Appl. Math. Inf. Sci.7, No. 1, 209-219 (2013) NS 209

Applied Mathematics & Information Sciences
An International Journal

(@© 2013 NSP
Natural Sciences Publishing Cor.

Some Couette flows of a Maxwell fluid with wall slip
condition

Dumitru Vieru-2 and Azhar Ali Zafa?

1 Department of Theoratical Mechanics, Technical University of lasi, Romania
2 Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan

Received: 17 May 2012; Revised 26 Sep. 2012; Accepted 27 Sep. 2012
Published online: 1 Jan. 2013

Abstract: Couette flows of a Maxwell fluid produced by the motion of a flat plate are analyzed under the slip condition at boundaries.
The bottom plate is assumed to be translated in its plane with a given velocity. The flow of the fluid is studied in the assumption that the
relative velocity between the fluid at the wall and the wall is proportional to the shear rate at the wall. Exact expressions for velocity and
shear stress are determined by means of a Laplace transform. The velocity fields corresponding to both slip and non slip conditions for
Maxwell and Newtonian fluids are obtained. Two particular cases, namely translation with constant velocity and sinusoidal oscillations
of the bottom plate, are studied. Results for Maxwell fluids are compared with those of Newtonian fluids in both cases with slip and
non slip conditions. Some properties of the flow are also presented.
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1. Introduction of Stokes’ first problem, also known as Rayleigh’s prob-
lem, for Maxwell fluids was given by Tanner [5]. Other
Since 1867 J.C.Maxwell (1831-1879) observed that somesolutions of Stokes’ first problem for Maxwell fluids, to-
fluids, such as air, exhibit both viscous and elastic behavio@ather some interesting properties, have been obtained by
The constitutive relation, in modern notations, proposedJordan et al [6], Jordan and Puri [7] and, for Oldroyd B

by Maxwell for these fluids is given by [1-3] fluid, by Christov [8]. The unsteady Couette flow of a Maxwell
. . fluid between two infinite parallel plates was studied by
S+AS-LS-SL") = puA, (1) Denn and Porteous [9] while, for second grade dipolar

wheres is the extra stress tensdr,is the velocity gradi- ~ fluids, by Jordan [10] and Jordan and Puri [11]. Interest-
ent,A = L+L7 is the first Rivlin-Erickson tensok(> 0) ing subjects and solutions regarding the Couette or Stokes
and (> 0) are the relaxation time and dynamic viscos- flows of non-Newtonian fluids can be found in references
ity, respectively, and the superposed dot indicates the ma12-15]. In aforementioned papers the assumption that a
terial time derivative. Maxwell fluids also can be consid- liquid adheres to the solid boundary, so called nonslip bound-
ered as a special case of a Jeffreys-Oldroyd B fluid, whicrary condition, was considered fulfilled. The nonslip bound-
contain both relaxation and retardation time coefficientsa’y condition is one of the basic principles in which the
[1]. Maxwell’s constitutive relation can be recovered from Mechanics of the linearly viscous fluids was built. Many
that corresponding to Jeffreys-Oldroyd B fluids by setting @xPeriments are in favour of the nonslip boundary condi-
the retardation time to be zero. The fluids described bytion for a large class of flows. An interesting discussion
(1) are referred to as viscoelastic fluids of Maxwell type, fégarding the acceptance of the nonslip condition can be
or simply Maxwell fluids. Several fluids, such as glyc- found in [16]. Even if the nonslip condition has proved
erin, crude oils or some polymeric solutions, behave ad0 be successful for a great variety of flows, it has been
Maxwell fluids. The reference [4] contains more examplesfound to be inadequate in several situations, such as prob-
of this type of fluids. The Maxwell model has been the sub-/€ms involving multiple interfaces, flows in micro chan-
ject of study for many researchers. The first exact solutior€!S or in wavy tubes, flows of polymeric liquids or flows
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of rarefid fluids. Many years ago, Navier [17] proposed awhile the constitutive relation and the governing equation
slip boundary condition wherein the relative velocity (the are given by [7, 8, 21]

slip velocity) depended linearly on the shear stress. A large

number of models have been proposed for describing the

slip that occurs at solid boundaries. Many of them can be; /\& - M@7 (y,t) € (0,h) x (0,00), 2)
found in the reference [18]. One of the early studies of ot 9

the slip at the boundary was under taken by Monney [19].

