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Abstract: In this paper, a class of cyclic contractions on partial metric spaces is introduced. A fixed point theorem for cyclic contrac-
tions on partial metric spaces satisfying (ψ, φ) contractive condition, and illustrative examples are given.
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1. Introduction and Preliminaries

Fixed point theory has been rapidly developing field since
the pioneering work of Banach in 1922 [5]. A great num-
ber of studies concerning fixed points of contractions on
different spaces have been reported. Among these spaces
are the metric spaces, quasi-metric spaces [6,9] cone met-
ric spaces [10,11], Menger (statistical) spaces [20], fuzzy
metric spaces [17]. In 1992 Matthews [18],[19] introduced
a relatively new space called Partial metric space (PMS)
and proved the analog of the Banach fixed point theorem
on this space. The wide application potential of PMS re-
sulted in immediate publications in the area [21], [26], [3],
[4].

Cyclic maps and best proximity points have been in-
troduced by Kirk-Srinavasan-Veeramani [16] in 2003. Var-
ious results on cyclic maps have been obtained since then
(See e.g. [2,8,7,13,14,23,22,24]).

The purpose of this study is to investigate existence
and uniqueness of fixed points of cyclic maps on Partial
metric spaces. Therefore, we first define cyclic maps on
Partial metric spaces. Then we give a fixed point theorem
for cyclic maps satisfying (ψ, φ) contractive conditions,
whereψ andφ are the so-called altering distance functions
introduced by Khan et all [15]. This theorem is an analog
of the theorem given recently by Shatanawi [25] on metric
spaces.

Partial metric space is defined by Matthews as follows
(See [18] )

Definition 1.LetX be a nonempty set and letp : X×X →
[0,∞) satisfy

(PM1) x = y ⇔ p(x, x) = p(y, y) = p(x, y)
(PM2) p(x, x) ≤ p(x, y)
(PM3) p(x, y) = p(y, x)
(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z)

(1)

for all x, y and z ∈ X. Then the pair(X, p) is called a
partial metric space andp is called a partial metric onX.

It can be easily verified that the functiondp : X×X →
IR+ defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) (2)

satisfies the conditions of a metric onX. On the other hand
each partial metricp on X generates aT0 topologyτp on
X, whose base is a family of openp-balls

{Bp(x, ε) : x ∈ X, ε > 0}
whereBp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all
x ∈ X andε > 0.

Definitions of convergence, Cauchy sequence, com-
pleteness and continuity on partial metric spaces are given
as follows [18].

Definition 2.
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1.A sequence{xn} in the PMS(X, p) converges to the
limit x if and only ifp(x, x) = lim

n→∞
p(x, xn).

2.A sequence{xn} in the PMS(X, p) is called a Cauchy
sequence if lim

n,m→∞
p(xn, xm) exists and is finite.

3.A PMS(X, p) is called complete if every Cauchy se-
quence{xn} in X converges with respect toτp, to a
pointx ∈ X such thatp(x, x) = lim

n,m→∞
p(xn, xm).

4.A mappingf : X → X is said to be continuous at
x0 ∈ X if for everyε > 0, there existsδ > 0 such that
F (Bp(x0, δ)) ⊆ Bp(Fx0, ε).

The following lemma is one of the basic results in Par-
tial metric spaces [18,19,4]).

Lemma 1.

1.A sequence{xn} is a Cauchy sequence in the PMS
(X, p) if and only if it is a Cauchy sequence in the
metric space(X, dp).

2.A PMS (X, p) is complete if and only if the metric
space(X, dp) is complete. Moreover

lim
n→∞

dp(x, xn) = 0 ⇔
p(x, x) = lim

n→∞
p(x, xn) = lim

n,m→∞
p(xn, xm). (3)

Next, we give two lemmas stated and proved in [12,1]
which will be used in the proofs of our main results.

Lemma 2.Assume thatxn → z as n → ∞ in a PMS
(X, p) such thatp(z, z) = 0. Thenlimn→∞ p(xn, y) =
p(z, y) for everyy ∈ X.

