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Abstract: We investigate the bound states of relativistic positrons channeled in perfect single-walled carbon nanotubes 
(SWCNTs), with different chiral indices (n,m). The channeling potential, has been calculated according to the continuum 
model approximation given by Lindhard. We find a general expression for the channeling potential fit the calculated 
channeling potential with fitting parameters for each carbon nanotube. We calculate the energy eigenvalues by, using the 
WKB method, the energy eigenfunctions and the position probability density of the channeled positron in a plane normal to 
the nanotube axis by solving the Shrödinger equation using the obtained general formula for the channeling potential. 
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1 Introduction  

Localization of charged particles in potential wells, regardless of their form, leads to the discretization of the charged particles 
energy spectrum whereby the distance between energy levels substantially depends on the geometrical size of the potential 
wells. In the case of channeling of relativistic particles through perfect single-walled carbon nanotubes (SWCNTs), the 
channeled particles move along the nanotube axis, (z-axis) and is influenced by a transverse potential field results from the 
atomic rows N, forming the nanotube surface. The cross section view of perfect nanotube in a plane perpendicular to the tube 
axis is a circle as illustrated in Fig. 1 for (6,0) nanotube. In previous work [1], the nanotube channeling potential has been 
calculated for perfect SWCNTs and for radially deformed SWCNTs according to the continuum model approximation given 
by Lindhard [2] and by using the atomic interaction potential as given by Moliere [3]. 
In perfect SWCNT, the number of rows N for nanotube with chiral indices (n,m) is given by,  
, where  denotes the greatest common divisor of its arguments and the radius of the perfect 

SWCNT (circular cross section) R is given by, , with  , is the bond 
length between carbon atoms [4]. 
In this work, we investigate the stationary states of positrons move along the axis of perfect SWCNTs with energy 100 MeV. 
This study covers the three known types of perfect SWCNTs namely, zigzag, armchair and chiral with different chiral indices 
(n,m). The energy eigenvalues and eigenfunctions and the maximum number of bound states, in a plane perpendicular to the 
nanotube axis (xy-plane), of positrons channeled through perfect SWCNTs have been calculated.  
 

2 Model  

We consider the motion of relativistic positrons through SWCNTs in channeling regime, i.e., the channeled positron is 
assumed to travel as free particle along the nanotube axis, (z-axis) and is influenced by the interaction of positron and a 
nanotube atoms namely, channeling potential in a plane perpendicular to the tube axis (xy-plane). The channeling potential 

2 2(2 / )( )N q n nm m= + +
gcd(2 ,2 )q m n n m= + +

2 2( 3 / 2 )R n nm mp= + +! 0.141 nm! "
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has been calculated for perfect SWCNTs according to the continuum model approximation. According to this approximation, 
the interaction between positrons and one row of the nanotube is given by 

,                                                                                                                                      (1)                                                                                                                          

     with  where  is the Thomas-Fermi 

screening radius;  is the Bohr radius, z1 and z2 are the charge numbers of channeled particle and nanotube 
atoms respectively, r is the separation between the row and the channeled particle in a plane perpendicular to the nanotube 
axis, dR is the average distance of neighboring carbon atoms along the row (  [4]) , e is the 
elementary charge and K0 is the modified Bessel function of  the second kind and order zero. 
Now, by using Eq. (1), the channeling potential, , due to all rows of the SWCNT is the sum of the axial continuum 
potentials of all rows positioned over the circumference of the nanotube, where ρ is a vector measured from the nanotube 
center (Fig. 1), is given by 

 ,                                                                                                                                                   (2) 

where Rj, is the distance of row number  j from the nanotube center. In the numerical calculation of Eq. (2), we note that, the 
N atomic rows consists of two sequences of rows overlap i.e., with a doubled linear atomic density, .   
The effect of thermal vibrations on channeling potential in carbon nanotube can be estimated by modification in the axial 
potential. The axial potential at large distance from the nanotube wall due to one raw modified by the effect of thermal 
vibration is given by [5]: 

