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Abstract: Motivated by the demand to have secure signcryption scheme, even in quantum era, the concept of signcryption tag-KEM
(key encapsulation machine) is extended to lattice cryptography in this paper. A lattice-based hybrid signcryption scheme is proposed by
building a lattice-based signcryption tag-KEM. Based on the hardness of the learning with errors problem and the short integer solution
problem, the proposed hybrid signcryption is provable secure in the random oracle model. Furthermore, according to the quantum
intractability assumption about lattice problem, the proposed hybrid signcryption scheme is secure even on quantum computers.
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1. Introduction

Signcryption concept was first proposed by Zheng [18] in
1997, which provides confidentiality, message authentic-
ity in a single logical step. Since signcryption schemes
are more efficient than a direct composition of encryp-
tion and signature schemes, following Zhengs pioneering
work, a lot of new signcryption schemes have been pro-
posed [3,11,12,10,13]. There are two different ways to
construct signcryption schemes, one is public key sign-
cryption and the other is hybrid signcryption. In a pub-
lic key signcryption scheme both encryption and signa-
ture are in public key setting. In a Hybrid signcryption
scheme, which consists signcryption KEM (SKEM) and
signcryption DEM(SDEM), the signature is in public key
setting and encryption is in symmetric key setting. If the
message is very large, a hybrid signcryption is more ef-
ficient than a public key signcryption. The hybrid sign-
cryption has been studied by Dent[6,7]. Nevertheless, the
construction of SKEM+SDEM have complex verification-
decryption (unsigncryption) algorithms, which need verify
a link between message, key and encapsulation. In 2006,
Bjørstad and Dent adapted the tag-KEM + DEM construc-
tion to signcryption which achieve simpler scheme de-
scriptions and better generic security reductions[4]

All above schemes are based on number theorem as-
sumption and not secure in quantum era, for, according
to the seminal work of Shor [17], that both factorization
and discrete logarithms can be solved by quantum algo-
rithm in polynomial time. As a result, it is necessary to
construct post-quantum secure signcryption schemes to re-
sist quantum attack in quantum-era. Fortunately, there are
still many hard problems can resist quantum attack and
those problems are alternatives for the post-quantum era
in cryptography, for example, lattice problems. There are
no already-existed efficient quantum algorithms for the
worst-case lattice problems. Recently, lattice cryptogra-
phy has gained a lot of attentions and many lattice-based
primitives are proposed[9,5,1,16,2,14]. Utilizing hybrid
techniques, Peikert constructs an efficient public-key en-
cryption algorithm against chosen-ciphertext-attack over
lattice[15]. In the same paper, an efficient technique was
proposed to shorten the ciphertext expansion of his en-
cryption algorithm which enhance the efficiency of the en-
cryption algorithm. Another important primitive in lattice-
based cryptography is pre-sample function (PSF) which
is proposed in 2008 by Gentry et al.[9]. According to
PSF, a short basis of a random lattice can be regarded
as a trapdoor for lattice-based cryptography systems. As
a result, PSF is an important tools for building lattice-

∗ Corresponding author: e-mail: fenghe2166@163.com
c⃝ 2012 NSP

Natural Sciences Publishing Cor.



24 Feng-he Wang et al: Post-Quantum Secure Hybrid Signcryption from ...

based signature[5,9] and lattice-based ID-based encryp-
tion[1,9]. Even those achievements in lattice-based public-
key cryptography, many open problems remain unsolved,
such as how can we design a lattice-based signcryption
scheme? As far as our known, the cryptographic commu-
nity failed to witness a realization of post-quantum sign-
cryption scheme based on lattice theory.