Lemma 3.Let (X, p) be a complete PMS. Then

(A)If p(x, y) = 0 thenx = y,
(B)If x 6= y, thenp(x, y) > 0.

Cyclic maps and best proximity points defined in [16]
have been studied thoroughly on various spaces.

Definition 3.LetA andB be non-empty subsets of a metric
space(X, d) andT : A ∪ B → A ∪ B. T is called cyclic
map ifT (A) ⊂ B andT (B) ⊂ A.

A point x ∈ A ∪ B is called a best proximity point if
d(x, Tx) = d(A,B) whered(A,B) = inf{d(a, b) : a ∈
A, b ∈ B}.

Altering distance functions have been introduced by
Khan et all [15].

Definition 4.The functionφ : [0,∞) −→ [0,∞) is called
an altering distance function if it satisfies the following
conditions:

1.φ is continuous and nondecreasing.
2.φ(t) = 0 if and only ift = 0.

2. Main Results

In this section we define cyclic contractions satisfying so-
called (ψ,φ) conditions on partial metric spaces and state
the fixed point theorem for these maps.

Definition 5.Let A andB be non-empty subsets of a par-
tial metric space(X, p) and letψ and φ be altering dis-
tance functions. A cyclic mapT : A ∪B → A ∪B is said
to be (ψ,φ) contractive if it satisfies

ψ(p(Tx, Ty)) ≤ ψ(m)− φ(m), (4)

where

m = max{p(x, y), p(Tx, x), p(Ty, y)} (5)

for all x ∈ A andy ∈ B.

Theorem 1.Let A and B be non-empty closed subsets of
a complete partial metric space(X, p). Assume thatT :
A ∪ B → A ∪ B is a (ψ,φ) contractive map. ThenT has
a unique fixed point inA ∩B.

Proof.We first prove the existence part. Take an arbitrary
x0 ∈ A and define the sequence{xn} as

xn = Txn−1, n = 1, 2, 3, . . . . (6)

SinceT is cyclic, the subsequence{x2k} ⊂ A and the
subsequence{x2k+1} ⊂ B. If xn0+1 = xn0 for some
n0 ∈ IN, then obviously, the fixed point ofT is xn0 . As-
sume thatxn+1 6= xn for all n ∈ IN.

Suppose that n is even, i.e.,n = 2k. Upon substitution
x = x2k andy = x2k+1 in (4) we obtain

ψ(p(x2k+1, x2k+2)) = ψ(p(Tx2k, Tx2k+1))
≤ ψ(m2k)− φ(m2k), (7)

wheremn is defined as

mn = max{p(xn, xn+1), p(Txn, xn), p(Txn+1, xn+1)}
= max{p(xn, xn+1), p(xn+1, xn+2)}. (8)

Suppose that

m2k = p(x2k+1, x2k+2), (9)

which implies

ψ(p(x2k+1, x2k+2)) ≤ ψ(p(x2k+1, x2k+2))
− φ(p(x2k+1, x2k+2)).

(10)

From this inequality it follows thatφ(p(x2k+1, x2k+2)) =
0, and hence,p(x2k+1, x2k+2) = 0 sinceφ is an altering
distance function. Thus, from Lemma 3, we havex2k+1 =
x2k+2 = Tx2k+1 which contradicts our assumption that
Txn 6= xn. Therefore, we must have

m2k = p(x2k, x2k+1), (11)

and hence,

ψ(p(x2k+1, x2k+2)) ≤ ψ(p(x2k, x2k+1))
− φ(p(x2k, x2k+1)). (12)
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In addition we have,

p(x2k+1, x2k+2) ≤ p(x2k, x2k+1), (13)

for everyk ∈ IN.
Assume now thatn is odd, i.e.,n = 2k + 1. Then the

inequality (4) withx = x2k+1 andy = x2k+2 becomes

ψ(p(x2k+2, x2k+3)) = ψ(p(Tx2k+1, Tx2k+2))

≤ ψ(m2k+1)− φ(m2k+1). (14)

If

m2k+1 = p(x2k+2, x2k+3), (15)

then

ψ(p(x2k+2, x2k+3)) ≤ ψ(p(x2k+2, x2k+3))
− φ(p(x2k+2, x2k+3)).

