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Abstract: Couette flows of a Maxwell fluid produced by the motion of a flat plate are analyzed under the slip condition at boundaries.
The bottom plate is assumed to be translated in its plane with a given velocity. The flow of the fluid is studied in the assumption that the
relative velocity between the fluid at the wall and the wall is proportional to the shear rate at the wall. Exact expressions for velocity and
shear stress are determined by means of a Laplace transform. The velocity fields corresponding to both slip and non slip conditions for
Maxwell and Newtonian fluids are obtained. Two particular cases, namely translation with constant velocity and sinusoidal oscillations
of the bottom plate, are studied. Results for Maxwell fluids are compared with those of Newtonian fluids in both cases with slip and
non slip conditions. Some properties of the flow are also presented.
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1. Introduction

Since 1867 J.C.Maxwell (1831-1879) observed that some
fluids, such as air, exhibit both viscous and elastic behaviours.
The constitutive relation, in modern notations, proposed
by Maxwell for these fluids is given by [1-3]

S + λ(Ṡ− LS− SLT ) = µA, (1)

whereS is the extra stress tensor,L is the velocity gradi-
ent,A = L+LT is the first Rivlin-Erickson tensor,λ(≥ 0)
andµ(> 0) are the relaxation time and dynamic viscos-
ity, respectively, and the superposed dot indicates the ma-
terial time derivative. Maxwell fluids also can be consid-
ered as a special case of a Jeffreys-Oldroyd B fluid, which
contain both relaxation and retardation time coefficients
[1]. Maxwell’s constitutive relation can be recovered from
that corresponding to Jeffreys-Oldroyd B fluids by setting
the retardation time to be zero. The fluids described by
(1) are referred to as viscoelastic fluids of Maxwell type,
or simply Maxwell fluids. Several fluids, such as glyc-
erin, crude oils or some polymeric solutions, behave as
Maxwell fluids. The reference [4] contains more examples
of this type of fluids. The Maxwell model has been the sub-
ject of study for many researchers. The first exact solution

of Stokes’ first problem, also known as Rayleigh’s prob-
lem, for Maxwell fluids was given by Tanner [5]. Other
solutions of Stokes’ first problem for Maxwell fluids, to-
gether some interesting properties, have been obtained by
Jordan et al [6], Jordan and Puri [7] and, for Oldroyd B
fluid, by Christov [8]. The unsteady Couette flow of a Maxwell
fluid between two infinite parallel plates was studied by
Denn and Porteous [9] while, for second grade dipolar
fluids, by Jordan [10] and Jordan and Puri [11]. Interest-
ing subjects and solutions regarding the Couette or Stokes
flows of non-Newtonian fluids can be found in references
[12-15]. In aforementioned papers the assumption that a
liquid adheres to the solid boundary, so called nonslip bound-
ary condition, was considered fulfilled. The nonslip bound-
ary condition is one of the basic principles in which the
mechanics of the linearly viscous fluids was built. Many
experiments are in favour of the nonslip boundary condi-
tion for a large class of flows. An interesting discussion
regarding the acceptance of the nonslip condition can be
found in [16]. Even if the nonslip condition has proved
to be successful for a great variety of flows, it has been
found to be inadequate in several situations, such as prob-
lems involving multiple interfaces, flows in micro chan-
nels or in wavy tubes, flows of polymeric liquids or flows

∗ Corresponding author: e-mail: dumitruvieru@yahoo.com

c© 2013 NSP
Natural Sciences Publishing Cor.



210 Dumitru Vieru et al : Some Couette flows of a Maxwell fluid with wall slip condition

of rarefid fluids. Many years ago, Navier [17] proposed a
slip boundary condition wherein the relative velocity (the
slip velocity) depended linearly on the shear stress. A large
number of models have been proposed for describing the
slip that occurs at solid boundaries. Many of them can be
found in the reference [18]. One of the early studies of
the slip at the boundary was under taken by Monney [19].
Recently, several papers regarding flows of Newtonian or
non-Newtonian fluids with slip at the boundary have been
published. Khalid and Vafai [20] were studied the effect of
the slip condition on Stokes’ and Coutte flows due to an os-
cillating wall; Vieru and Rauf [21] analyzed Stokes’ flows
of a Maxwell fluid with wall slip condition; the Coutte
flow of a third grade fluid with rotating frame and slip
condition was studied by Abelman et al [22]. Many in-
teresting and useful results regarding solutions for flows
of non-Newtonian fluids with slip effects are in references
[23-25].