In this paper, we extend signcryption tag-KEM to lat-
tice cryptography and design a signcryption tag-KEM by
lattice tools. In the proposed signcryption tag-KEM, we
use the main ideas about how to achieve the CCA secu-
rity (chosen-ciphertext attack) in literaturec[15] to design
the encapsulation algorithm. In our encapsulation algo-
rithm, the PSF is used to authenticate the symmetric key
of the signcryption DEM. Furthermore, the embedment
of the authentication information about symmetric key is
so perfect that the output length of the encapsulation is
not enlarged. If we regard hash function as a random or-
acle, under the lattice problem intractability assumption,
we prove that the proposed signcryption tag-KEM is IND-
CCA2 and sUF-CMA secure in Bjørstad’s security mod-
els(see section 2.4). Moreover, we point out that, if we use
a relatively small modulus q′ to make the outputs of the
encapsulation algorithm more “coarse” just as shown by
peikert in literature [15], the length of the ciphertext can
be more shorter and the efficiency of encapsulation can be
more higher.

2. Preliminaries

2.1. Notations

In the following paper, we use bold alphabets like A or
Ai to denote matrixes. Bold lowercase letters are used to
denote vectors. ω(f(n)) denotes a function which grows
faster than cf(n) for any constant c > 0. poly(n) is used to
denote an unspecified function f(n) = O(nc) for constant
c. An arrow← is denoted the output of some algorithms.
When calling a trapdoor for a lattice, we mean a basis with
a shorter Euclidean norm than a normal basis, we refer to
[9,15] for the concrete specific definition of the “shorter”
basis. We use Dα to denote a Gaussian distribution with
Gaussian’s parameter α. In this paper, when it comes to
vectors, we always consider its Euclide norm, which writes
as || · ||.

2.2. Lattice and Lattice Problems

Definition 1.(Lattice) Given n linearly independent vec-
tors B = {b1, b2, . . . , bn, bi ∈ Rm}, a lattice Λ gener-
ated by the vector set B is a vector set which is Bc =
{c1b1 + c2b2 + · · ·+ cnbn}, ci ∈ Z, denoted by Λ(B). In
this case, B is a basis of the lattice Λ(B).

In this paper, we will fucus on a special class of q-ary
lattices which can be more easily described by a matrix

which functions like a parity check matrix in coding the-
ory. With some integers (q, m, n ) and a matrix A ∈ Zn×m

q ,
we define the following m-dimensional q-ary lattice

Λ⊥
q (A) = {e ∈ Zm

q ,Ae = 0(modq)}.

We introduce the shortest integer solution (SIS) prob-
lem and learning with errors problem over lattice and we
describe those problems in some forms suitable for our ap-
plications in this paper.

For an integer n, let q = q(n),m = m(n) , s ∈ Zn
q

and χ be an error distribution over Zm
q . Let A(s,χ) be a dis-

tribution obtained by computing {A, y = A⊤s + e} where
A ∈ Zn×m

q is chosen uniformly and randomly and e is
distributed according to χ. Then, we give the definition of
the learning with errors problem.

Definition 2.(LWE Problem).The learning with errors
problem is defined as follows:

The decision variant of the LWE problem is to distin-
guish A(s,χ) from the uniform distribution over Zn×m

q ×
Zm
q .

The goal of the standard LWE problem is to find s
with overwhelming probability by access to any desired
poly(n) number of samples from As,χ for some arbitrary
s ∈ Zn

q .

For α > 0, the errors distribution in a standard LWE
problem denoted Φα is defined by the following process:
Samples m numbers η1, η2, · · · ηm according to Dα, com-
putes ei = ⌊qηi⌉(modq) . Then let e = (e1, · · · , em) be
an error vector in the LWE problem. As described in [8],
even the distribution of error vector is more “wider” than
in above standard setting, the hardness of LWE problem
is also satisfied. And we refine this fact as the follow-
ing lemma which is important for our constructions. Let
LWE(m,q,α) be an abbreviation for LWE problem.

Lemma 1. Hardness of LWE(m,q,α) implies hardness of
LWE(m,q,D(Zm,α))

The proof of Lemma 1 refers to [8]. By Lemma 1, we
embed the signature of symmetric key into the encapsula-
tion algorithm without enlarging the encapsulation length.