(16)

From (16) it follows thatφ(p(x2k+2, x2k+3)) = 0, thus,
p(x2k+2, x2k+3) = 0 . From Lemma 3, we havex2k+2 =
x2k+3 = Tx2k+2 which is a contradiction with the as-
sumptionTxn 6= xn. Therefore,

m2k+1 = p(x2k+1, x2k+2), (17)

and hence,

ψ(p(x2k+2, x2k+3)) ≤ ψ(p(x2k+1, x2k+2))
− φ(p(x2k+1, x2k+2)). (18)

We also have

p(x2k+2, x2k+3) ≤ p(x2k+1, x2k+2), (19)

for everyk ∈ IN. From (13) and (19) we deduce that the se-
quence{p(xn, xn+1)}, is nonincreasing and nonnegative.
Thus,

lim
n→∞

p(xn, xn+1) = s (20)

for somes ≥ 0.
On the other hand, from (12) and (18) we have

ψ(p(xn+2, xn+1)) ≤ ψ(p(xn+1, xn))− φ(p(xn+1, xn)) (21)

for all n ∈ IN. Taking limit asn →∞ of both sides of
(21) and regarding the continuity of the functionsψ andφ
we obtain

ψ(s) ≤ ψ(s)− φ(s) (22)

which cannot hold unlesss = 0. As a result, we get

lim
n→∞

p(xn, xn+1) = 0 (23)

and usingPM2,

0 ≤ p(xn, xn) ≤ p(xn, xn+1) (24)

we have

lim
n→∞

p(xn, xn) = 0. (25)

We will prove now that{xn} is a Cauchy sequence in the
metric space(X, dp), wheredp is defined in (2). We first
show that{x2n} is a Cauchy sequence in(X, dp). Suppose

the contrary, that is{x2n} is not Cauchy. Then, for some
ε > 0 there exist subsequences{x2n(i)} and{x2m(i)} of
{x2n} such that

dp(x2n(i), x2m(i)) ≥ ε, n(i) > m(i) > i, (26)

where we taken(i) as the smallest index satisfying (26).
Then we have

dp(x2n(i)−2, x2m(i)) < ε. (27)

It is easy to see that

lim
n→∞

dp(xn, xn+1) = 0 (28)

by taking limit asn →∞ in

dp(xn, xn+1) = 2p(xn, xn+1)− p(xn, xn)
− p(xn+1, xn+1). (29)

Using the triangle inequality we get

ε ≤ dp(x2m(i), x2n(i))
≤ dp(x2m(i), x2n(i)−2) + dp(x2n(i)−2, x2n(i)−1)
+ dp(x2n(i)−1, x2n(i))
≤ ε + dp(x2n(i)−2, x2n(i)−1) + dp(x2n(i)−1, x2n(i)).

(30)

We obtain

lim
i→∞

dp(x2n(i), x2m(i)) = lim
i→∞

2p(x2n(i), x2m(i)) = ε (31)

upon taking limiti → ∞ in (30). On the other hand,
using triangle inequality we have,

ε ≤ dp(x2m(i), x2n(i)

≤ dp(x2m(i), x2n(i)+1) + dp(x2n(i)+1, x2n(i))
≤ dp(x2m(i), x2n(i)) + 2dp(x2n(i)+1, x2n(i))

(32)

and also

ε ≤ dp(x2n(i), x2m(i))
≤ dp(x2n(i), x2m(i)−1) + dp(x2m(i)−1, x2m(i))
≤ dp(x2m(i), x2n(i)) + 2dp(x2m(i)−1, x2m(i)).

