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Abstract: Since the number of compromised computers, or botnet, continues to grow, the cyber security problem has become increas-
ingly important and challenging to both academic researchers and industry practitioners. A respect to combat botnet propagation is
to understand the attacker’s behaviors based on the whole operation of a system that can be modeled with population models used in
epidemiological studies. In this paper, we treat the interaction between the botnet herder and the defender group as a modified SIS
epidemic model with external entrance and allowing computers of undetected states. Based on optimal control theory, we derive the
optimal strategy of the botnet herder as a feedback on the rate of infection under given levels of entrance and defense. The obtained
optimal policies dynamically evolve with time and offer useful insights for ultimately solving the botnet defense problem.

Keywords: Botnet defense, virus epidemics, epidemic models, dynamic programming, optimal control.

1. Introduction

Nowadays national security, social harmony, and eco-
nomic progress largely rely on the use of cyberspace. De-
spite the considerable efforts made by researchers over the
last two decades, the cyber security problem is not well
understood and far from being completely solved. Bot-
nets are emerging threat with hundreds of millions of com-
puters infected [1,2]. They are networks of computers in-
fected with malwares that allow cybercriminals or botnet
herders to control the infected computers remotely with-
out the user’s knowledge. According to the study of [3],
more than thirty percent of all computers connected to the
Internet are infected bots and controlled by attackers.

In this paper, we focus on the economic aspects of bot-
net activity and suggest effective attack strategies of the
botnet herder (rather than defense strategies by the de-
fender) capitalizing on the theory of dynamic program-
ming and optimal control. Understanding the attack poli-
cies can in turn lead to useful insights for defending cy-
berspace, and guide the design of effective defense strate-
gies. We characterize the interaction between the attacker,
i.e., botnet herder, and the defender group as a modi-
fied SIS epidemic model with immigration or external en-
trance, in which a computer’s state may be either suscepti-

ble or infectious. The size of the system in question is thus
increasing and we allow the presence of computers of un-
detected states, both of which are highly desirable in the
real-life networks.

In our framework, the goal of a botnet herder is to min-
imize his cost by intensifying his intrusion in a network of
computers. We define botnet herder’s optimal attack pol-
icy as the solution to a cost minimization control problem
under fixed levels of defense and entrance. Our result in-
dicates that it is optimal for the botnet herder to reduce his
percentage of invasion in the network when the percent-
age of infected hosts is over some threshold. The reason
is that once the percentage of infection passes the steady-
state level, the opportunity cost of getting caught or traced
surpasses the size benefits of the operation cost. On the
other hand, the botnet herder should make full attack ef-
fort to pursue his economic profits when the percentage
of infected hosts is below some threshold. We would like
to point out that these thresholds change with time, thus
providing essentially dynamical optimal strategies.

Recently, some researchers have combined the epi-
demic model with optimal control and game-like model-
ing to capture interdependent security decisions; see e.g.
[4–7]. These prior works are conceptually or spiritually
relevant to the present study. The work [4] provides a
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game theoretical framework to model the interaction be-
tween the botnet herder and the defender group in a fixed
population system. Unlike our situation, the percentage of
infected computers, evolving according to an SIS model,
is solely used to describe the network dynamics. Under a
given level of network defense, [7] addresses the botnet de-
fense business as a result of profit maximization decision
making and investigates the deterrent effect of the uncer-
tainty presented by honeypots. The authors in [6] investi-
gate a network of interconnected agents’ decisions about
whether to invest some amount to self-protect and deploy
security solutions which decrease the probability of con-
tagion. However, they assign the transition probability of
states of computers rather than employ the epidemic evo-
lutionary process directly. The work [5] develops one-shot
games between botnet herders and defenders and analyzes
botnet herder’s attack coordinations as well as defender’s
security defense decisions. Multiple Nash equilibria are
derived in [5] under different conditions. Relevant work
of contact transmission model and some features in our
epidemic dynamics are compared in Section 2.