Recently, several papers regarding flows of Newtonian or g, 92u 92w

non-Newtonian fluids with slip at the boundary have beenp 5, +pA 5y = g5, (y:1) € (0,7) x (0,00),  (3)
published. Khalid and Vafai [20] were studied the effect of y

the slip condition on Stokes’ and Coutte flows due to an oswherer(y,t) = S,,(y,t) is one of the nonzero compo-
cillating wall; Vieru and Rauf [21] analyzed Stokes’ flows nent of the extra stress tens®dandp is the constant den-
of a Maxwell fluid with wall slip condition; the Coutte sity of the fluid. In this paper, we consider the existence
flow of a third grade fluid with rotating frame and slip of slip at the walls and assume that the relative veloc-
condition was studied by Abelman et al [22]. Many in- ity between the velocity of the fluid at the wall and wall
teresting and useful results regarding solutions for flowsis proportional to the shear rate at the wall [20,21]. The
of non-Newtonian fluids with slip effects are in referencesboundary conditions due to wall slip as well as the initial

[23-25]. conditions are
In this study, Couette flows of a Maxwell fluid pro- du(0, 1)
duced by the motion of a flat plate are analyzed under the.(0,¢) — 3 "L =U,f(t), t>0, (4)

assumption of the slip boundary conditions between the %

plates and the fluid. The motion of the bottom plate is a 5
rectilinear translation in its plane with velocity, (t) = uht)+8 u(h, t) -0 >0, (5)
U, f(t) , while the upper plate is at rest. Exact expressions Jy
for velocity and shear stress are determined by means of
a Laplace transform for Maxwell and Newtonian fluids. _n Qu,0) _
; . ) . u(y,0) =0, =57~ =0,

Expressions of the relative velocity are determined, and t (6)
the solutions corresponding to flows with nonslip at the -

H T(y7 0) - 07 y € [07 h]7
boundary are also presented. Two particular cases, namely
the translation of the bottom plate with a constant veloc-whereg is the slip coefficient. We introduce the following
ity and sinusoidal oscillations are studied. In each casenon-dimensionalization:
the expression of the velocity is written as a sum betweent* T -
"the permanent solution” and the transient solution. For® — T~ ¥y =% =10, T = Gru,/1)°
large values of time t the transient solution tends to zero \ p ()
and the fluid flows according to the "permanent solution”. A\* = 7, 8" = 4,
Some relevant properties of the velocity and comparison
between solutions with slip and nonslip at the boundarie
are presented.

>0 being a characteristic time. Equations (2)-(6), in
hon-dimensional form are (dropping the “*” notation)

- = - 1
TG =gy V€O X (0.) ®)
Pu  Ou 10%u
2. Problem formulation and solution Ao T T Rog Y€ (0,1) (0, 00) ©)
Consider an infinite solid plane wall situated in the (x,z)- B ou(0,t)
plane of Cartesian coordinate system with the posijive u(0,1) - 8 oy g(t), t>0 (10)
axis in the upward direction. The second infinite solid
plane_wall occupies the plane= h > 0. L_et an incom- ou(1,t)
pressible, homogeneous Maxwell fluid fill the slabe  u(1,t) + 58734 =0 ,t>0 (11)

(0, h). Initially, the fluid and plates are at rest. At the mo-

mentt = 07, the fluid is set in motion by the bottom plate,

which begins to translate along the azis with the veloc-  u(y, 0) = 0, 2429 — o,

ity u,(t) = U, f(t), whereU, > 0 is a constant and(t) (12)
is a piecewise continuous function defined[6ro) and  7(y,0) =0, y € [0,1],

f(0) = 0. Also, we suppose that the Laplace transform of . ) )
the function (t) exists. In the case of parallel flow along WhereR = %7 is the Reynolds number= % is the kine-
the z — axzis, the velocity vector isv = (u(y,t),0,0) matic viscosityg(t) is given by f(T't*).
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2.1. Velocity field where
By applying the temporal Laplace transforiy,. } [26], An(y) :_
to Egs. (9)-(11) and using the initial conditiofi), , we sin(l — y)pn + Bpn cos(l — y)pn
obtain the following set of equations: B(B+ 1)Rsinp,, — ( + 26 — 2pn?) cosp,
9%u(y, q) ) B 2py, sin(ypn) + ﬁpn COb(ypn)
R T VA — = — 23
B By comparing (17) and (19) we observe that(y, ) =
(0, q) — 53“(0"1) = G(q) = L{g(t)} (14)  Fily,w(q)] and, using the inverse Laplace transform for
Oy composed functions (see (Al) and (A2) from the Appendix
A), we obtain
ou(1l
a(tq)+ 5750 o 15) 1 %
o) =L {Galw )} = [ Al s)h(s,ds (29
wheregq is the Laplace transform parameter ar(g, q) = o
L{u(y,t)}. The solution of differential equation (13) with
the boundary conditions (14) and (15) is given by where
71 —sw( —
a(y,q) = Gla)G1 (v, ) (g M TR AT "= -
—As) 2k+1
where Z (k+1)' 2k+1)' f 22kt J2 2\/7)
Gl(ya q) = and.J, (-) is the Bessel function of first kind and ordet
\/Rw )+ ﬁ\/Rw —y)/Rw(q)] Replacing (22) and (25) into (24) we find that
[1 + ﬁQRw )]sh[v/Rw(q)] + 25\/Rw )eh[v/Rw(q)] t N
a7n oy / Z A sem
0 n= 1
and
0o k:
_ 2 _ 1 LY / 2k+1
w(a) = (A¢* +q) = Mg+ 57)° = (7)) (18) x}%kﬁJ,2k+D SHI(2v/2t)dzds
- 0