In this study, Couette flows of a Maxwell fluid pro-
duced by the motion of a flat plate are analyzed under the
assumption of the slip boundary conditions between the
plates and the fluid. The motion of the bottom plate is a
rectilinear translation in its plane with velocityuw(t) =
Uof(t) , while the upper plate is at rest. Exact expressions
for velocity and shear stress are determined by means of
a Laplace transform for Maxwell and Newtonian fluids.
Expressions of the relative velocity are determined, and
the solutions corresponding to flows with nonslip at the
boundary are also presented. Two particular cases, namely
the translation of the bottom plate with a constant veloc-
ity and sinusoidal oscillations are studied. In each case,
the expression of the velocity is written as a sum between
”the permanent solution” and the transient solution. For
large values of time t the transient solution tends to zero
and the fluid flows according to the ”permanent solution”.
Some relevant properties of the velocity and comparisons
between solutions with slip and nonslip at the boundaries
are presented.

2. Problem formulation and solution

Consider an infinite solid plane wall situated in the (x,z)-
plane of Cartesian coordinate system with the positivey−
axis in the upward direction. The second infinite solid
plane wall occupies the planey = h > 0. Let an incom-
pressible, homogeneous Maxwell fluid fill the slaby ∈
(0, h). Initially, the fluid and plates are at rest. At the mo-
mentt = 0+, the fluid is set in motion by the bottom plate,
which begins to translate along thex−axis with the veloc-
ity uw(t) = Uof(t), whereUo > 0 is a constant andf(t)
is a piecewise continuous function defined on[0,∞) and
f(0) = 0. Also, we suppose that the Laplace transform of
the functionf(t) exists. In the case of parallel flow along
the x − axis, the velocity vector isv = (u(y, t), 0, 0)

while the constitutive relation and the governing equation
are given by [7, 8, 21]

τ + λ
∂τ

∂t
= µ

∂u

∂y
, (y, t) ∈ (0, h)× (0,∞), (2)

ρ
∂u

∂t
+ ρλ

∂2u

∂t2
= µ

∂2u

∂y2
, (y, t) ∈ (0, h)× (0,∞), (3)

whereτ(y, t) = Sxy(y, t) is one of the nonzero compo-
nent of the extra stress tensorS andρ is the constant den-
sity of the fluid. In this paper, we consider the existence
of slip at the walls and assume that the relative veloc-
ity between the velocity of the fluid at the wall and wall
is proportional to the shear rate at the wall [20,21]. The
boundary conditions due to wall slip as well as the initial
conditions are

u(0, t)− β
∂u(0, t)

∂y
= Uof(t), t > 0, (4)

u(h, t) + β
∂u(h, t)

∂y
= 0 , t > 0, (5)

u(y, 0) = 0, ∂u(y,0)
∂t = 0,

τ(y, 0) = 0, y ∈ [0, h],
(6)

whereβ is the slip coefficient. We introduce the following
non-dimensionalization:

t∗ = t
T , y∗ = y

h , u∗ = u
Uo

, τ∗ = τ
(ρhUo/T ) ,

λ∗ = λ
T , β∗ = β

h ,

(7)

T > 0 being a characteristic time. Equations (2)-(6), in
non-dimensional form are (dropping the “*” notation)

τ + λ
∂τ

∂t
=

1
R

∂u

∂y
, y ∈ (0, 1)× (0,∞) (8)

λ
∂2u

∂t2
+

∂u

∂t
=

1
R

∂2u

∂y2
, y ∈ (0, 1)× (0,∞) (9)

u(0, t)− β
∂u(0, t)

∂y
= g(t), t > 0 (10)

u(1, t) + β
∂u(1, t)

∂y
= 0 , t > 0 (11)

u(y, 0) = 0, ∂u(y,0)
∂t = 0,

τ(y, 0) = 0, y ∈ [0, 1],
(12)

whereR = h2

νT is the Reynolds number,ν = µ
ρ is the kine-

matic viscosity,g(t) is given byf(Tt∗).
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2.1. Velocity field

By applying the temporal Laplace transform,L{.} [26],
to Eqs. (9)-(11) and using the initial conditions(12)1,2 we
obtain the following set of equations:

∂2ū(y, q)
∂y2

−R(λq2 + q)ū(y, q) = 0 (13)

ū(0, q)− β
∂ū(0, q)

∂y
= G(q) = L{g(t)} (14)

ū(1, q) + β
∂ū(1, q)

∂y
= 0 (15)

whereq is the Laplace transform parameter andū(y, q) =
L{u(y, t)}. The solution of differential equation (13) with
the boundary conditions (14) and (15) is given by

ū(y, q) = G(q)G1(y, q) (16)

where

G1(y, q) =

sh[(1− y)
√

Rw(q)] + β
√

Rw(q)ch[(1− y)
√

Rw(q)]
[1 + β2Rw(q)]sh[

√
Rw(q)] + 2β

√
Rw(q)ch[

√
Rw(q)]