The rest of the paper is organized as follows. In Sec-
tion 2 we present our botnet defense model. The optimal
strategies of botnet herder under fixed levels of entrance
and network defense are analyzed in Section 3. The proof
of main result is deferred to Section 4. We conclude our
paper and suggest some possible future directions in Sec-
tion 5.

2. Botnet defense model

The standard model used in the study of virus and worm
propagation is called the contact process or the epidemic
model [8]. In the classical SIS model, the status of a node
(i.e. host or computer) is either infectious or susceptible.
A host recovered from a worm immediately becomes sus-
ceptible again. This is plausible in the context of cyber se-
curity because an antivirus software scan a computer reg-
ularly, and each time a computer is infected it remains so
until the next scan by the antivirus software. Another rea-
son is that a computer may be subject to several vulnera-
bilities, so it is still vulnerable when recovered from one
virus.

We now introduce a modified deterministic SIS dy-
namic system which characterizes the growth of networks
as well as the botnet herder’s strategies. Letx(t) and
y(t) denote the percentages of infectious and suscepti-
ble hosts at timet, respectively. The dynamical process
{(x(t), y(t)); t ≥ 0} is initiated by value(x(0), y(0)) =
(x0, y0) with

x0 + y0 = a ∈ (0, 1] (1)

(which we will explain later) and is described by the fol-
lowing set of differential equations:

dy(t)
dt

= −cv(x(t), y(t))y(t) (2)

−βx(t)y(t) + γx(t) + µ(1− y(t))
dx(t)

dt
= cv(x(t), y(t))y(t) (3)

+βx(t)y(t)− γx(t)− µx(t)

where c ≥ 0 is the average attack successful rate,
v(x, y) ∈ [0, 1] is the attack effort intensity,β ≥ 0 is the
average number of transmissions possible from a given in-
fectious host in each period,γ ≥ 0 is the recovery rate and
µ ≥ 0 is the entrance rate of external hosts.

This model encodes several remarkable features and
we elaborate on them in the sequel.

1. The susceptible hosts outside the network continu-
ously join with constant rateµ, which accounts for the last
term in Equation (3). Hence, the size of the network is in-
creasing. Most of the existing work concerning the spread
of computer viruses only treat the closed population, c.f.
[9,10,5–7,11,12]. However, this feature is desirable in the
practical setting since new computers get access to the In-
ternet as times goes on [13]. In addition, each host in the
network regularly recovered from the vulnerabilities by,
for example, reinstalling the system, which explains the
last term in Equation (2). This sort of birth-death process
has been proposed in epidemiology and is known as the
SIR epidemics with demography [15,14]. However, the
population in that case fluctuates around a fixed value due
to the fact that infected agents are finally removed from
the system, which is in contrast to our case.

2. In (1), the initial value is assumed to bea ∈ (0, 1],
since the susceptible hosts are usually not well defined at
the beginning of an epidemic. Generally, we havex(t) +
y(t) ≤ 1 rather than the commonly used requirement
x(t) + y(t) = 1 for t ≥ 0. By doing so, we allow un-
detected (or uncategorized) hosts to exist in the network,
which is also highly appealing in reality.

Solving the systems (2) and (3) with initial value (1)
yieldsx(t) + y(t) = 1 − (1 − a)e−µt. Thereby, we have
x(t) + y(t) tends to 1 increasingly ast → ∞. In other
words, the percentage of uncategorized hosts is reducing
as time goes on. Ifa = 1, thenx(t) + y(t) ≡ 1. Note
that in case ofa < 1 the network dynamics can not be
described by only using that ofx(t) as in [4].

3. The termcv(x(t), y(t))y(t) in Equations (2) and (3)
depicts the increment of percentage of infectious hosts re-
sulting from botnet herder’s direct attack effort rather than
contagion.v(x, y) is the attack effort intensity, the bot-
net herder’s control, indicating how aggressively the bot-
net herder exerts his intrusion. On the other hand, the au-
thors in [5] assume that the attacker has the control of suc-
cessful attack rate, which is tantamount to setc = 1 and
v(x, y) ≡ p, a constant probability of successful attack.

