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Abstract: In this paper, a class of cyclic contractions on partial metric spaces is introduced. A fixed point theorem for cyclic contrac-
tions on partial metric spaces satisfying, () contractive condition, and illustrative examples are given.
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1. Introduction and Preliminaries Partial metric space is defined by Matthews as follows
(See [18])

Fixed point theory has been rapidly developing field sincel[?)egg)'tgﬂi;;;et)( be anonempty setand jet X'x X' —
the pioneering work of Banach in 1922 [5]. A great num- "’
ber of studies concerning fixed points of contractions ON(PM1) z =y < p(z,z) = p(y,y) = p(x,y)
different spaces have been reported. Among these spaceP M2) p(x,x) < p(z,y) 1
are the metric spaces, quasi-metric spaces [6,9] cone me¥PA73) p(z,y) = p(y, x) 1)
ric spaces [10, 11], Menger (statistical) spaces [20], fuzzy(PM4) p(z,y) < p(z, 2) + p(z,y) — p(z, 2)
metric spaces [17]. In 1992 Matthews [18],[19] introduced
a relatively new space called Partial metric space (PMSYor all z, y andz € X. Then the pair( X, p) is called a
and proved the analog of the Banach fixed point theorenpartial metric space ang is called a partial metric onX.
on this space. The wide application potential of PMS re- ; o T
sulted in immediate publications in the area [21], [26], [3], Rt Ictjc?n t()jebeasny verified that the functid : X'x.X —
[4]. efined by

Cyclic maps and best proximity points have been in-dp(,y) = 2p(x,y) — p(z,2) — p(y,y) )
troduced by Kirk-Srinavasan-Veeramani [16] in 2003. Var- satisfies the conditions of a metric &h On the other hand
ious results on cyclic maps have been obtained since thegach partial metrip on X generates 4 topology, on

(Seee.g.[2,8,7,13,14,23,22,24)). X, whose base is a family of operballs
The purpose of this study is to investigate existence
and unigueness of fixed points of cyclic maps on Partial {Bp(z,€) : v € X, e> 0}

metric spaces. Therefore, we first define cyclic maps o o )
Partial metric spaces. Then we give a fixed point theoremqgle;?%;](dxéi a {ly e X:plz,y) <p(@,z) + <} foral

for cyclic maps satisfying«, ¢) con_tract?ve condition_s, Definitions 6f convergence, Cauchy sequence, com-
yvherenp ands are the so-called altt_armg d|stanpe functions pleteness and continuity on partial metric spaces are given
introduced by Khan et all [15]. This theorem is an analog as follows [18]

of the theorem given recently by Shatanawi [25] on metric '

spaces. Definition 2.
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1A sequencegz, } in the PMS(X,p) converges to the 2. Main Results
limit z if and only ifp(z, z) = lim p(x,z,).
; L In this section we define cyclic contractions satisfying so-
2';2%%“&?%1?3”;?5 P';:/lsg)é;fs)t?;ﬁg?s f?n%g uchy called (,¢) conditions on partial metric spaces and state
nym—oo’ ~ M ' the fixed point theorem for these maps.
3A PMS(X,p) is called complete if every Cauchy se-
quence{z,} in X converges with respect tg,, to a Definition 5.Let A and B be non-empty subsets of a par-
pointz € X suchthatp(z,z) = lim p(zn, zm). tial metric space( X, p) and lety) and ¢ be altering dis-
M= 00 tance functions. A cyclicmdp: AU B — AU B is said

4A mappingf : X — X is said to be continuous at 'y (,4) contractive if it satisfies

xg € X if for everye > 0, there exist$ > 0 such that
F(By(20,0)) € By(Fxo,€). V(p(Tz, Ty)) < ¥(m) — ¢(m), 4)

The following lemma is one of the basic results in Par- Where
tial metric spaces (18,19, 4]). m = max{p(z,y),p(Tz,z),p(Ty,y)} (5)

Lemma 1. forall z € Aandy € B.

1.A sequencgz,} is a Cauchy sequence in the PMS Theorem 1Let A and B be non-empty closed subsets of
(X,p) if and only if it is a Cauchy sequence in the a complete partial metric spadeX, p). Assume thaf :
metric space.X, dp). AUB — AU Bis a @,¢) contractive map. Thef has

2A PMS (X, p) is complete if and only if the metric a unique fixed pointim N B.

space(X, d,) is complete. Moreover i _ )
ProofWe first prove the existence part. Take an arbitrary

lim d,(z,z,) =0< xo € A and define the sequenée,, } as
p(x,x) = lim p(z,zn) = 1lim_p(en, 2m). ®) Tp=TTpn1, n=123,.... (6)

SinceT is cyclic, the subsequendey,} C A and the
subsequencéxor i1} C B. If 2041 = x,, fOr some
ng € N, then obviously, the fixed point df is z,,,. As-
sume thatr,, . # x, foralln € N.