(33)

Taking limit asi →∞ in the inequalities (32) and (33) and
using (28), and (31), we get

lim
i→∞

dp(x2m(i), x2n(i)+1)

= lim
i→∞

2p(x2m(i), x2n(i)+1) = ε (34)

and

lim
i→∞

dp(x2m(i)−1, x2n(i))

= lim
i→∞

2p(x2m(i)−1, x2n(i)) = ε. (35)

Now, upon substitutionx = x2m(i)−1 andy = x2n(i) in
(4) we have

ψ(p(x2m(i), x2n(i)+1)) = ψ(p(Tx2m(i)−1, Tx2n(i)))
≤ ψ(m)− φ(m). (36)

where

m = max
{
p(x2m(i)−1, x2n(i)), p(x2m(i), x2m(i)−1),

p(x2n(i)+1, x2n(i))
}
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Letting i → ∞ in the above inequality and regarding
(23), (31), (34) and (35) we obtain

ψ(
ε

2
) ≤ ψ(

ε

2
)− φ(

ε

2
) (37)

which clearly impliesε = 0. However, this contradicts
the assumption that{x2n} is not Cauchy in(X, dp). Then,
{x2n} is a Cauchy sequence. Since(X, p) is complete,
then (X, dp) is also complete by Lemma 1 and hence,
{x2n} ⊂ A converges to a limit, sayx ∈ A. Using sim-
ilar arguments, we can prove that{x2n+1} is a Cauchy
sequence inB. Therefore,{x2n+1} ⊂ B converges to the
a limit, sayy ∈ B. Then,

lim
n→∞

dp(x2n, x) = 0, and lim
n→∞

dp(x2n+1, y) = 0. (38)

It is clear that

0 ≤ dp(x, y)
≤ dp(x, x2n) + dp(x2n, x2n+1) + dp(x2n+1, y). (39)

Taking limit asn → ∞ in and using (28) and (38) we ob-
tain dp(x, y) = 0, that isx = y. Thus, both subsequences
{x2n} ⊂ A and{x2n+1} ⊂ B converge to the same limit
x and moreover,

{x2n} ∪ {x2n+1} = {xn}.
Hence, the sequence{xn} ∈ X converges tox ∈ X.

On the other hand, by Lemma 1 we observe that

lim
n→∞

dp(x, xn) = 0 if and only if

p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) (40)

From (4) withx = xn andy = xm, we have

ψ(p(xn+1, xm+1))
≤ ψ(max{p(xn, xm), p(xn+1, xn), p(xm+1, xm)})
−φ(max{p(xn, xm), p(xn+1, xn), p(xm+1, xm)}).

(41)

Lettingn,m →∞, and using (23) and (40) we get

ψ(p(x, x)) ≤ ψ(p(x, x))− φ(p(x, x)) (42)

which immediately impliesp(x, x) = 0.
Consider now (4) withx = xn, y = x. Then we have,

ψ(p(Txn, Tx))
≤ ψ(max{p(xn, x), p(xn+1, xn), p(Tx, x)})
−φ(max{p(xn, x), p(xn+1, xn), p(Tx, x)}).

(43)

Lettingn →∞, we obtain

ψ(p(x, Tx)) ≤ ψ(p(Tx, x))− φ(p(Tx, x)) (44)

which impliesψ(p(x, Tx)) = 0, hencep(x, Tx) = 0.
According to Lemma (3),x = Tx, that is,x ∈ A ∩ B is
the fixed point ofT .

To prove the uniqueness, we assume thatz ∈ X is
another fixed point ofT such thatz 6= x. Then from (4)
with x = x andy = z we have

ψ(p(Tx, Tz)) = ψ(p(x, z))
≤ ψ(max{p(x, z), p(Tx, x), p(Tz, z)})
−φ(max{p(x, z), p(Tx, x), p(Tz, z)}),

(45)

which leads to

ψ(p(x, z)) ≤ ψ(p(x, z))− φ(p(x, z)), (46)

and hence top(x, z) = 0 implying x = z by Lemma 3.
Thus, the fixed point ofT is unique.

We next give the following examples of cyclic maps
satisfying the conditions of the Theorem 1.