3. Optimal strategies under fixed levels of
entrance and defense

In this section, we solve the botnet herder’s best response
when facing fixed levels of entranceµ and defenseγ.
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Let k > 0 be the per unit time cost associated with
botnet herder’s attack effort. Denote byf(x) the botnet
herder’s cost function withf ′(x) < 0 andf ′′(x) > 0. We
refer the reader to [4,6] for the reason of this assumption.
The total cost of attack effort per unit time is given by
kv(x, y), which is the extra penalty cost from increasing
probability of getting caught due to the increasing severity
of attack. The botnet herder’s objective is to minimize the
discounted total cost (operation cost plus effort cost) with
a constant discount rater > 0 over an infinite time horizon
[4,16]:

inf
v

{
Jx,y(v) =

∫ ∞

0

e−rt(f(x) + kv(x, y))dt
}

, (4)

0 ≤ v(x, y) ≤ 1.

To solve the minimization problem, we form the cur-
rent value Hamiltonian associated with (4) by

H(x, y, v, p, q) = f(x) + kv + p(cvy

+βxy − γx− µx)
+q(−cvy − βxy (5)

+γx + µ(1− y)),

wherep = p(t) and q = q(t) are the botnet herder’s
marginal costs at timet. The optimal control,̂v(x, y),
is obtained by minimizing the HamiltonianH. Since the
Hamiltonian is linear inv, the optimal control takes the
following bang-bang and (a possible) singular form

v̂(x, y) = 1[Hv<0] + u1[Hv=0] (6)

with some0 < u < 1 to be determined andHv =
∂H/∂v = k + cy(p − q). WhenHv = 0 and stays at
this value, the botnet herder exerts an intermediate attack
effort u. This phase is called singular.

The adjoint equations are shown to be given by

ṗ = −Hx + rp = −f ′(x)− pβy (7)

+pγ + pµ + qβy − qγ + rp,

q̇ = −Hy + rq = −pcv − pβx (8)

+qcv + qβx + qµ + rq.

Substituting (2), (7) and (8) intȯHv = cẏ(p− q)+ cy(ṗ−
q̇), and equatingḢv andHv to zero, we obtain

f ′(x) =
k

cy

(
βy − γ − γx

y
− µ

y
− r

)
. (9)

We may solve (9) in conjunction withx + y = b ∈ [a, 1]
for the steady state percentage of infected computers,x∗ =
x∗(b) and y∗ = y∗(b) = b − x∗, two functions ofb.
The optimal control̂v(x, y) in this singular region is ab-
dependent rate and found by solvingẋ = ẏ = 0 atx∗ and
y∗:

v̂(x∗, y∗) = u = −βx∗y∗ − (γ + µ)x∗

cy∗
. (10)
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Figure 1 Optimal strategy in the singular region as a feedback
on different infection ratesβ.

Theorem 1.Supposeµ+γ > β, f ′(x) < 0, f ′′(x) > 0 and
f ′(0) < −k(r+γ+µ−βa)

ca . For eachb ∈ [a, 1], we assume
cy∗+βx∗y∗−γx∗−µx∗ > 0. Then the optimal feedback
of the botnet herder is given by

v̂(x, y) =





1, x < x∗,
u, x = x∗,
0, x > x∗,

(11)

where u = −βx∗y∗−(γ+µ)x∗

cy∗ , and x∗ <√
(c+γ+µ−bβ)2+4βcb−(c+γ+µ−bβ)

2β .

See Section 4.
From the above result we can see that the most effec-

tive strategies of the botnet herder implicitly depend on
the total percentage of infectious and susceptible hosts,
x(t) + y(t), at timet. Therefore, Theorem 3.1 indicates
that the optimal attack strategies for the botnet herder is
essentially dynamical, which is in contrast to those time-
invariant strategies derived in fixed network size [4–7].