(17)

and

w(q) = (λq2 + q) = λ[(q +
1
2λ

)2 − (
1
2λ

)2]. (18)

In order to determine the inverse Laplace transform of func-
tion G1(y, q) , we consider the auxiliary function

F1(y, q) =
sh[(1− y)

√
Rq] + β

√
Rqch[(1− y)

√
Rq]

(1 + β2Rq)sh(
√

Rq) + 2β
√

Rqch(
√

Rq)
(19)

Observing that the singular points ofF1(y, q) are simple
poles located at

qn = −pn
2

R
, n = 1, 2, ... (20)

wherepn 6= 0 are the real roots of the equation

tan(pn) =
2βpn

β2pn
2 − 1

, (21)

we invert functionF1(y, q) by using the residue theorem
to evaluate the Laplace inversion integral [26]. Such that,
after simplifying, we obtain

f1(y, t) = L−1{F1(y, q)}

=
∞∑

n=1

Res[F1(y, q)eqt, qn] (22)

=
∞∑

n=1

An(y) exp(−pn
2

R
t)

where

An(y) =
sin(1− y)pn + βpn cos(1− y)pn

β(β + 1)R sin pn − R
2pn

(1 + 2β − β2pn
2) cos pn

=
2pn

R

sin(ypn) + βpn cos(ypn)
(1 + 2β) + β2pn

2
. (23)

By comparing (17) and (19) we observe thatG1(y, q) =
F1[y, w(q)] and, using the inverse Laplace transform for
composed functions (see (A1) and (A2) from the Appendix
A), we obtain

g1(y, t) = L−1{G1(y, q)} =

∞∫

0

f1(y, s)h(s, t)ds (24)

where

h(s, t) = L−1{e−sw(q)} =

= t
2e

s−2t
4λ

∞∑
k=0

(−λs)k

(k+1)!(2k+1)!

∞∫
0

z2k+1J2(2
√

zt)dz
(25)

andJν(·) is the Bessel function of first kind and orderν .
Replacing (22) and (25) into (24) we find that

g1(y, t) =

∞∫

0

[
∞∑

n=1

An(y)e−
pn

2s
R ][

t

2
e

s−2t
4λ

×
∞∑

k=0

(−λs)k

(k + 1)!(2k + 1)!

∞∫

0

z2k+1J2(2
√

zt)dz]ds

=
t

2
e−

t
2λ

∞∑
n=1

An(y)

×
∞∑

k=0

(−λ)k

(k + 1)!(2k + 1)!

∞∫

0

z2k+1J2(2
√

zt)dz

×
∞∫

0

ske−( pn
2

R − 1
4λ )sds

=
t

2
e−

t
2λ

∞∑
n=1

An(y)

×
∞∫

0

J2(2
√

zt)
∞∑

k=0

(−λ)k
Γ (k + 1)

(k + 1)!(2k + 1)!
z2k+1

bn
k+1

dz, (26)

wherebn = pn
2

R − 1
4λ > 0 andΓ is the Gamma func-

tion.
By using (A3) from the Appendix A we obtain a new

expression of the functiong1(y, t) , namely

g1(y, t)

=
2t

λ
e−

t
2λ

∞∑
n=1

An(y)

∞∫

0

1
z
sin2(

√
λz

2
√

bn

)J2(2
√

zt)dz.(27)
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Now, using the properties of the Bessel functions [27]
we can show that

g1(y, t) = L−1[G1(y, q)] (28)

= e−
t

2λ

∞∑
n=1

An(y)√
λbn

sin(t

√
bn

λ
) (29)

Finally, we obtain:
a. The velocity field corresponding to the flow of a

Maxwell fluid with slip at the boundary is given by

uMs(y, t) = (g ∗ g1)(t) =

t∫

0

g(t− s)g1(y, s)ds

=
∞∑

n=1

An(y)√
λbn

t∫

0

g(t− s)e−
s
2λ sin(s

√
bn

λ
)ds. (30)

b. For the flow of a Maxwell fluid with a nonslip boundary
condition, that isβ = 0 , the functionAn(y) given by Eq.
(23) becomes

A1n(y) =
2nπ

R
sin(nπy), n = 1, 2, ..... (31)

and the velocity field has the expression

uM (y, t) = 2π
R

∞∑
n=1

n sin(nπy)√
λcn

×

×
t∫
0

g(t− s)e−
s
2λ sin(s

√
cn

λ )ds,
(32)

wherecn = n2π2

R − 1
4λ > 0.

c. The solution in the transform domain corresponding to
the flow of a viscous fluid with slip at the wall, that is for
λ = 0 andβ 6= 0 , is given by