Based on the LWE problem, we define a trapdoor
one-way function y = A⊤s + e(modq) whose trapdoor
is a “short” basis T of lattice Λ⊥

q (A). Precisely, given
y = A⊤s + e(modq), we can find (s, e) by short basis
T as follows:

1. Ty = Te(modq). Due to the fact that both T and
e with short norm, then, with overwhelming probability,
Te(modq) = Te

2.e = T−1Te(modq)
3. By a routine calculation, we find vector s.

Definition 3.(SIS Problem). The SIS problem is defined
as follows: Given a uniformly-distributed random matrix
A ∈ Zn×m

q for m = poly(n), and a real number β, find
a nonzero integral vectorv such that Av = 0(modq) and
||v|| < β .
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The following propositions provide two basic tools for
our constructions. More details about the following propo-
sitions are found in literatures [9,2].

Proposition 1.[9] Offered a short basis B of an n-
dimensional lattice Λ⊥

q (A), a parameter s > ||B̃|| ·
ω(
√
logn), ||B̃|| ≤ m1+ε and a vector y ∈ Zn

q , There is
a probabilistic polynomial-time (PPT) algorithm, denoted
by PreSample, which outputs a vector e ∈ Zm

q from a dis-
tribution that is statistically close to discrete Gaussian dis-
tribution. Moreover , This output e, with high probability,
meets requirements Ae = y(modq) and ||e|| ≤ s

√
m .

Proposition 2.[2] For any prime q = poly(n) and any
m > 5nlogq , there is a PPT algorithm, called random
lattice sample algorithm, which, on input 1n, outputs a
matrix A ∈ Zn×m

q where the distribution of A is statis-
tically close to the uniform distribution, and a full-rank set
S ⊂ Λ⊥

q (A), where ||S|| ≤ m2.5. And moreover, the set S
can be efficiently converted to a short basis T of the lattice
Λ⊥
q (A).

2.3. Hybrid Signcryption

A hybrid signcryption scheme consists two parts signcryp-
tion tag-KEM and signcryption DEM which defined as fol-
lows respectively.[4]

Definition 4.A signcryption tag-KEM is defined as tuple of
six algorithms.

—A probabilistic common parameter generation algo-
rithm, denoted by Genc, takes as input a security param-
eter 1k, and outputs all the global information I needed
by users of the scheme, such as choice of groups or hash
functions.

—A probabilistic sender key generation algorithm,
Gens, which takes as input the global information I , and
returns a private/public keypair (skS , pkS) that is used to
send signcrypted messages.

—A probabilistic receiver key generation algorithm,
Genr, which takes as input the global information I , and
outputs a private/public keypair (skR, pkR) that is used to
receive signcrypted messages.

—A probabilistic symmetric key generation algorithm,
Sym. It takes as input the private key of the sender skS and
the public key of the receiver pkR, and outputs a symmetric
key K together with internal state information ω.

—A probabilistic key encapsulation algorithm, Encap,
which takes ω and and an arbitrary tag τ as inputs, and
returns an encapsulation E.

—A deterministic key decapsulation algorithm , De-
cap, which takes as input the public key of the sender pkS
, the private key of the receiver skR, an encapsulation E
and an arbitrary tag τ . It outputs either a symmetric key K
or the unique error symbol.

Definition 5.A signcryption DEM consists two
polynomial-time algorithms

—A deterministic encryption algorithm, Enc, which
takes as input a message m a symmetric key K of some
pre-determined length, and outputs an encryption C =
EncK(m) of that message.

—A deterministic decryption algorithm, Dec, which
takes as input a ciphertext C and a symmetric key K of
some pre-determined length, and outputs either a message
m = DecK(C) or the error symbol.