Set a = 1 (thereforeb = 1). The singular region,
x = x∗, has the additional property that the values of the
control and the state variables are constant in this region;
that is, it exhibits a steady-state property. Letc = 0.5 and
γ + µ = 0.6. We plot the optimal controlu as a function
of (possible)x∗ in Fig. 3.1 for different values of infection
rate,β.

4. Proof of Theorem 3.1

We first establish two lemmas.

Lemma 1.Suppose that the assumptions of Theorem 3.1
hold. Set

F (x, y) = f ′(x)cy + k
(
r − βy + γ +

γx

y
+

µ

y

)
. (12)
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Then there exits a unique pair(x∗(b), y∗(b)) such that
F (x∗, y∗) = 0 andx∗ + y∗ = b for eachb ∈ [a, 1].

LetF (x) := F (x, b−x). Hence, we haveF (b) = +∞
andF (0) < 0 by (12). Sincef ′(x) < 0 andf ′′(x) > 0, we
getF ′(x) = c(f ′′(x)(b−x)−f ′(x))+kβ + kbγ+kµ

(b−x)2 > 0.
The result then follows.

Lemma 2.Suppose the assumptions of Theorem 3.1 hold.
Then we have

x∗ <

√
(c+γ+µ−bβ)2+4βcb−(c+γ+µ−bβ)

2β , which is a solu-
tion to a long-run steady state,ẋ = 0 with v(x, y) = 1
andx + y = b.

There is only one zero forG(x, y) := cy + βxy −
γx − µx with y = b − x ∈ (0, b), which is atx =√

(c+γ+µ−bβ)2+4βcb−(c+γ+µ−bβ)

2β . The proof concludes
from the assumptions in Theorem 3.1.

Proof of Theorem 3.1.As in [4], we use dynamic program-
ming arguments to obtain the optimal control trajectories.
It is well known that if the value function is smooth, the
corresponding feedback leads to an optimal solution [16].
The botnet herder’s value function is defined as

φ(x, y) : = inf
v

{
Jx,y(v)

=
∫ ∞

0

e−rt(f(x) + kv(x, y))dt
}

.

The corresponding Bellman equation (e.g. [17]) is

rφ(x, y) = inf
v
{f(x) + kv + φx(x, y)ẋ}

= inf
v
{f(x) + kv + φx(x, y)

(cvy + βxy − γx− µx)}
= inf

v
H(x, y, v, φx(x, y), 0)

= inf
v

H(x, y, v, p, 0),

wherep = φx(x, y) := ∂φ(x, y)/∂x.
From (6) we know the optimal controlv̂ takes the form

v̂(x, y) = 1[k+pcy<0] + u1[k+pcy=0],

and then we may express the Hamiltonian as

H(x, y, v, p, 0) = f(x) + p(βxy

−γx− µx)− (k + pcy)−,

wherez(x, y)− = −z(x, y)1[z<0]. Consequently, we get

rφ(x, y) = f(x) + φx(x, y)(βxy − γx

−µx)− (k + φx(x, y)cy)−. (13)

Setz(x, y) = k + φx(x, y)cy, and we havezx(x, y) =
cφxx(x, y)y. By utilizing (??), we derive that

zx(x, y) + z(x, y)
r − βy + γ + µ

(βx + c1[z(x,y)<0])y − γx− µx

+
f ′(x)cy + k(r − βy + γ + µ)

(βx + c1[z(x,y)<0])y − γx− µx
= 0. (14)

If z(x, y) < 0, by (12) and (14) we obtain

d

dx

(
z(x, y)e−

∫ x

0

r−βy+γ+µ
(βξ+c)y−γξ−µξ

dξ
)

+
F (x, y)− k

(
γx
y + µ(1−y)

y

)

(βx + c)y − γx− µx
e
−

∫ x

0

r−βy+γ+µ
(βξ+c)y−γξ−µξ

dξ = 0.