In order to determine the inverse Laplace transform of func-

tion G1(y, q) , we consider the auxiliary function
Fl (yv q) =

— y)VRa] + BVRqch|(1 — y)V/Rq]
(14 82Rq)sh(v/Rq) + 28V Rqch(v/Rq)

Observing that the singular points & (y, ¢) are simple
poles located at

(19)

P 2
= —— n=12.. 20
q 7 " (20)
wherep,, # 0 are the real roots of the equation
20pn
tan(pn) = 6217”2 _ 17 (21)

we invert functionF (y, ¢) by using the residue theorem
to evaluate the Laplace inversion integral [26]. Such that,

after simplifying, we obtain

o] (7)\)k [e%e] 1
X§%+mm+mfﬁﬁuwmw

o0

k—(p"2—i)s
x [ s¥e” V"R Tax/)%(ds

n=1
7 (N 1) 22k
X /JQ(Q\/E) =rdz  (26)
J “ (k+1)!(2k +1)!s,
whereb,, = 7 - ﬁ > 0 andI is the Gamma func-

tion.

fily,t) = L"YF (y,q)} By using (A3) from the Appendix A we obtain a new

o expression of the functiog (y, t) , namely
= > Res[Fi(y,q)e”, g (22) a1y, t)

n=1 00

2 2t 1
Z W exp(— 2 1) —Zexy /; 2( JQ(Q\F)dzm)
n=1 R n= 1 0
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Now, using the properties of the Bessel functions [27] The relative velocity between the fluid at the bottom wall

we can show that and wall itself for Maxwell fluids is
n(o:t) = *1[Gl<y, )] (2g)  wral®) =076 —g(t)
_ 28
e~ 3% Z n(t /bi) (29) R Z Vb {ﬂzpn2+(1+2ﬁ)} (38)
n=1 \/ ’ﬂ t

x [ g(t — s)e™2x sin(sy/ % )ds — g(t)
Finally, we obtain: 0

a. The velocity field corresponding to the flow of a and for a viscous Newtonian fluid is given by

Maxwell fluid with slip at the boundary is given by Unrer(t) = uns (0, 1) — g(t)
/ =% io: ﬂ2pn2p+"(21+2ﬁ)
wane(0:0) = (g 90)(0) = [ ol = )1 (3. 5)ds = (39)
0 x [g(t—s) 2s ds — g(t).
t 0

= g(t — s)e” 2> sin(sy/ — )ds. (30)
nz::l VAb A 2.2. Shear Stress

b. For the flow of a Maxwell fluid with a nonshp boundary |n order to determine the shear stresg, {) we use Egs.
condition, thatis3 = 0, the functionA,, (y) given by Eq. gy (16) and (28). Applying the Laplace transform to Eq.

(23) becomes (8) with the initial condition(12); we obtain
2nm | 1

Aoly) = T sin(nmy), m =12, oo GD  #y.9) = 5EE@Gs(w0) (40)
and the velocity field has the expression where
uni(y,t) = 2 Z nein(nmy) Galw0) = —9 38, (41)

‘ (32) The inverse Laplace transform of functi is

X fg t - 5)675 sin(g\/%)ds7 p a}»(yvcﬁ
0

t
gy, t) = [ e~ = 2l

wherec,, = ”2132 —ax > 0. - 0 . (42)
c. The solution in the transform domain corresponding to — S Bry) o—% feﬁ sin(s an)ds
the flow of a viscous fluid with slip at the wall, that is for n=1 VAbn 0
A =0andg # 0, is given by where
_ dA,
u(y,t) = G(q)F1(y,q) (83  Buly) = dy(y)
: S 2pn> co8(ypn) = Bpn sin(yps) (43)
and the(y, t)-domain solution is = =5 (14128)—37pn°
ft Eq.(41) can be written in the simple form
uNs(y7t =Jg tfs)fl(yvs)ds B 2
(34) 93(y,t) = Z \/nfy) 21194,\17

— i fg (t — s) exp(— p" s)ds (44)

= ’ X [2¢/Abp e 25 +51n(t1/7") — 23/ by, cos(t by)]
where A, (y)is given by Eq. (23). Forf(t) = sin(wt) or  The(y, t)-domain solution for the shear stress is given by
f(t) = cos(wt), the velocity field given by Eq.(33) was ) ) t
determined in equivalent forms by Khalid and Vafai [20]. _ B / _
d. For flows of viscous Newtonian fluids with a nonslip (1) = AR 3R * o)) = AR (£ = 5)9s(y, 5)ds(45)
boundary condition, that is = 0 andg = 0, the transform 0
domain solution is
an(y,q) = G(q)G2(y, q), (35) 3. Some particular cases of the motion of the
where plate
Galy.q) = sh{(1 —y)vRq| (36) In this section we consider two functions corresponding