Definition 6.Suppose that (Genc; Gens; Genr; Encap;
Sym Decap) is a signcryption tag-KEM, (Enc; Dec) is a
signcryption DEM, and that, for all security parameters
k, the keys produced by the signcryption tag-KEM are of
the correct length to be used by the signcryption DEM. We
may then construct a hybrid signcryption scheme as fol-
lowing

—The key generation algorithms of the hybrid sign-
cryption scheme are given by the key generation algo-
rithms ((Genc, Genr, Gens)) of the signcryption KEM,

—The signcryption algorithm is given by the following
computation:

1. Set (K,C1) = encrap(skS , pkR,m); 2. Set C2 =
EncK(m) ;

3. Outputs (C1, C2)
—The designcryption algorithm is given by the next

steps:
1. K = Decap(pkS , skR, C1)(If outputs an errors

symbol, stops);
2. m = DecK(C2);
3.If Decap algorithm outputs valid then accepts mes-

sage. Otherwise, rejects it.

2.4. Security of Hybrid Signcryption

A signcryption scheme should be sure against choose ci-
phertext attack (IND-CCA2). We define the IND-CCA2
game as a game played between a challenger and a three
stages attacker A = (A1;A2,A3).[4]

Definition 7.For a given security parameter k, the IND-
CCA2 game is played as follows.

1.The challenger generates some public parameters
I = Genc(1

k), a sender key-pair (pkS ; skS) and a re-
ceiver key-pair (pkR; skR).

2. The attacker runsA1 with input (pkS , pkR). During
this execution,A1 can query an symmetric key generation,
an encapsulation oracle, a decapsulation oracle. A1 ter-
minates by outputting some state information state1.

3.The challenger computes as follows:
(a) Set (K0;ω) = Sym(skS ; pkR).
(b) Randomly generate a symmetric K1 of the same

length as K0.
(c) Randomly generate a bit b ∈ {0, 1}.
4.The attacker executes A2 on the input (Kb, state1)

. During its execution A2 can query the same oracle as
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previously. A2 terminates by outputting some state infor-
mation state2 and a tag τ .

5.The challenger computes a challenge encapsulation
E = Encap(ω; τ).

6.The attacker runs A3 with input E, state2. During
its execution, A3 may access the same oracles as previ-
ously with the exception that A3 cannot query the decap-
sulation oracle on the inputE, state2. A2 terminates by
outputting a guess b′ for b.

The attacker wins the game if b = b′. A’s advantage
in winning the IND-CCA game is defined to be: pr(b =
b′)− 1/2.

Definition 8.A signcryption tag-KEM is said to be IND-
CCA2 secure, if, for any adversary A, the advantage of
A in the IND-CCA2 game (definition7) is negligible with
respect to the security parameter 1k.

In order to achieve the authentication, a secure sign-
cryption tag-KEM should provide strong existential un-
forgeability against choose message attack (sUF-CMA
)which is specified by a sUF-CMA game between the chal-
lenger and the adversary.

Definition 9.The sUF-CMA game is defined as follows:
1. The challenger generates a set of global parameters

I = Com(1k), a sender keypair (skS ; pkS) = KeyS(I)
and a receiver keypair (skR; pkR) = KeyR(I).

2. The adversary A is run on the input
(I; pkS ; skR; pkR). During its execution, A may ac-
cess the symmetric key generation and encapsulation
oracles as were defined in the previous game. A ter-
minates by returning an encapsulation E and a tag τ
.

The adversary wins the games if E and τ can be de-
capsulation validly, and τ never be queried in the encapsu-
lation oracles. The advantage of A is defined as the prob-
ability of he wins in the games.

Definition 10.A signcryption tag-KEM is said to be sUF-
CMA, if, for any adversary A, the advantage of A in the
sUF-CMA game(definition9) is negligible with respect to
the security parameter 1k.

Definition 11.A signcryption tag-KEM is said to be secure
if it is IND-CCA2 and sUF-CMA secure.

Lemma 2.[4]A hybrid signcryption scheme constructed
from a signcryption tag-KEM and a signcrypt DEM. If the
signcryption tag-KEM is IND-CCA2 secure and the DEM
is IND-PA secure, then hybrid signcryption is IND-CCA2
secure.

