=1

σz
j +

λ√
|Λ| (b

−J+ + b+J−)) (4.1)
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within the framework of our method and we can define the following transformations

η(x) =
1

(2π)1/3

∑

k

η(k)eikx, η∗(x) =
1

(2π)1/3

∑

k

η∗(k)e−ikx,

< b+(x)b−(x) >=
1

(2π)2/3

∫∫
< b+(k + k′−(k′) > dk′ikxdk.

Here, < b+(x)b−(x) > is the boson density in suitably chosen configuration space. The
above values are determined from the selfconsistency condition by

< b∗(k) >= −λ(k)
√
|Λ|

ω(k)
η∗(k) = i

√
æ′η∗(k) (4.2)

and from the independency of subsystems æB , æL by

< b+(x)b−(x) >= −æ′2 = æ|η(x)|2. (4.3)

By using the formula (4.2), we can obtain

√
æ′ = −i

√
æ = i

λ(k)
ω(k)

√
|Λ|,

as according to the Dicke model (4.1)

√
æ = −λ(k)

ω(k)

√
|Λ| = const, k = 1, 2, . . . , M.

Now, by using the formula (4.3), we can show that the boson density < b+(x)b−(x) >

is an elliptic function, and a periodical potential formed by bosons U(x) = |η(x)|2 is
one-zone potential (see, for example [3]):

U(x) = C + 2γ(x + ω/ω, ω′2x ln θ3(T−1x + l, q),

where

C = (1/3)(E1 + E2 + E3); U = E2 + (E3 − E1)[1− 2E(k′)|K(k′)|].

Here E1 ≤ E2 ≤ E3 are the spectrum boundaries, T = −2iω′ is a real period of the
potential, T = 2iω is an imaginary period of potential. For all the values, except for the
boundaries of spectrum, we will use the standard notations of elliptic function theory [18].

To prove the ellipticity and one-zone of the boson density, we write the operator b#(x)
as

b#(x) =
∑

E

b#
Eϕ(x,E), (4.4)

where the functions ϕ(x,E)

ϕ(x,E) = const χ−1/2(x, E)ei
∫

dxχ(x,E)
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are the solutions of the Schrodinger equation.

∂2
xϕ(x,E) + (E − U(x))ϕ(x,E) = 0.

The function χ(x,E) is real on the spectrum and satisfies the following differential equa-
tion

1
2

χxx

χ
− 3

4

(
χx

χ

)2

+ χ2 + U − E = 0.

Hence, |ϕ(x,E)|2 takes the form

|ϕ(x,E)|2 = [χ−1(x,E)]−1χ−1(x,E), (4.5)

where the bar (¯) denotes the mean value on coordinate x.
By using the representation (4.4) and the condition that < b+

Eb−E′ >= δE,E′ where
i(E) is the boson distribution function, and by the aid of formula (4.2), we can obtain the
following condition

∑

E

f(E)|ϕ(x,E)|2 = −æU(x). (4.6)

Combining the relations from [8] and [12]

N(U(.), E) =
∫ x0+T

x0

χ(x,E)dx;
dN

dE
=

1
χ(x,E)

;
δN

δE
= − 1

χ(x,E)

and using the formula (4.5), we can define |ϕ(x,E)|2 through dN/dE and δN/δE

|ϕ(x,E)|2 = −
(

dN

dE

)−1 [(
δN

δE

)
(x, E)

]
.

Substituting the latter formula into (4.6) and representing the sum by the integral, we get
equation (4.4) as the variation of equation of the Peierls-Fröhlich problem

∫
dEf(E)

(
δN

δE

)
(x, E) = æU(x).

Thus, the variational derivative of the member of states is a linear function of the potential,
which is equivalent to one-zone of the potential U(x). Following the description from [4]
we can show the ellipticity of one-zone potential.

Theorem 4.1. Consider, in the model Hamiltonian Dicke, bosons interact strongly only
with spins at exact momenta k = nk′ = k′n ∈ Z, and suppose that the bosons interaction
with the rest momenta can be neglected, that is

H =
M∑

k=1

ωkb+
k b−k + εSz +

1
|Λ|

M∑

k=1

∑
n

δkk′nλk(b−k J+
k + b+

k J−k ), (4.7)
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which is represented in the configuration space as

H =
∫

ω(k)b+(k)b−(k)dk + εSz +
1
|Λ|

∫∫
δ(k − k′−n (k)J+(k) + b+(k)J−(k))dkdk′n

then the form of Dicke approximative Hamiltonian is defined in terms of one-zone potential
by

Happ(η, η∗) =
∫

ω(k)b+(k)b−(k)dk + ε

N∑

j=1

σz
j

−
∫∫

δ(k − k′n)
λ2(k)
ω(k)

(J+(k)η(k) + J−(k)η∗(k))dkdk′n),

Happ(η, η∗) =
∫

ω(k)(b+(k) +
λ(k)

√
|Λ|

ω(k)
η∗(k))(b−(k) +

λ(k)
√
|Λ|

ω(k)
η(k))

+ ε

N∑

j=1

σz
j −

∫∫
δ(k − k′n)

λ2(k)
ω(k)

(J+(k)η(k) + J−(k)η∗(k))dkdk′n

− |Λ|
∫∫

δ(k − k′n)
λ2(k)
ω(k)

|η(k)|2dkdk′n,

where

δk → (2π)3

|Λ| δ(k),

and
|η(k)|2 = U(k) =

1
(2π)1/3

∫
eikxU(x)dx

is one-zone potential.

Putting in the Hamiltonian (4.5) that M = 1, k = k′, we can obtain the Dicke model
Hamiltonian discussed in [7] as

HD = ωb+b− + ε

N∑

j=1

σz
j +

λ√
|Λ| (b

−J+ + b+J−).

Thus, in this paper, for the model Hamiltonian H approximative Hamiltonians Happ(η, η∗)
and ˜Happ(η, η∗) in terms of one-zone potential on the space H have been constracted and
discussed by using the method developed by D. Ya. Petrina and E. D. Belokolos.
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