Y sh[vRq) to the motion of the bottom plate, namefyt) = H(wt)

and f(t) = sin(wt) , with w > 0 being a constant. We
choose the characteristic tirfie= % , for the dimension-
. . less variables and functions given by Eq.(7), and obtain
= — Z nsin(nmy) /g(t —s)e” " *ds(37)  g(t) = H(t) andg(t) = sint, H(t) being the Heaviside
R n=1 unit step function.

and the(y, t)-domain solution is given by
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3.1. Solution for the translation of the bottom
plate with a constant velocity

for Newtonian fluids. By using the illustrations generated
with the software Mathcad, we discuss some relevant phys-
ical aspects of the flow. Also, the rogis , n = 1,2,.

The motion of the bottom plate is given by the function of EQ.(21) are determined by means of the software "root

g(t) = H(t) and the velocityu(y, t) is obtained from Eqgs.
(29), (31), (33) and (36) witlg(t — s) = 1. The velocity

(f(z),z,a,b) " from Mathcad. For the dimensionless slip
coefﬁmentﬁ € {0.4,0.7} the roots,, are presented in the

fields corresponding to this type of the motion have theTable 1 from the Appendlx A. In the figures, we use-

following expressions:
a. Maxwell fluids with slip at the boundary:

H(t){4A z ali

uns(y,t) =

_Ane
_2)‘72 V/Xby, (1+4Xb,,)

[sin( t\/7 ) + 23/\by, cos t\/7

(46)

which, by using (A4) from the Appendix A, can be written

in the simpler form
14+8—
Ht{ 5555

o0
sin(ypn)+Bpn cos(ypn)
Dn (1+2ﬁ+ﬂ2p712)

UMé(y, )

—e73% (47)

n=
x [2cos(ty/ %) + A= sin(t by,

For large values of the timethe velocity field given by
Eq. (46) tends to the "stationary solution”

1+06—vy

st _ 4
u]\Ls(yat) 1 +2ﬁ ( 8)
and fort — 0™ w5 (y, t) tends to zero.

b. Maxwell fluids with nonslip at the boundary:
715 — HH1 - —67% s silanwy)
My 1) = HO{1 —y - 73 3 )
x[2cos(ty/5) + \/iTnsin(t )]}
c. Newtonian fluids with slip at the boundary:
UNs(Z/a - ( ){ 11+f27By
(50)

sin(ypn)+B8pn coa(ypn) —P" t
—2 Z pn(1+2B8+8%p,2) 12

d. Newtonian fluids with nonslip at the boundary:

o Z sin mry

The relative velocity is given by

un(y,t) = HE){1 - —*F1} (51)

u]ﬂrel(t) = H(t){_ﬁ_
BPn
—eT | Pn (F20+57p.7) (52)
X [2 cos( t,/ )\b blIl t\/

for the Maxwell fluid, respectively,
unra(t) = H(t) -5

Nrel 1+28

& (53)

gty
b

_ Bpn
2 'ILZZ:l Pn (1+2ﬂ+62pn2) €

9.15255 x 1073M°/,, X = 0.555, p = 1.050%9/, 3 corre-
sponding to Maxwell fluid%PM M Ain DEM (Poly(methyl-
metha crylate) in diethyl malonate) [4], arkd = 0.2m,

U, = 0.6m/s, 6 = 0.14m. The Reynolds number cor-
responding to aforementioned valuesiis= 3.4962934,

the dimensionless slip coefficient is = 0.7 and the di-
mensionless relaxation time ls= 0.44. Also, we use the
following abbreviations for dimensionless velocitiesg;s,

the velocity for Maxwell fluid with slip at the wally 5, the
velocity for Maxwell fluid with nonslip at the wally s,

the velocity for Newtonian fluid with slip at the wall;y,

the velocity for Newtonian fluid with nonslip at the wall. In
Fig. 1 we show the dimensionless velocityy, t), versug

for y € {0.05,0.25,0.85} . For comparison, we have plot-
ted the functions corresponding to Maxwell and Newto-
nian fluids with both slip and nonslip boundary conditions.
For a fixed value of the spatial variahjethe velocity cor-
responding to a Maxwell fluid with slip at the boundary
is zero for a short time, after that, is increasing and tends
towards the "stationary solutioni3}, given by Eq. (47).
The velocity corresponding to Maxwell fluid with nonslip
condition has a non uniform variation at the beginning of
the motion after that approaches to the “stationary solu-
tion” uM(y7 t) = 1 —y. For Newtonian fluids, the velocity

is larger in the case of a nonslip than in the case of slip at
the boundary near the bottom plate. For large values of the
time ¢ they tend to the “stationary solutiong®}, = u3},