Next, we give two lemmas stated and proved in [12,1]
which will be used in the proofs of our main results.

Lemma 2Assume that, — 2 asn — oo in a PMS Suppose that n is even, i.e.= 2k. Upon substitution
(X, p) such thatp(z, z) = 0. Thenlim,,_, p(z,,y) = & = zo andy = w2541 in (4) we obtain
p(z,y) for everyy € X.

Y(p(T2r41, Tarnt2)) = Y(p(Tx2r, TTok11)) 7
Lemma 3Let (X, p) be a complete PMS. Then < p(mak) — ¢(max),

(AN p(z,y) = 0 thenz = y wherem,, is defined as

(B)if 2 # y, thenp(z, ) > 0. My = max{p(@n, T 1), P(T0n, ), P(TTp 11, Tn11)}
= nyLn ) n+1ls;<n . 8
Cyclic maps and best proximity points defined in [16] max{p(n, Tn1) P(Tni 1, Tnt2)} ®)
have been studied thoroughly on various spaces. Suppose that
Mok = p(Takr1, Tak+2), )

Definition 3.Let A and B be non-empty subsets ofametric ~~—  ° ~

space(X,d)andT : AUB — AU B. Tis called cyclic ~ which implies

map ifT'(A) C BandT(B) C A.
PIFT(4) < (B) Uplamsn,ansa) € VPEaaz) g
A pointz € AU B is called a best proximity point if — OPwri, an2)).

d(z,Txz) = d(A, B) whered(A, B) = inf{d(a,b) : a € From this inequality it follows thab(p(x2g+1, Zog+2)) =

A,b € B}. 0, and hencep(xag+1, Tak+2) = 0 sinceg is an altering
Altering distance functions have been introduced bydistance function. Thus, from Lemma 3, we hayg,; =
Khan et all [15]. Zok+2 = Trapy1 Which contradicts our assumption that

Tx, # x,. Therefore, we must have
Definition 4.The functiony : [0, 00) — [0, o0) is called
an altering distance function if it satisfies the following ""*2* = p(x2k, T2041), (11)
conditions: and hence,
1.¢ is continuous and nondecreasing. Y(p(Tok11, Tak+2)) < V(p(Tak, Takt1))
2.6(t) = 0 if and only ift = 0. — o(p(22k, Tart1))- (12)
(© 2012 NSP
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In addition we have, the contrary, that i§x2, } is not Cauchy. Then, for some
e > 0 there exist subsequencgs,,,;y} and{za,,; } of
P(Tokt1, Tak+2) < D(T2k, Tor41), (13) {220} such that q ®} {zame }

for everyk € N.

Assume now that is odd, i.e.,n = 2k + 1. Then the
inequality (4) withz = w2541 andy = xax12 becomes where we take:(i) as the smallest index satisfying (26).
Then we have

dp(Ton(i), Tam(i)) > €, n(i) >m(i) > 1, (26)

Y(p(w2k+2, T2r+3)) = Y(O(TT2k41, TT28+2))

< Y(mak+1) — ¢(Mmak+1). (14)  dp(Tani)—2; Tam(i)) < € (27)
If Itis easy to see that
Maok+1 = P(Tak+2, Tak+3), (15) nlggo dp(Tp, Tpg1) =0 (28)
then by taking limit asn — oo in
P(P(2hv2, Tart3)) < Y(P(Tart2, T2k+3)) (16)  dy(@nsns1) = 20(@n Ens1) — plans 2n)

— d(P(T2k42, T2k43))-

From (16) it follows thatp(p(xak+2, 2k+3)) = 0, thus, ) ) ] )
P(Tapsa, Toprs) = 0 . From Lemma 3, we have,,,, =  USing the triangle inequality we get
Zok+3 = Txorio Which is a contradiction with the as-

- P(In+1, $n+1)~ (29)

e < dp(ZTam(i), Tan(s))

sumption?'z,, # x,,. Therefore, < dp(Tam(iy Tan(i)—2) + dp(Tan(i) -2, Tan(i) 1) (30)
+ dp(Tan(i)—1, T2an(i))
m = X X 17 P n(i)—1,L2n(z)
2kt p( 2kl 2k+2)7 ( ) <e+ dp(m2n(i)—27 9l’zn(i)_l) + dp($2n(i)—17552n(i))-
and hence, .
We obtain