ū(y, t) = G(q)F1(y, q) (33)

and the(y, t)-domain solution is

uNs(y, t) =
t∫
0

g(t− s)f1(y, s)ds

=
∞∑

n=1
An(y)

t∫
0

g(t− s) exp(−pn
2

R s)ds,

(34)

whereAn(y)is given by Eq. (23). Forf(t) = sin(ωt) or
f(t) = cos(ωt), the velocity field given by Eq.(33) was
determined in equivalent forms by Khalid and Vafai [20].
d. For flows of viscous Newtonian fluids with a nonslip
boundary condition, that isλ = 0 andβ = 0, the transform
domain solution is

ūN (y, q) = G(q)G2(y, q), (35)

where

G2(y, q) =
sh[(1− y)

√
Rq]

sh[
√

Rq]
, (36)

and the(y, t)-domain solution is given by

uN (y, t) =
2π

R

∞∑
n=1

n sin(nπy)

t∫

0

g(t− s)e−
n2π2

R sds.(37)

The relative velocity between the fluid at the bottom wall
and wall itself for Maxwell fluids is
uMrel(t) = uMs(0+, t)− g(t)

= 2β
R

∞∑
n=1

pn
2

√
λbn{β2pn

2+(1+2β)}×

×
t∫
0

g(t− s)e−
s
2λ sin(s

√
bn

λ )ds− g(t)

(38)

and for a viscous Newtonian fluid is given by
uNrel(t) = uNs(0+, t)− g(t)

= 2β
R

∞∑
n=1

pn
2

β2pn
2+(1+2β)

×
t∫
0

g(t− s)e−
pn

2

R sds− g(t).

(39)

2.2. Shear Stress

In order to determine the shear stressτ(y, t) we use Eqs.
(8),(16) and (28). Applying the Laplace transform to Eq.
(8) with the initial condition(12)3 we obtain

τ̄(y, q) =
1

λR
G(q)G3(y, q) (40)

where

G3(y, q) =
1

q + 1/λ

∂G1(y, q)
∂y

. (41)

The inverse Laplace transform of functionG3(y, q) is

g3(y, t) =
t∫
0

e−
t−s

λ
∂g1(y,s)

∂y ds

=
∞∑

n=1

Bn(y)√
λbn

e−
t
λ

t∫
0

e
s
2λ sin(s

√
bn

λ )ds

(42)

where
Bn(y) = dAn(y)

dy

= 2pn
2

R
cos(ypn)−βpn sin(ypn)

(1+2β)−β2pn
2 .

(43)

Eq.(41) can be written in the simple form

g3(y, t) =
∞∑

n=1

Bn(y)√
λbn

2λe
− t

2λ

1+4λbn

×[2
√

λbne−
t

2λ + sin(t
√

bn

λ )− 2
√

λbn cos(t
√

bn

λ )]
(44)

The(y, t)-domain solution for the shear stress is given by

τ(y, t) =
1

λR
(g ∗ g3)(t) =

1
λR

t∫

0

g(t− s)g3(y, s)ds.(45)

3. Some particular cases of the motion of the
plate

In this section we consider two functions corresponding
to the motion of the bottom plate, namelyf(t) = H(ωt)
andf(t) = sin(ωt) , with ω > 0 being a constant. We
choose the characteristic timeT = 1

ω , for the dimension-
less variables and functions given by Eq.(7), and obtain
g(t) = H(t) andg(t) = sin t , H(t) being the Heaviside
unit step function.
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3.1. Solution for the translation of the bottom
plate with a constant velocity

The motion of the bottom plate is given by the function
g(t) = H(t) and the velocityu(y, t) is obtained from Eqs.
(29), (31), (33) and (36) withg(t − s) = 1 . The velocity
fields corresponding to this type of the motion have the
following expressions:
a. Maxwell fluids with slip at the boundary:

uMs(y, t) = H(t){4λ
∞∑

n=1

An(y)
1+4λbn

−2λ
∞∑

n=1

An(y)e
− t

2λ√
λbn(1+4λbn)

× [sin(t
√

bn

λ ) + 2
√

λbn cos(t
√

bn

λ )]},

(46)

which, by using (A4) from the Appendix A, can be written
in the simpler form

uMs(y, t) = H(t){1+β−y
1+2β

−e−
t

2λ

∞∑
n=1

sin(ypn)+βpn cos(ypn)
pn(1+2β+β2pn

2)

× [2 cos(t
√

bn

λ ) + 1√
λbn

sin(t
√

bn

λ )]}.
(47)