, respectivelyus! = u$} . Fig. 2 shows the diagrams of
velocity u(y, t) corresponding to Maxwell and Newtonian
fluids for both slip and non slip conditions. The velocity
was plotted versug for ¢ € {0.5,1.5,2.5} . For small val-
ues of timet the Newtonian fluid with slip at the wall is
slower than the Maxwell fluid with slip condition near the
lower plate and faster near upper plate. For increasing
the Newtonian fluid with slip condition is slower than the
Maxwell fluid throughout domain of flow. In Fig.3 we have
plotted the relative velocity corresponding to Maxwell and
Newtonian fluids versusfor two values of the dimension-
less slip coefficien3. In absolute value, the relative ve-
locity decreases with increasing valuegiaind flatten out

for large values of time.

3.2. Solution for the sinusoidal oscillations of
the bottom plate

In this section we consider for the motion of the bottom
plate the functiory(t) = sin¢. The velocity fields cor-
responding to this type of motion are given by Egs. (29),
(31), (33) and (36) in whicl(t — s) is replaced byin(t —
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Figure 2 Plot of u(y, t) versusy for both cases with slip and
Figure 1 Plot of u(y,t) versust for both cases with slip and nonslip condition.
nonslip condition.

Qn(y (56)
s). Z *+ R2 ),
a. Integrating by parts into Eg. (29), this yields after some 9 R
simplifications, the velocity field corresponding to the flow Q,, (y) = Pn = Qn(y), (57)
of a Maxwell fluid with slip at the wall (pn?2 — AR)” + R?
uns(y,t) = Qu(y )smt+Q2( ) cost n R—2\p,? — AR
ot Q4n(y) = b (p D) )Qn<y)a (58)
+e 2/\ Z QSTL COS t (54) \/m (pn2 — )\R) + R2
n=1
+ Qun(y) sin(ty /)], () = sin(ypn) + Bpn cos(ypn) 59
X Qn(v) g (59)
where The velocity field given by Eq. (53) is the sum between the
(D “permanent solution”
—22 pulon = M) (), 65 P |
)\R +R Unmsp(y, t) = Q1(y) sint + Q2(y) cost (60)
@© 2013 NSP
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nonslip at the boundary is given by

. & nw)(n?w%—AR) sin(nr
up(y,t) = 2sint Z ( )((nz_n.z_)\R))Z_,’_R(z .

R(nm)sin(nmy)
—2 COSt Z (n 2 )\R)2+R2 (67)

+2¢” n{z 7(1“":);‘;;”3;2 cos(t\/5)

)[R— 2)\(n27r27)\3)] sin(nmy) . Cn
VAen[(n272—AR)>+ R?] ©sin(ty/5)}-

The “permanent solution” corresponding to this type of the
motion, can be written in the equivalent form

+ (nm

un p(y, t) = Ps(y) sint + Py(y) cost, (68)
where
Figure 3 Plot of the relative velocity versusfor Maxwell and Ps(y) = {shlaivVR(1 — y)]x
Newtonian fluids. % COS[QQ\/»( y)]Sh(Oél\/E) COS(O[Q\/R) 69
+ chloaV/R(1  y)] sinfasv/R(1 — y) (69)
XCh(al\/») <a2\/ﬁ)}sh2(a1\/§)isin2 (a2VR)’
and the transient solutiam st (v, t) = uars (Y, t)—unrsp(y, t) )
which can be neglected for large values of the tvméy Py(y) = {ch[erVR(1 — y)] sin[azVR(1 — y)]
using the residue theorem to evaluate the inverse Laplacex<sh(a1VR) cos(aav/R)+ (70)
transform offunctlom(y q) given by Eq. (16), wittGi(q) = + shloyVR(1 — y)] cos[azVR(1 — 3)]
L) . we i or o pemanint sl <o) s(on )
UM sp (Y5 ; . )
Mspl¥ g P y c. The velocity field corresponding to the flows of Newto-
unrsp(y,t) = [M1P1( ) + My Py (y)] sint+ (61) nian fluids with slip at the wall has expression
+-L M P. + Ms P, cost,
+ 37 [M1 P2 (y) 2P1(y)] uns(y,t) = 2sint Z p;C%:Rg)
where A2, (71)
_ anQn (y) an Qn(y —p" t
My = [(1 - A\B?R)sh(a1VE) QCO”E Tt T2 Z et
+20[15‘/R0h(0‘1\/2§)} (62)  whereQ, (y) is given by Eq. (58). The “permanent solu-
x cos(azVR) — [ RCh_(al VR) tion” corresponding to this type of flows can be written in
+ 208V Rsh(a1 VR)] sin(azV'R), the equivalent form
1 .
My = [(1 . )\ﬁQR)Ch<OZ1\/R)+ UNsp(yat) = B[DlEl(y) + D2E2(Z/)] sint
+2a1 8V Rsh(a1vVR)] sin(aaV/R) 1 _
8 Rsh(VR) + 2050y Reh(a1 VR)] ©3) FplDEly) = DaBr(y)]cost, (72)
x cos(aaVR), where
R R R R
M = M;? + M2, 64 Di= sh(\/>) COS(\/>) ﬁQRch(\[) sm(\/:)
R
Pi(y) = shfon VR(L y){cosloavR(L )] oY QRW[ ) <\E )
—azBvRsinaaVE(1 - y)]} (65) G
+ a1 8V Reh[anVR(1 — y)] cos[aavV/R(1 — y)], —sh( 5) sin( 5)]7 (73)
Pa(y) = chlaiVR(1 — y)|{sinjasVR(1 — y)] Do —oh \/E - \/E 2 psh \/E s \/E
+asVRcoslarVE(1 — y)]} @) D27y g)sinly ) Rk ) cosly 5)
Rsh R(1- i R(1—1y)],
+a1 3V Rshfon V(1 — y)]sinfazVE(1 ) v By
anda1’2:\/(\/)\2+1q:)\>/2. R R
b. The velocity field corresponding to Maxwell fluids with +Ch(\/;) cos( 5)] (74)
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D = D"+ D5y, (75) 2| Maceel i i atevvaH R =y MaxWEHﬂu\dwwthnunshz,;;rgjf)un :
Ex(y) = shly/B(1 — y)] cos[/ B (1 ~ ) IR s
8/ (el /(1 — )] cos[y/E(1 - )] (76) “
— shly/2(1 - y)]sin[/ B (1 - )]}, .
Ba(y) = chly/ 21— y)sinfy/ 21— )]+
+/6 g{Sh[\/g(l - y)] Sln[\/g(l - y)] (77) d‘ INeWtumanﬂuldW\th nonslip condition
ehly/ B (1~ y)] cosly /B (1~ y)]}. [N