Y(p(Tor12, Tar13)) < Y(p(T2rr1, Tary2))
— ¢(P(Takt1, Taky2))- (18) ¢

i dp(22n (i), T2m(p) = M0 2p(@2n(i), Tom@) =€ (31)
We also have upon taking limiti — oo in (30). On the other hand,
using triangle inequality we have,

<
P(Tart2, Tary3) < P(Tapg1, Takt2), 19 < dy(@am(iys Tani

for everyk € N. From (13) and (19) we deduce thatthe se- < dp,(Zam (i), Tan(i)+1) + dp(Tan(i)+15 Tan()) (32)
quence{p(z,, Tn41)}, is nonincreasing and nonnegative. < d,(Ta,,(i)s Tan()) + 2dp(Tan(i)+15 Tan(i))

Thus,
and also

nlgrgop(xn,xnﬂ) =5 (20) £ < dp(Tan(i), Tam())

for somes > 0. < dp(Tan(i), Tam(i)-1) + dp(Tam(i)—1, Tam(i))  (33)
On the other hand, from (12) and (18) we have dp(Zom (i)s Tan(i)) + 2dp(Tam (i) 15 Tam(i))-

_ Taking limitasi — oo in the inequalities (32) and (33) and
n b n S n 9 n n ) n 21 .
Y(P(@n+2, Tnt1)) < Y(P(Tnt1,2n)) — O(P(Tnt1,2n)) (21) using (28), and (31), we get

INI

for all n € N. Taking limit asn — oo of both sides of

(21) and regarding the continuity of the functiohand¢ }H{}O dp(T2m (i)s Tan(i)+1)
we obtain = Zlgglo 2p(T2m i)y Ton(iy+1) = € (34)
¥(s) < (s) — é(s) (22)

and

which cannot hold unless= 0. As a result, we get )
lim dp(f’izm(f,)—l,xzn(i))

1i_{n p(Tp, Tpy1) =0 (23) o e
e = lim 2p(T2p(i)—1, Ton(i)) = € (35)
and usingPM?2, vee

Now, upon substitution: = x2,,,(;y—1 andy = g, I
0 < p(Tn, ) < P(Tns Tns1) (24) (4) we have
we have w(p(z2m(i)ax2n(i)+1)) = %D(p(szm(i)—l, T172n(i))) (36)
lim p(z,,z,) =0. (25) < P(m) — ¢(m).
n—oo

. . , where
We will prove now that{z,, } is a Cauchy sequence in the

metric spacé X, d,), whered,, is defined in (2). We first m = max {p($2m(i)_17 Ton())s P(T2m (i) T2m(i)—1),
show that{z,,, } is a Cauchy sequence (X, d,,). Suppose P(Tan(iy+1, Tan(iy) }
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Lettingi — oo in the above inequality and regarding
(23), (31), (34) and (35) we obtain
3 3 9
V< Y — (=
¥(5) < U(5) - @l5)
which clearly impliess = 0. However, this contradicts
the assumption thdtz,,, } is not Cauchy in( X, d, ). Then,
{z2,} is a Cauchy sequence. Sin¢&,p) is complete,

(37)

then (X, d,) is also complete by Lemma 1 and hence,

{x2,} C A converges to a limit, say € A. Using sim-

ilar arguments, we can prove théts, 1} is a Cauchy
sequence irB. Therefore{xs, 1} C B converges to the
a limit, sayy € B. Then,

lim dp(z2n,z) =0, and lim dp(z2nt+1,y) =0. (38)
Itis clear that
< dp(x, x2n) + dp(x2n7 x2n+1) + dp(x2n,+1a y) (39)

Taking limit asn — oo in and using (28) and (38) we ob-

taind,(z,y) = 0, that isz = y. Thus, both subsequences
{x2n} C Aand{zs,4+1} C B converge to the same limit

x and moreover,

{72n} U{z2nt1} = {20}

Hence, the sequende;,, } € X converges ta: € X.
On the other hand, by Lemma 1 we observe that

lim d,(x,z,) =0

n—0oo

plz,x) = Tim p(z,z,) =

if and only if
(40)

lim  p(zn, Tm)

n,m— oo
From (4) withx = z,, andy = x,,,, we have
¢(p(xn+17 $7n+1))

< TP(maX{P(%, xm)ap(xnlea xn)vp(merlv mm)}) (41)
—p(max{p(Tn, Tm), P(Tnt1, Tn), P(Tmt1, Tm)})-

Lettingn, m — oo, and using (23) and (40) we get
Y(p(x, x)) < ¥(p(z,z)) — d(p(x, 7))

which immediately implie®(z, 2) = 0.
Consider now (4) wittx = z,,, y = . Then we have,

Y(p(Tzn, T))

(42)

S w(max{p(xnaz)7p(xn+l7xn) (TI7I)}) (43)
—¢(max{p(mn,x),p(xn+1,xn) ( €, })

Lettingn — oo, we obtain

Y(p(a, Tx)) < (p(Tx, x)) — ¢(p(Tx, x)) (44)

which impliesy(p(z,Tx)) = 0, hencep(z,Tx) = 0.
According to Lemma (3)y = Tz, thatis,z € AN B is
the fixed point off".