For large values of the timet the velocity field given by
Eq. (46) tends to the ”stationary solution”

ust
Ms(y, t) =

1 + β − y

1 + 2β
(48)

and fort → 0+ uMs(y, t) tends to zero.
b. Maxwell fluids with nonslip at the boundary:

uM (y, t) = H(t){1− y − e−
t

2λ

∞∑
n=1

sin(nπy)
nπ

×[2 cos(t
√

cn

λ ) + 1√
λcn

sin(t
√

cn

λ )]}.
(49)

c. Newtonian fluids with slip at the boundary:

uNs(y, t) = H(t){1+β−y
1+2β

−2
∞∑

n=1

sin(ypn)+βpn cos(ypn)
pn(1+2β+β2pn

2) e−
pn

2

R t}. (50)

d. Newtonian fluids with nonslip at the boundary:

uN (y, t) = H(t){1− y − 2
∞∑

n=1

sin(nπy)
nπ

e−
n2π2

R t}. (51)

The relative velocity is given by

uMrel(t) = H(t){− β
1+2β−

−e−
t

2λ

∞∑
n=1

βpn

pn(1+2β+β2pn
2)

×[2 cos(t
√

bn

λ ) + 1√
λbn

sin(t
√

bn

λ )]},
(52)

for the Maxwell fluid, respectively,

uNrel(t) = H(t)[− β
1+2β

−2
∞∑

n=1

βpn

pn(1+2β+β2pn
2)e

− pn
2

R t],
(53)

for Newtonian fluids. By using the illustrations generated
with the software Mathcad, we discuss some relevant phys-
ical aspects of the flow. Also, the rootspn , n = 1, 2, .... ,
of Eq.(21) are determined by means of the software ”root
(f(x), x, a, b) ” from Mathcad. For the dimensionless slip
coefficient,β ∈ {0.4, 0.7} the rootspn are presented in the
Table 1 from the Appendix A. In the figures, we useν =
9.15255×10−3m2/

s , λ = 0.55s , ρ = 1.050kg/
m3 corre-

sponding to Maxwell fluid1%PMMA in DEM (Poly(methyl-
metha crylate) in diethyl malonate) [4], andh = 0.2m,
Uo = 0.6m/s, β = 0.14m. The Reynolds number cor-
responding to aforementioned values isR = 3.4962934,
the dimensionless slip coefficient isβ = 0.7 and the di-
mensionless relaxation time isλ = 0.44. Also, we use the
following abbreviations for dimensionless velocities:uMs,
the velocity for Maxwell fluid with slip at the wall;uM , the
velocity for Maxwell fluid with nonslip at the wall;uNs,
the velocity for Newtonian fluid with slip at the wall;uN ,
the velocity for Newtonian fluid with nonslip at the wall. In
Fig. 1 we show the dimensionless velocity,u(y, t), versust
for y ∈ {0.05, 0.25, 0.85} . For comparison, we have plot-
ted the functions corresponding to Maxwell and Newto-
nian fluids with both slip and nonslip boundary conditions.
For a fixed value of the spatial variabley, the velocity cor-
responding to a Maxwell fluid with slip at the boundary
is zero for a short time, after that, is increasing and tends
towards the ”stationary solution”ust

Ms given by Eq. (47).
The velocity corresponding to Maxwell fluid with nonslip
condition has a non uniform variation at the beginning of
the motion after that approaches to the “stationary solu-
tion” ust

M (y, t) = 1−y. For Newtonian fluids, the velocity
is larger in the case of a nonslip than in the case of slip at
the boundary near the bottom plate. For large values of the
time t they tend to the “stationary solutions”ust

Ns = ust
Ms

, respectivelyust
N = ust

M . Fig. 2 shows the diagrams of
velocityu(y, t) corresponding to Maxwell and Newtonian
fluids for both slip and non slip conditions. The velocity
was plotted versusy for t ∈ {0.5, 1.5, 2.5} . For small val-
ues of timet the Newtonian fluid with slip at the wall is
slower than the Maxwell fluid with slip condition near the
lower plate and faster near upper plate. For increasingt
the Newtonian fluid with slip condition is slower than the
Maxwell fluid throughout domain of flow. In Fig.3 we have
plotted the relative velocity corresponding to Maxwell and
Newtonian fluids versust for two values of the dimension-
less slip coefficientβ. In absolute value, the relative ve-
locity decreases with increasing values ofβ and flatten out
for large values of timet.