Lemma 3.[4] A hybrid signcryption scheme constructed
from a signcryption tag-KEM and a DEM. If the signcryp-
tion tag-KEM is sUF-CMA secure, then the hybrid sign-
cryption scheme is also sUF-CMA secure.

3. The Proposed Lattice-based Hybrid
Signcryption Scheme

3.1. Lattice-based Signcryption tag-KEM

—Genc Let n be a main secure parameter. q ≥ 2 and
m = (1+ δ)nlgq for some constant δ > 0. Let l = l(n) ≥
1 be integers and bounded by poly(n). A Gaussian param-
eters s = L̃ω( 2

√
logn) where L̃ = O(

√
nlgq). In our con-

struction, we need two secure hash functions as follows:
h1 : {0, 1}∗ → Zn

q , h2 : Zm
q → {0, 1}l

—GenR To generate the receiver’s public/private
key, by proposition 2, the receiver generates two matrix
B10 ∈ Zn×m

q and B11 ∈ Zn×m
q with its trapdoor T10 ∈

Zm×m
q , T11 ∈ Zm×m

q , respectively. Randomly chooses
2(l − 1) matrixes Bib ∈ Zn×m

q where 2 ≤ i ≤ l and
b ∈ {0, 1}. Then, for i ∈ [l] and b ∈ {0, 1}, pkR =
{Bib|i ∈ [l], b ∈ {0, 1}} and skR = (T10,T11).

—GenS Sender uses the random lattice sample algo-
rithm in proposition 2 to generate a matrix A ∈ Zn×m

q

with its trapdoor T ∈ Zm×m
q , let pkS = A and skS = T.

—Sym
1. Randomly chooses s ∈ Zn

q ; 2. Computes K =
h2(s);

3. Set ω = (s, pkR, skS).
—Encap
1. Randomly chooses τ ∈ {0, 1}l and Computes

h1(s, τ). Utilizing the PreSample algorithm in proposition
1, sender computes e1 ← PreSample(A,T, h1(s, τ)).

2. Chooses l − 1 random errors vectors ei according
to Φα for i ≥ 2. For τ = (τ1, τ2, · · · , τl), computes bi =

B⊤
iτis + ei(modq). Let b = (b1, · · · ,bl).

Then, the outputs of the Encap algorithm are (b, τ)
—Decap:
The receiver performs the following steps:
1. Parses b = (b1,b2 · · · ,bl) where bi ∈ Zm

q for 1 ≤
i ≤ l. If b can not be parsed in this way, rejects it.

2. Computes s and e1 from b1 with the help of the trap-
door T1τ1 which can be fixed by the first bit of τ .

3. Computes h1(s, τ), checks Ae1 = h1(s, τ) and
||e1|| ≤ s

√
m. Otherwise, rejects it.

4. Computes (bi − B⊤
iτis)(modq) for every i, and

checks its norm is less than s
√
m. Otherwise, rejects it.

5. Computes K = h2(s) as a symmetric key of the
signcryption DEM.

The correctness of the proposed signcryption KEM is
easily verified and we overlap it.

3.2. Signcryption DEM

—Enc Let M ∈ {0, 1}l be a message, Computes K ⊕
M = c(mod2).

—Dec Computes K ⊕ c = M(mod2).
And then, by definition 6, we can build a lattice-based

hybrid signcryption scheme from the proposed signcryp-
tion tag-KEM and signcryption DEM.
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Remark.According to literature [15], we can use a rela-
tively small modulus q′(< q) to make the vector b more
“coarse” to shorten the encapsulation length and enhance
the efficiency of the proposed signcryption tag-KEM. In
this case, the encapsulation length will be lmlogq′ which
is far shorter than lmlogq of the original length. For sim-
plicity, we refrain us to give more details about this tech-
niques. Readers can find the details about this technique in
literature [15].