=025

d. The Couette flow of a Newtonian fluid with nonslip oo fy=0E5

boundary condition is characterized by the velocity field

)3 sin(nry)

N<y’t) = 2sint Z (7L(n7r)4+R2

R(n7r) bln(’ﬂT(U)
nn) bR T

(78)

R(n7r) sin(nmy) e
) +R?

—2cost Z

7L27l'2 t

+2 Z " Figure 4 Plot of theu(y, t) versust for both cases with slip and
) _nonslip condition.

The “permanent solution” corresponding to the expression

(77) can be written in the following form

unp(y,t) =

E \/fsilstin%\/?)
x{sh([)cos(\/g)sh[\/g(l—
+ch(\/7) sin(y/ B)ehly/ 21— y)]sin]

cost

RISETIV ST TR
x{sh(y/ ) cos(y/ B)ch[/ B (1 — )] sin[/ B (1 - y)
—ch(y/ By sin(/ B)shl\ (1 — y)] cosly /B (1 - )]}

Some important properties of flow due to sinusoidal oscil-
lations of the bottom plate are presented using illustrations
from Figs. 4-6. 4. Conclusion
In Fig. 4 we plotted the velocity(y, t) and the "per-
manent solutions” corresponding to Maxwell and Newto- Couette flows of a Maxwell fluid were analyzed under slip
nian fluids with both slip and non slip boundary condi- conditions between the fluid and walls. The motion of the

small values of time the Maxwell fluid has not a monotonous
flow. After the valuet = 1, the absolute values of the ve-
locity corresponding to both types of Maxwell fluids in-
crease for increasing The absolute values of the velocity
corresponding to both cases of Newtonian fluids increase
for increasingy and for all values of the time . In Fig.

6 we have plotted the relative velocity corresponding to
Maxwell and Newtonian fluids versusfor two values of

the dimensionless slip coefficiefit. The relative velocity,

in absolute terms, is an increasing functiorgof

y)] cos|

(1-y)]
—y)]x79)

=

(1

B

tions. These functions were presented verstisr y €
{0.05,0.25,0.85} and, it is evident that the difference be-
tween the velocityu(y,t) and the “permanent velocity”

bottom plate was assumed to be a rectilinear translation in
its plane while, the upper plate is at rest. Two particular
cases, namely translation with constant velocity and sinu-

is significant only for small values of the time . We see soidal oscillations of the bottom plate, were considered.
that in the considered case, after the moment 4 for The relative velocity between the fluid at the wall and the
Maxwell fluid with slip at the wall, respectivelyy= 6 for wall was assumed to be proportional to the shear rate at
the Maxwell fluid with non slip condition the transient ve- the wall. The exact expressions for the veloeity, t) and
locitiesuly;, (y,t) = unrs(y,t) — unrsp(y, t), ul,(y,t) =  shear stress, have been determined by means of Laplace
unm (y,t) —unp(y, t) can be neglected. For Newtonian flu- transform. For a complete study and for comparisons, we
idst = 6 in the case of the flow with slip at the wall presented velocity fields corresponding to both flows (with
andt = 4 in the case of nonslip at the wall. After these slip and nonslip conditions) for Maxwell and Newtonian
moments, the fluids flow according to the "permanent so-fluids. The expressions of the relative velocity have also
lution”. Fig. 5 contains diagrams of velocity(y, t), ver- been determined. If the bottom plate translates with the
susy for six different values of timef. The curves cor- constant velocity then the velocity fields corresponding to
responding to the slip and nonslip boundary conditions,the four types of the flows were written as sums between
for Maxwell and Newtonian fluids were considered. At the the stationary solutions and transient solutions. For large
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Figure 6 Plot of the relative velocity versusfor Maxwell and
Newtonian fluids.