3.2. Solution for the sinusoidal oscillations of
the bottom plate

In this section we consider for the motion of the bottom
plate the functiong(t) = sin t. The velocity fields cor-
responding to this type of motion are given by Eqs. (29),
(31), (33) and (36) in whichg(t−s) is replaced bysin(t−
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Figure 1 Plot of u(y, t) versust for both cases with slip and
nonslip condition.

s).
a. Integrating by parts into Eq. (29), this yields after some
simplifications, the velocity field corresponding to the flow
of a Maxwell fluid with slip at the wall

uMs(y, t) = Q1(y) sin t + Q2(y) cos t

+ e−
t

2λ

∞∑
n=1

[Q3n(y) cos(t
√

bn

λ )

+ Q4n(y) sin(t
√

bn

λ )],

(54)

where

Q1(y) = 2
∞∑

n=1

pn(pn
2 − λR)

(pn
2 − λR)2 + R2

Qn(y), (55)

Figure 2 Plot of u(y, t) versusy for both cases with slip and
nonslip condition.

Q2(y) = −2
∞∑

n=1

Rpn

(pn
2 − λR)2 + R2

Qn(y), (56)

Q3n(y) =
2pnR

(pn
2 − λR)2 + R2

Qn(y), (57)

Q4n(y) =
pn√
λbn

R− 2λ(pn
2 − λR)

(pn
2 − λR)2 + R2

Qn(y), (58)

Qn(y) =
sin(ypn) + βpn cos(ypn)

1 + 2β + β2pn
2

, (59)

The velocity field given by Eq. (53) is the sum between the
“permanent solution”

uMsp(y, t) = Q1(y) sin t + Q2(y) cos t (60)
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Figure 3 Plot of the relative velocity versust for Maxwell and
Newtonian fluids.

and the transient solutionuMst(y, t) = uMs(y, t)−uMsp(y, t)
which can be neglected for large values of the timet. By
using the residue theorem to evaluate the inverse Laplace
transform of function̄u(y, q) given by Eq. (16), withG(q) =
L{sin t} = 1

q2+1 , we obtain for the “permanent solution”
uMsp(y, t) an equivalent expression, namely

uMsp(y, t) = 1
M [M1P1(y) + M2P2(y)] sin t+

+ 1
M [M1P2(y) + M2P1(y)] cos t,

(61)

where

M1 = [(1− λβ2R)sh(α1

√
R)

+2α1β
√

Rch(α1

√
R)]

× cos(α2

√
R)− [β2Rch(α1

√
R)

+ 2α2β
√

Rsh(α1

√
R)] sin(α2

√
R),

(62)

M2 = [(1− λβ2R)ch(α1

√
R)+

+2α1β
√

Rsh(α1

√
R)] sin(α2

√
R)

+[β2Rsh(α1

√
R) + 2α2β

√
Rch(α1

√
R)]

× cos(α2

√
R),

(63)

M = M1
2 + M2

2, (64)

P1(y) = sh[α1

√
R(1− y)]{cos[α2

√
R(1− y)]

−α2β
√

R sin[α2

√
R(1− y)]}

+ α1β
√

Rch[α1

√
R(1− y)] cos[α2

√
R(1− y)],

(65)

P2(y) = ch[α1

√
R(1− y)]{sin[α2

√
R(1− y)]

+α2β
√

R cos[α2

√
R(1− y)]}

+α1β
√

Rsh[α1

√
R(1− y)] sin[α2

√
R(1− y)],

(66)

andα1,2 =
√

(
√

λ2 + 1∓ λ)/2.
b. The velocity field corresponding to Maxwell fluids with

nonslip at the boundary is given by

uM (y, t) = 2 sin t
∞∑

n=1

(nπ)(n2π2−λR) sin(nπy)

(n2π2−λR)2+R2

−2 cos t
∞∑

n=1

R(nπ) sin(nπy)

(n2π2−λR)2+R2

+ 2e−
t

2λ {
∞∑

n=1

R(nπ) sin(nπy)

(n2π2−λR)2+R2 cos(t
√

cn

λ )

+ (nπ)[R−2λ(n2π2−λR)] sin(nπy)√
λcn[(n2π2−λR)2+R2]

sin(t
√

cn

λ )}.

(67)

The “permanent solution” corresponding to this type of the
motion, can be written in the equivalent form

uM p(y, t) = P3(y) sin t + P4(y) cos t, (68)

where

P3(y) = {sh[α1

√
R(1− y)]×

× cos[α2

√
R(1− y)]sh(α1

√
R) cos(α2

√
R)

+ ch[α1

√
R(1− y)] sin[α2

√
R(1− y)]

×ch(α1

√
R) sin(α2

√
R)} 1

sh2(α1
√

R)+sin2(α2
√

R)
,

(69)

P4(y) = {ch[α1

√
R(1− y)] sin[α2

√
R(1− y)]

×sh(α1

√
R) cos(α2

√
R)+

+ sh[α1

√
R(1− y)] cos[α2

√
R(1− y)]

×ch(α1

√
R) sin(α2

√
R)} 1

sh2(α1
√

R)+sin2(α2
√

R)
.