4. Analysis of The Proposed Scheme
Theorem 1.The proposed signcryption tag-KEM is IND-
CCA2 secure under the hardness of the learning with er-
rors problem.

Proof. The proof proceeds in a sequence of games where
the first game is identical to the IND-CCA2 game in Def-
inition 7. In the last game of the sequence, the adversary
has advantage zero. We show that a PPT adversary cannot
distinguish between the games which will prove that the
adversary has negligible advantage in winning the origi-
nal IND-CCA2 game. The hardness of the LWE problem
is used in proving that Game 2 and Game 3 are indistin-
guishable. Let Xi be the events that b = b′ in game i

Game 0 This is the original IND-CCA2 game of the
tag-KEM signcryption between the adversary and the chal-
lenger.

Game 1 In this Game, if the adversary queries the de-
capsulation oracle for a tag τ∗(in step 2,4,6), then outputs
an errors symbol and aborts. The remainder of the Game
is unchanged.

Except τ∗ is queried for decapsulation, Game 0 and
Game 1 are unchanged. τ∗ is queried with probability
1/2l. Then P (X0)− P (X1) ≤ 1/2l = nelg(n).

Game 2 In this game, the GenR algorithm is modi-
fied as follows. Let Biτ∗

i
be random matrixes, and other

Bi(1−τ∗
i
) with is trapdoor Ti(1−τ∗

i
). The remainder steps

in this game are just like game 1.
By Proposition 2, all Bib can be seemed as random. So,

P (X2)−P (X1) = negl(n). Then Game 1 and Game 2 is
undistinguished.

Game 3 It is as same as Game 3 but, challenger outputs
the challenge encapsulation E = (b, τ∗), where vector b
are chosen uniformly in Zlm

q .
Then, by using the hardness of the learning with errors

problem, the game 2 and game 3 are undistinguished. Oth-
erwise, if there is a adversary can distinguish the Game
2 and Game 3, then we construct a algorithm B to solve
the decision variant of the LWE problem. The algorithm B
performs as follows:

1. Runs the Genc(1
k), GenS and GenR as in Game 2.

2. Responds adversary’s query for an symmetric key
generation oracle, an encapsulation oracle, a decapsulation
oracle as follows:

—sym oracle Chooses an random vectors s, randomly
choose a K ∈ {0, 1}l. Let ω = (skS , pkR), stores
(s, ω,K). Gives K to the adversary as an answer.

—encap oracle If τ = τ∗, then let b be uniform (Game
3), Otherwise, chooses l short vectors randomly as the vec-
tors e1, · · · , el in the encap algorithm and uses the encap
algorithm to compute the encapsulation.

—decap oracle If τ = τ∗, then outputs an errors sym-
bol. Otherwise, by using the receiver’s private key skR and
sender’s public key pkS to finish the decapsulation. And
sends the results to adversary. Because τ ̸= τ∗, the al-
gorithm always can make a decapsulation for adversary’s
query by some private key Ti(1−τ∗

i
) where τi ̸= τ∗i .

3. The next phases are as same as the Game 2 except
the output challenge encapsulation (b, τ∗) in step 5. In
game 2, b is an LWE instance, but in Game 3, b is uni-
form.

Though above simulate phases, we already argued that
when b is an LWE instance the adversary’s view is as in
Game 2. When b is uniform the adversary’s view is as in
Game 3. As a results, algorithm B with the same advan-
tage to distinguish between a random vector and an LWE
instance as the adversary to distinguish the Game 2 and
Game 3. So we draw a conclusion that the Game 2 and
Game 3 are undistinguished under the intractability as-
sumption of the LWE problem.

Put four games together, we have |P (X0) − 1/2| =
negl(n). And then the theorem has been proven.

Theorem 2.In the random oracle model, the proposed
signcryption tag-KEM is sUF-CMA secure under the short
integer solution problem intractability assumption.