Example 1.Let X = [0, 1] andA = B = [0, 1]. Define
T : X → X asTx = x

3 . For p(x, y) = max{x, y} the
space(X, p) is a partial metric space. Defineψ(t) = 3t
andφ(t) = t. Then the conditions of the Theorem 1 are
satisfied and thereforeT has a unique fixed point. Indeed,
x = 0 is the unique fixed point ofT . Observe that, in[0, 1],
Tx ≤ x and ifx ≤ y, then

p(x, y) = y
p(Tx, x) = x
p(Ty, y) = y

p(Tx, Ty) = Ty,

which implies

max{p(x, y), p(Tx, x), p(Ty, y)} = y.

Therefore,

ψ(p(Tx, Ty)) = ψ(Ty) = 3y
3

= y ≤ ψ(y)− φ(y) = 3y − y = 2y.

As a second example we give a piecewise continuous
cyclic map.

Example 2.Let X = [−1, 1] andA = [−1, 0] andB =
[0, 1]. DefineT : X → X as follows:

Tx =





−x

3
if x ∈ [−1, 0]

−x

2
if x ∈ [0, 1]

Definep(x, y) = max{|x|, |y|} andψ(t) = t, φ(t) = t
2 .

The mapT satisfies the conditions of Theorem 1 and has
a unique fixed point. Indeed, letx ∈ A andy ∈ B. Then,
all possible cases can be listed as follows:

If |x| ≤ |y|, then

max{p(x, y), p(Tx, x), p(Ty, y)}
= max{|y|, |x|, |y|} = |y|.

Sincep(Tx, Ty) = max{ |x|3 , |y|2 } = |y|
2 then we have,

|y|
2
≤ |y| − |y|

2
=
|y|
2

.

Now, if |y| ≤ |x|, then

max{p(x, y), p(Tx, x), p(Ty, y)}
= max{|x|, |x|, |y|} = |x|.
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If p(Tx, Ty) = max{ |x|3 , |y|2 } = |y|
2 then we get,

|y|
2
≤ |x| − |x|

2
=
|x|
2

.

If p(Tx, Ty) = max{ |x|3 , |y|2 } = |x|
3 then we get,

|x|
3
≤ |x| − |x|

2
=
|x|
2

.

One can easily see that the fixed point of the mapT is
x = 0 and0 ∈ A ∩B.

Last, we state some particular cases of the Theorem
1 by choosing the altering distance functionsψ andφ in
special ways.

Corollary 1.Let A andB be non-empty closed subsets of
a complete partial metric space(X, p). Assume thatT :
A ∪B → A ∪B is cyclic map satisfying

p(Tx, Ty) ≤ k max{p(x, y), p(Tx, x), p(Ty, y)} (47)

for all x ∈ A andy ∈ B where0 ≤ k < 1. ThenT has a
unique fixed point inA ∩B.

Proof.Define the altering distance functions as

ψ(t) = t and φ(t) = (1− k)t.

Then by Theorem 1T has a unique fixed point.

Corollary 2.Let A andB be non-empty closed subsets of
a complete partial metric space(X, p). Assume thatT :
A ∪B → A ∪B is cyclic map satisfying

p(Tx, Ty) ≤ k{p(x, y) + p(Tx, x) + p(Ty, y)} (48)

for all x ∈ A andy ∈ B where0 ≤ k < 1. ThenT has a
unique fixed point inA ∩B.

Proof.Since

p(x, y) ≤ max{p(x, y), p(Tx, x), p(Ty, y)}
p(Tx, x) ≤ max{p(x, y), p(Tx, x), p(Ty, y)}
p(Ty, y) ≤ max{p(x, y), p(Tx, x), p(Ty, y)}

then
p(x, y) + p(Tx, x) + p(Ty, y)
≤ 3max{p(x, y), p(Tx, x), p(Ty, y)}

Define

ψ(t) = t and φ(t) = (1− 3k)t.

Then

ψ(p(Tx, Ty)) = p(Tx, Ty)
≤ k{p(x, y) + p(Tx, x) + p(Ty, y)}
≤ 3k max{p(x, y), p(Tx, x), p(Ty, y)}
= ψ(max{p(x, y), p(Tx, x), p(Ty, y)})
−φ(max{p(x, y), p(Tx, x), p(Ty, y)})

(49)

and henceT has a unique fixed point by Theorem 1.
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