B o - - :Ez ] (see Fig. 5), and the relative velocity, in absolute terms is

0 ous} S an increasing function of the slip coefficiefit The soft-

o P ol \M ware Mathcad 14.0 was used for numerical calculations
voonom e m R and to generate the diagrams presented herein and the roots

Figure 5 Plot of theu(y, t) versusy for both cases with slip and
nonslip condition.

values of the time the transient solutions can be neglected
and the fluid flows according to the stationary solutions.
For Maxwell fluids the velocity is zero a short period after
the staring of the motion. After this period the values of
the velocity increase for increasing timand tend to the
values of the stationary solutions. For Newtonian fluids the
velocities are increasing functions#fThe velocity corre-
sponding to the flow with slip condition is smaller than the
velocity for the flow with non slip condition for both types
of fluids (see Fig. 1 and 2). The relative velocity, in abso-
lute value, is a decreasing function of the slip coefficient
(see Fig. 3). For sinusoidal oscillations of the plate the ex-
pressions of the velocities corresponding to the four types

of Eq. (21) (See Table 1 from Appendix A).

5. Appendix A

AL L7YF(q)} = f(t), L~ {Flw(q)]}

= :fof(x)g(x,t)dx, g(z,t) = L~ e mw@}

Ag. L= g%}

= %é}o GromeT Jo @ o2Vt da, b > 0

[e.e]
(_)\)kzzk+1
As. ];0 (k1) (2k+1)1,, F 1

= Z[1 —cos(zy/3)]

b
4 2V/A

= 2 Sin2 ( 2 /fbn )
[e'e] A,
Ay ax ];O et

—9 ioj sin(pny)+B8pn cos(pny)
n=1

P (1+26+82pn?)

_ 148y
— 1428

of flows were written as the sums between the “permanenf\Cknowledgement

solutions” and transient solutions. In each case two equiv-

alent forms of the permanent solution were presented. Th&he second author is highly thankful and grateful to Ab-
difference between the velocity(y, t) and the permanent dus Salam School of Mathematical Sciences, GC Univer-
solution is significant only for the small values of the time sity, Lahore, Pakistan and Higher Education Commission,
t (see Fig. 4).For large values of the timthe fluids flow  Pakistan for supporting and facilitating this research work.
according to the permanent solutions. The velocity fieldThe authors are grateful to the anonymous referee for a
u(y, t) versusgy, in absolute terms, is a decreasing function careful checking of the details and for helpful comments.

© 2013 NSP
Natural Sciences Publishing Cor.



218 %N\ e )

Dumitru Vieru et al : Some Couette flows of a Maxwell fluid with wall slip condition

Table 1 Table 1. Roots of Eq. (21)

[13] H.A. Attia, Unsteady hydro magnetic Couette flow of dusty
fluid with temperature dependent viscosity and thermal

pn B=04 B=07 conductivity under exponential decaying pressure gradient,
Comm. Non-Lin. Sci. Num. Simul. 13(6) (2008) 1077-1088.
g; ig%?éij égéigg% [14] S. Asghar, T. Hayat, P. D. Ariel, Unsteady Couette flows in a
ps  6.9717948 6.7031418 second grade fluid with variable material properties, Comm.
pi 9.0185957 0.7167336 Non-Lin. Sci. Num. Simul. 14(1) (2009) 154- 159.
ps  12.9478517 12.7888567 [15] M. Danish, DS. Kumar, Exact analytical solutions for the
v 16.0176262 15.887318 Poiseuille and Couette- Poiseuille flow of third grade fluid
e 19.1097267 18.9996515 between parallel plates, Comm. Non-Lin. Sci. Num. Simul.
ps 222152756 22.1201338 17(3), (2012) 1089-1097. o
po 253295014 25.2457934 [16] M.A._Day, The no_n-sllp boundary condition in fluid me-
pio 28.449632 28.3749412 chanics, Erkenntnis 33,(1990) 285-296.
p11 31.5739545 31.5065484 [17] C.L.M.H. Navier, Sur les lois du movement des fluids. Mem.
p12 347013567 34.6399135 Acad. R. Sa: Inst. Fr. 6.(1827) 389-440.
pis  37.8310854 37.7747121 [18] I.J.Rao, K.Rajagopal, The effect of the slip boundary con-
pia 40.9626254  40.9105149 dition on the flow of fluids in a channel, Acta Mech. 135
pis  44.0055657 44.04714 (1999) 113-126. . -
b1 47.2296565  47.184424 [19] M.Mooney , Explicit formula for slip and fluidity, J. Rheol.
pir 50.3646768 50.3222441 2(1931) 210-222. . N
pis 535004611 53.4605064 [20] A.R.A. Khaled, K. Vafai, The effect of the _sllp_condltlon on
pio  56.636892 56.5991374 Stokes’ and Couette flows due to an oscillating wall: exact
pao  59.7738602 59.7380791 solutions, Int. J. Non-Lin. Mech. 39(2004) 795-809.
[21] D. Vieru, A. Rauf, Stokes’ flows of a Maxwell fluid with
wall slip condition, Can. J. Phys. 89(2011) 1-12.
[22] S.Abelman, E. Momoniat, T. Hayat, Non-Linear Analysis:
Real World Appl. 10(6)(2009) 3329-3334.
References [23] L. Zhenga, Y. Liu, X. Zhang, Slip effects on MHD flow of a