(70)

c. The velocity field corresponding to the flows of Newto-
nian fluids with slip at the wall has expression

uNs(y, t) = 2 sin t
∞∑

n=1

p3
nQn(y)
p4

n+R2

−2 cos t
∞∑

n=1

RpnQn(y)
p4

n+R2 + 2
∞∑

n=1

RpnQn(y)
p4

n+R2 e−
p2

n
R t,

(71)

whereQn(y) is given by Eq. (58). The “permanent solu-
tion” corresponding to this type of flows can be written in
the equivalent form

UNsp(y, t) =
1
D

[D1E1(y) + D2E2(y)] sin t

+
1
D

[D1E2(y)−D2E1(y)] cos t, (72)

where

D1 = sh(

√
R

2
) cos(

√
R

2
)− β2Rch(

√
R

2
) sin(

√
R

2
)

+β
√

2R[ch(

√
R

2
) cos(

√
R

2
)

−sh(

√
R

2
) sin(

√
R

2
)], (73)

D2 = ch(

√
R

2
) sin(

√
R

2
) + β2Rsh(

√
R

2
) cos(

√
R

2
)

+β
√

2R[sh(

√
R

2
) sin(

√
R

2
)

+ch(

√
R

2
) cos(

√
R

2
)] (74)
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D = D1
2 + D2

2, (75)

E1(y) = sh[
√

R
2 (1− y)] cos[

√
R
2 (1− y)]

+β
√

R
2 {ch[

√
R
2 (1− y)] cos[

√
R
2 (1− y)]

− sh[
√

R
2 (1− y)] sin[

√
R
2 (1− y)]},

(76)

E2(y) = ch[
√

R
2 (1− y)] sin[

√
R
2 (1− y)]+

+β
√

R
2 {sh[

√
R
2 (1− y)] sin[

√
R
2 (1− y)]

+ch[
√

R
2 (1− y)] cos[

√
R
2 (1− y)]}.

(77)

d. The Couette flow of a Newtonian fluid with nonslip
boundary condition is characterized by the velocity field

uN (y, t) = 2 sin t
∞∑

n=1

(nπ)3 sin(nπy)

(nπ)4+R2

−2 cos t
∞∑

n=1

R(nπ) sin(nπy)

(nπ)4+R2 +

+ 2
∞∑

n=1

R(nπ) sin(nπy)

(nπ)4+R2 e−
n2π2

R t.

(78)

The “permanent solution” corresponding to the expression
(77) can be written in the following form

uNp(y, t) =
= sin t

sh2(
√

R
2 )+sin2(

√
R
2 )

×{sh(
√

R
2 ) cos(

√
R
2 )sh[

√
R
2 (1− y)] cos[

√
R
2 (1− y)]

+ch(
√

R
2 ) sin(

√
R
2 )ch[

√
R
2 (1− y)] sin[

√
R
2 (1− y)]}

+ cos t

sh2(
√

R
2 )+sin2(

√
R
2 )
×

×{sh(
√

R
2 ) cos(

√
R
2 )ch[

√
R
2 (1− y)] sin[

√
R
2 (1− y)]

−ch(
√

R
2 ) sin(

√
R
2 )sh[

√
R
2 (1− y)] cos[

√
R
2 (1− y)]}.

(79)

Some important properties of flow due to sinusoidal oscil-
lations of the bottom plate are presented using illustrations
from Figs. 4-6.

In Fig. 4 we plotted the velocityu(y, t) and the ”per-
manent solutions” corresponding to Maxwell and Newto-
nian fluids with both slip and non slip boundary condi-
tions. These functions were presented versust for y ∈
{0.05, 0.25, 0.85} and, it is evident that the difference be-
tween the velocityu(y, t) and the “permanent velocity”
is significant only for small values of the time . We see
that in the considered case, after the momentt = 4 for
Maxwell fluid with slip at the wall, respectivelyt = 6 for
the Maxwell fluid with non slip condition the transient ve-
locitiesut

Ms(y, t) = uMs(y, t) − uMsp(y, t), ut
M (y, t) =

uM (y, t)−uMp(y, t) can be neglected. For Newtonian flu-
ids t = 6 in the case of the flow with slip at the wall
and t = 4 in the case of nonslip at the wall. After these
moments, the fluids flow according to the ”permanent so-
lution”. Fig. 5 contains diagrams of velocityu(y, t), ver-
susy for six different values of time,t. The curves cor-
responding to the slip and nonslip boundary conditions,
for Maxwell and Newtonian fluids were considered. At the

Figure 4 Plot of theu(y, t) versust for both cases with slip and
nonslip condition.

small values of time the Maxwell fluid has not a monotonous
flow. After the valuet = 1 , the absolute values of the ve-
locity corresponding to both types of Maxwell fluids in-
crease for increasingy. The absolute values of the velocity
corresponding to both cases of Newtonian fluids increase
for increasingy and for all values of the timet . In Fig.
6 we have plotted the relative velocity corresponding to
Maxwell and Newtonian fluids versust for two values of
the dimensionless slip coefficientβ . The relative velocity,
in absolute terms, is an increasing function ofβ.