(15)

If z(x, y) > 0, by (12) and (14) we obtain

d
dx

(
z(x, y)e

∫ 1

x

r−βy+γ+µ
βξy−γξ−µξ dξ

)

+
F (x, y)− k

(
γx
y + µ(1−y)

y

)

βxy − γx− µx
e

∫ 1

x

r−βy+γ+µ
βξy−γξ−µξ dξ = 0.

Forx∗ < x < 1, by (16) we set

z(x, y)e
∫ 1

x

r−βy+γ+µ
βξy−γξ−µξ dξ +

∫ x

x∗

F (η, y)− k
(

γη
y + µ(1−y)

y

)

βηy − γη − µη

×e

∫ 1

η

r−βy+γ+µ
βξy−γξ−µξ dξ

dη = 0.

Therefore,

z(x, y) = −
∫ x

x∗

F (η, y)− k
(

γη
y + µ(1−y)

y

)

βηy − γη − µη
(16)

×e

∫ x

η

r−βy+γ+µ
βξy−γξ−µξ dξ

dη.

It is clear thatz(x, y) > 0. Now we want to verify that
z(x, y) also satisfies the boundary condition forz(x, y) →
k asy → 0. We rewrite (16) using integration by part and
(12) as

z(x, y) = k − ke

∫ x

x∗
r−βy+γ+µ
βξy−γξ−µξ dξ

−
∫ x

x∗

f ′(η)cy
βηy − γη − µη

e

∫ x

η

r−βy+γ+µ
βξy−γξ−µξ dξ

dη.

The fact thate
∫ x

η

r−βy+γ+µ
βξy−γξ−µξ dξ ≤ y

b−η and

∣∣
∫ x

x∗

f ′(η)cy
βηy − γη − µη

e

∫ x

η

r−βy+γ+µ
βξy−γξ−µξ dξ

dη
∣∣ ≤ Cy(x− x∗)

for some constantC imply the boundary condition aty =
0.

For0 < x < x∗, by (15) we set

−z(x, y)e−
∫ x

0

r−βy+γ+µ
(βξ+c)y−γξ−µξ

dξ

+
∫ x∗

x

F (η, y)− k
(

γη
y + µ(1−y)

y

)

(βη + c)y − γη − µη

×e
−

∫ η

0

r−βy+γ+µ
(βξ+c)y−γξ−µξ

dξdη = 0.

Accordingly,

z(x, y) =
∫ x∗

x

F (η, y)− k
(

γη
y + µ(1−y)

y

)

(βη + c)y − γη − µη
(17)
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×e
−

∫ η

x

r−βy+γ+µ
(βξ+c)y−γξ−µξ

dξdη,

andz(x, y) < 0 by the assumptions in Theorem 3.1.
For x = x∗, we have y = b − x∗ = y∗

and z(x∗, y∗) = 0. By Lemma 4.1, (x∗, y∗)
is uniquely defined, and Lemma 4.2 implies

x∗ <

√
(c+γ+µ−bβ)2+4βcb−(c+γ+µ−bβ)

2β . By setting
ẋ|x=x∗,y=y∗ = ẏ|x=x∗,y=y∗ = 0, we obtained the optimal
control as

v̂ = u = −βx∗y∗ − (γ + µ)x∗

cy∗
.

Thereby, we have got the optimal feedback of the botnet
herder

v̂(x, y) =





1, x < x∗,
u, x = x∗,
0, x > x∗,

as desired.

5. Conclusion and future work

In this paper, we employ optimal control methods to an-
alyze the botnet business between the botnet herder and
defender group and suggest feasible attack policies. The
dynamics of hosts evolve according to a modified SIS epi-
demic model allowing external entrance. For given lev-
els of network defense and entrance, we obtain the botnet
herder’s optimal strategy as a feedback on the rate of in-
fection. Our analysis of network epidemiology model is of
both conceptual value and practical interest. One interest-
ing future direction would be the stochastic extension (c.f.
[14]), since botnet evolution is an inherently stochastic
phenomenon and subjects to many random disturbances.
To capture the infection process between different hosts,
heterogeneous models [14] are preferable.
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