Proof. If there is a adversary A who can attack the sUF-
CMA security of proposed signcryption tag-KEM with ad-
vantage ε, and by asking q1 h1 queries, q2 the symmet-
ric key generation queries, q3 encapsulation queries , then,
there is challenger B can solve the shortest integer solu-
tion problem with probability ε by running Theoreom 2
the forger as a subroutine.

Supposing B receives an SIS problem instance (A, 2s)
where A ∈ Zn×m

q and s be a parameters, he wants to find
a short vector e ∈ Zm

q satisfies the following properties:
Ae = 0(modq) and ||e|| ≤ 2s

√
m. To achieve this arm,

B simulates the signcryption’s generation, and begin the
attack game with adversary.

Firstly, B generates global parameters I and pkR =
{Bib|Bib ∈ Zn×m

q , i ∈ [l], b ∈ {0, 1}} , skR = (T10,T11)
by running Genc and Genr. Let pkS = A and chal-
lenger does’t know the private key of the sender. B sends
(pkR, skR, pkS , I) to A and runs the sUF-CMA game
with A. Challenger keeps 3 lists Li for i = 1, 2, 3 to store
the answers to the the symmetric key generation and en-
capsulation oracles and a h1 oracle. The process is shown
as follows.

—symmetric key generation query For a fresh sym
query, B randomly chooses an vectors s and a bit stream
K ∈ {0, 1}l. Let ω = (skS , pkR, s), stores (ω,K) to list
L1. Send K as an answer.(For a repeat query, returns the
same answers)

—encapsulation oracles For a non-repeat encapsula-
tion query (ω, τ), B preforms as follows:
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1.B checks list L1 to find (s, ω,K). If there without
entry accords to ω, then simulate the symmetric key gen-
eration query to generate s and K. At same time, store
(ω,K) to list L1

2. B Chooses l random vectors ei, which satisfied ei ≤
s
√
m.
3. Computes bi = B⊤

iτis+ ei. Parses b = (b1, · · · ,bl).
Then sends (b, τ) as answer and stores (b, τ, e1) to list

L2. (For a repeat query, returns the same answers)
Then adversary runs decap algorithm to check the le-

gality of the encapsulation by skR. During this process he
is allowed to query the h1 oracle.

—h1 query On the i-th non-repeat query (s, τ), B
checks list L2 to find (b, τ, e1), and computes h1i =
Aei(modq). Sends h1i as the answer. At last, B stores
(h1i, s, τ, ei) to L3.

After all above queries finished, adversary give a
forged signcryption tag-KEM (b∗, τ∗) with advantage ε.

Then, challenger can solve the SIS problem as follows:
Firstly, B parses b∗ = (b∗

1, · · ·), and runs decap al-
gorithm to get message s∗ and e∗1 from b∗

1 which satisfies
Ae∗1 = h1i∗ and ||e∗1|| ≤ s

√
m.

Secondly, checks L2 to find vector e′1 which also satis-
fies Ae′1 = h1i∗ and ||e′1|| ≤ s

√
m.

If e∗1 ̸= e′1, then A(e∗1 − e′1) = 0(modq) and ||e∗1 −
e′1|| ≤ 2s

√
m. As a result, B gets a solution of SIS prob-

lem. By literature [9], e∗1 ̸= e′1 happened with probability
1− 2−ω(logn)

Thus, B solves the SIS problem with advantage (1 −
2−ω(logn))ε.

Now, we have finished the proof of theorem 2.
By theorem 1 and theorem 2, the proposed signcryp-

tion tag-KEM is secure.
If we see hash function h2 as a random oracle, accord-

ing to lemma 2 and lemma 3, we conclude that the pro-
posed hybrid signcryption which constructed by signcryp-
tion KEM + signcryption DEM is secure.

5. Conclusions

In this paper, we build a lattice-based signcryption scheme
using the hybrid technique. We prove that the proposed
scheme is secure in the random oracle model. As a try
in lattice-based signcryption field, there still many open
problems need to be studied, for example, construct a
lattice-based hybrid signcryption in the standard model.
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