generalized Oldroyd B fluid with fractional derivative, Non-
Lin. Anal.: Real World Appl. 12(2) (2012) 513-523.

[24] R.Ellahi, T. Hayat, F.M. Mahomed, S. Asghar, Effects of
slip on the non-linear flows of a third grade fluid, Non-Lin.
Anal.: Real World Appl. 11(1)(2010) 139-146.

S [25] T.Hayat, M. Khan, M. Ayub, The effect of the slip condi-

' tion on flows of an Oldroyd 6-constant fluid, J. Comp. Appl.

Math. 202(2007) 402-413.

H.S. Carslaw, J.C. Jaeger, Operational methods in Applied

Mathematics, (2nd edition, Dover, New York 1963).

[27] G.N.Watson, A treatise on the theory of Bessel functions,
(Cambridge University Press, 1995).

[1] R.B.Bird, et al., Dynamics of Polymeric Liquids: vol 1,
Fluid Mechanics, (Wiley, New York, 1987).

[2] G.Bohme, Non- Newtonian Fluid Mechanics, (North-
Holland, New York, 1987).

[3] D.D. Joseph, Fluid Dynamics of Visco elastic liquid
(Springer, New York, 1990).

[4] O. Riccius, D.D. Joseph, M. Arney, Shear-Wave speeds ancf2 6]
elastic moduli for different liquids. Part. 3. Experiments-
update. Rheol. Acta 26 (1987) 96-99.

[5] R.I. Tanner, Note on the Rayleigh problem for a visco-
elastic fluid, Z. Angew. Math. Phys. 13 (1962) 573-580.

[6] P.M. Jordan, Ashok Puri, G. Boros, On a new exact solu-
tion to Stokes'’ first problem for Maxwell fluids, Int. J. Non-
linear Mech.,39(2004)1371-1377.

[7] P.M. Jordan, A. Puri, Revisiting Stokes’ first problem for
Maxwell fluids, Q.J.Mech..Appl. Math. 58(2)(2005)213-
227.

[8] I.C. Christov, Stokes'’ first problem for some non-Newtonian
fluids: Results and Mistakes, Mech. Res. Commun.
37(2010) 717-723.

[9] M.M. Denn, K.C. Porteous, Elastic effects in flow of visco-
elastic liquids, Chem. Eng. J. 2(1971) 280-286.

[10] P.M.Jordan, A note on start-up, plane Couette flow involving
second- grade fluids, Math. Prob. Eng. 5 (2005), 539-545.

[11] P.M. Jordan, P.Puri, Exact solutions for the unsteady plane
Coutte flow of a dipolar fluid, Proc. Roy. Soc. London Ser.
A 458 (2002) No. 2021, 1245-1272.

[12] Zhang Jin Xue, Jun Xiang Ni, Exact solutions of Stokes’
first problem for heated generalized Burgers’ fluid via
porous half-space, Non-linear Analysis: Real World Appl.,
9(4) (2008) 1628-1637.

© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 1, 209-219 (2013) / www.naturalspublishing.com/Journals.asp %N}S\P 2 Y 219

Dumitru Vieru received the
Ph.D. degree in Mathematics
from the University Bucharest,
Romania, in 1999. Now he is
Associate Professor at the Tech-
nical University 'Gheorghe Asachi’
of lasi, Romania. His research
interests include Applied Math-
ematics and Continum Mechan-
ics.

Azhar Ali Zafar isa Ph.D.
student at Abdus Salam School
of Mathenatical Sciences, GC
University Lahore, Pakistan. His
research interests include The-
oratical Physics and Fluid Dy-
namics.

© 2013 NSP
Natural Sciences Publishing Cor.