4. Conclusion

Couette flows of a Maxwell fluid were analyzed under slip
conditions between the fluid and walls. The motion of the
bottom plate was assumed to be a rectilinear translation in
its plane while, the upper plate is at rest. Two particular
cases, namely translation with constant velocity and sinu-
soidal oscillations of the bottom plate, were considered.
The relative velocity between the fluid at the wall and the
wall was assumed to be proportional to the shear rate at
the wall. The exact expressions for the velocityu(y, t) and
shear stress, have been determined by means of Laplace
transform. For a complete study and for comparisons, we
presented velocity fields corresponding to both flows (with
slip and nonslip conditions) for Maxwell and Newtonian
fluids. The expressions of the relative velocity have also
been determined. If the bottom plate translates with the
constant velocity then the velocity fields corresponding to
the four types of the flows were written as sums between
the stationary solutions and transient solutions. For large
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Figure 5 Plot of theu(y, t) versusy for both cases with slip and
nonslip condition.

values of the timet the transient solutions can be neglected
and the fluid flows according to the stationary solutions.
For Maxwell fluids the velocity is zero a short period after
the staring of the motion. After this period the values of
the velocity increase for increasing timet and tend to the
values of the stationary solutions. For Newtonian fluids the
velocities are increasing functions oft. The velocity corre-
sponding to the flow with slip condition is smaller than the
velocity for the flow with non slip condition for both types
of fluids (see Fig. 1 and 2). The relative velocity, in abso-
lute value, is a decreasing function of the slip coefficientβ
(see Fig. 3). For sinusoidal oscillations of the plate the ex-
pressions of the velocities corresponding to the four types
of flows were written as the sums between the “permanent
solutions” and transient solutions. In each case two equiv-
alent forms of the permanent solution were presented. The
difference between the velocityu(y, t) and the permanent
solution is significant only for the small values of the time
t (see Fig. 4).For large values of the timet the fluids flow
according to the permanent solutions. The velocity field
u(y, t) versusy, in absolute terms, is a decreasing function

Figure 6 Plot of the relative velocity versust for Maxwell and
Newtonian fluids.

(see Fig. 5), and the relative velocity, in absolute terms is
an increasing function of the slip coefficientβ. The soft-
ware Mathcad 14.0 was used for numerical calculations
and to generate the diagrams presented herein and the roots
of Eq. (21) (See Table 1 from Appendix A).

5. Appendix A

A1.L
−1{F (q)} = f(t), L−1{F [w(q)]}

=
∞∫
0

f(x)g(x, t)dx, g(x, t) = L−1{e−xw(q)}
A2.L

−1{qbeab}
= 1

b

∞∑
n=0

an

(n+1)!Γ [b(n+1)]

∫∞
0

xb(n+1)Jo(2
√

xt)dx, b > 0

A3.
∞∑

k=0

(−λ)kz2k+1

(k+1)(2k+1)!bn
k+1

= 2
λz [1− cos(z

√
λ
bn

)]

= 4
λz sin2( z

√
λ

2
√

bn
)

A4.4λ
∞∑

k=0

An(y)
1+4λbn

= 2
∞∑

n=1

sin(pny)+βpn cos(pny)
pn(1+2β+β2pn

2)

= 1+β−y
1+2β
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Table 1 Table 1. Roots of Eq. (21)

pn β = 0.4 β = 0.7

p1 1.8615134 1.513246
p2 4.2127514 3.8518918
p3 6.9717948 6.7031418
p4 9.9185957 9.7167336
p5 12.9478517 12.7888567
p6 16.0176262 15.887318
p7 19.1097267 18.9996515
p8 22.2152756 22.1201338
p9 25.3295014 25.2457934
p10 28.449632 28.3749412
p11 31.5739545 31.5065484
p12 34.7013567 34.6399135
p13 37.8310854 37.7747121
p14 40.9626254 40.9105149
p15 44.0955657 44.04714
p16 47.2296565 47.184424
p17 50.3646768 50.3222441
p18 53.5004611 53.4605064
p19 56.636892 56.5991374
p20 59.7738602 59.7380791
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