To prove the uniqueness, we assume that X is
another fixed point of" such that: # x. Then from (4)
with z = z andy = z we have

¢(p(T.CL‘, TZ)) = ¢(p($, Z))

< Y(max{p(z, 2),p(Tz, x),
—¢(max{p(z, z), p(Tx,x),

p(Tz,

z) (45)
p(Tz,2)}

)
)

)

which leads to

P(p(x, 2)) < P(px, 2)) — o(p(x, 2)), (46)

and hence t@(z, z) = 0 implying z = 2 by Lemma 3.
Thus, the fixed point of" is unique.

We next give the following examples of cyclic maps
satisfying the conditions of the Theorem 1.

Example lLet X = [0,1] andA = B = [0, 1]. Define
T:X — XasTr = £. Forp(z,y) = max{xz,y} the
space(X, p) is a partial metric space. Defing(t) = 3t
and¢(t) = t. Then the conditions of the Theorem 1 are
satisfied and thereforE has a unique fixed point. Indeed,
x = 0is the unique fixed point df'. Observe that, if0, 1],

Tx < xandifz <y, then

p(z,y) =y
p(Tx,z) =x
p(Ty,y) =y
p(Tx,Ty) =Ty,
which implies
max{p(z,y),p(Tz,z),p(Ty,y)} = y.
Therefore,
Y(p(Tz, Ty)) = ¢(Ty) = 3%

=y <) —oy) =3y —y=2y.
As a second example we give a piecewise continuous

cyclic map.
Example 2et X = [-1,1] andA = [-1,0] andB =
[0,1]. DefineT : X — X as follows:

—g if z € [~1,0]

Tx =
—g if = €[0,1]

Definep(x,y) = max{|z|, [y|} andy(t) = t, $(t) =

The mapT satisfies the conditions of Theorem 1 and has
a unique fixed point. Indeed, lete A andy € B. Then,

all possible cases can be listed as follows:

If |2| < |y|, then

_)‘ TTy Y)}

=

Iyl <1y |7M
2

max{p(z,y),p(T

Z,
= max{[yl, [z, |y|

Sincep(Tx, Ty) = max{ 3 le| then we have,

lyl
5
Now, if |y| < |z|, then

max{p(z, y), p(T'z, ), p(Ty,y)}
= max{|z], |z[, y[} = |z[.

(© 2012 NSP
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If p(Tx, Ty) = max{%, lyl

o= ‘g—‘ then we get,

lyl gy 2l J=l
< | =5
2 2 2
If p(Tx, Ty) = max{%, |2—‘} = % then we get,
|| z| _ |zl
Ll R PN ol R o
g <ll=5 =5

One can easily see that the fixed point of the riags
x=0and0 € AnB.

Last, we state some particular cases of the Theorem

1 by choosing the altering distance functiahsand ¢ in
special ways.

Corollary 1.Let A and B be non-empty closed subsets of
a complete partial metric spadeX, p). Assume thaf’ :
AU B — AU B is cyclic map satisfying

p(Tx, Ty) < kmax{p(z,y),p(Tz,z),p(Ty,y)}  (47)

forall x € Aandy € Bwhere0 < k < 1. ThenT has a
unique fixed point il N B.

Proof Define the altering distance functions as

()=t and @)= (1— k).
Then by Theorem I has a unique fixed point.

Corollary 2.Let A and B be non-empty closed subsets of
a complete partial metric spaceX, p). Assume that :
AU B — AU B s cyclic map satisfying

p(Tx, Ty) < k{p(z,y) + p(Tz,z) + p(Ty,y)}  (48)
forall z € Aandy € Bwhere0 < k < 1. ThenT has a
unigue fixed point il N B.

ProofSince

p(z,y) +p(Tz,x
< 3max{p(z,y),

Define
Y(t)=t and ¢(t) = (1—3k)t.
Then

Y(p(Tz, Ty)) = p(Tz, Ty)

< k{p(z,y) +p(Tz,z) +p(Ty,y)}

< 3kmax{p(z,y),p(Tz,z),p(Ty,y)}
= Y(max{p(z,y), p(Tx,x),p(Ty,y)})
—¢(max{p(x,y),p(Tz,z),p(Ty,y)})

and hencd” has a unique fixed point by Theorem 1.

(49)
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