  ,                                                                                                                      (3) 

where u is the thermal vibrational amplitude of the carbon atoms estimated from the Debye approximation [6]. The numerical 
results showed that the effect of thermal vibrational amplitude on the channeling potential, at temperature ~ 790 K (i.e., at 
thermal vibrational amplitude ), is very small and gave approximately the same results as that for the 
channeling potential of static nanotube at nanotube axis [7,8] . 
In perfect SWCNT, all atomic rows are positioned at equal distance   from the nanotube center O and distributed on 

the circumference at equal distances, , thus we have N lines connecting the atomic rows and the nanotube center 
in the xy- plane. In this representation we consider the line number one (i.e., j = 1) as the reference line. As illustrated in Fig. 
1, the line number j makes an angle   

,                                                                                                                                                            (4) 

with the reference line. Thus, the reference line makes an angle , i.e., directed along the x-axis in the xy-plane, and 

the line with  makes an angle  and so on for all lines where . Now it is obvious that any 

two successive lines, Rj and Rj+1, subtend a central angle, . 
      Now, by using Eqs. (1)-(4), the channeling potential at any point at a distance ρ from the center of the nanotube could be 
calculated from the following expression:   

                                                                     

(5) 
 
For all nanotubes under consideration, we find an expression of the form  

                                                                                                                                                                 (6) 
is a good approximation for the channeling potential in perfect SWCNTs calculated according to the continuum model 
approximation for nanotubes with various chiral indices (n,m). The parameters  fit the calculated channeling 
potential are given in Table 1. Now, the bound states of the channeled positron could be calculated by solving the Shrödinger 
equation of motion in the transverse direction to the nanotube axis using the potential function (6) as follows 
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                      Table 1. Values of the parameters a, b and c in Eq. (7) needed to fit the nanotube channeling potential  
                  for the given (n,m) nanotubes, nmax is the maximum number of bound states for channeled positron. 

 
(n,m) Radius (nm) a (eV) b (eV) c (nm-1 ) nmax 

 
(6,0) 
(8,0) 

0.23321 
0.31095 

14.56240 
7.39359 

1.71635 
0.44004 

15.62744 
16.61130 

13 
14 

(5,5) 
(8,8) 

0.33661 
0.53858 

4.88444 
0.64276 

0.99497 
0.09489 

12.62148 
12.32286 

18 
19 

(8,2) 
(11,5) 

0.35624 
0.55106 

4.11171 
0.57011 

0.71212 
0.07542 

12.96176 
12.53133 

18 
19 

 
 
 

 
Figure 1.  Cross section view of (6,0) perfect nanotube, the cross section of the nanotube channel is a circle of radius R, the 
rows of the carbon atoms are positioned at Rj over the circumference of the nanotube, ρ the distance from the nanotube center 
in a plane perpendicular to the tube axis.  
 
 
3 Eigenfunctions of the Channeled Positrons 
The wave function of the channeled positron in the transverse plane to the nanotube axis is obtained via positron Shrödinger 

equation given by Eq. (7). The change of variables  transforms this eigenvalue equation (7) into 

                                                                                                               (8) 

 where  . This is Bessel's equation in modified form with index [9]. This second order differential 

equation has two linearly independent solutions, the modified Bessel functions of the first and second kind, 
, so the general solution of equation (8) may be written as follows 
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We then need to impose the boundary condition . By definition,  is exponentially increasing, then 

condition at infinity requires that we set the coefficient of   to zero. The condition at  then simply requires that 

. The eigenfunctions are of the form 

                                                                                                                (9) 

 

4 Eigenvalues of the Channeled Positrons 

The energy eigenvalues of the channeled positrons constrained to move between classical turning points  in a 
potential as given by Eq. (6) have been calculated by using the WKB method [10]. The classical turning points are those 
points at which  that is:  
 or    

                                                                                                                                                               (10) 

For a particle constrained to move between classical turning points in a potential well, the energy eigenvalues 
can be obtained from the condition: 

                                                                                                             (11) 

where  , is the classical linear momentum. Then, from Eqs. (10) and (11), we can get the 

energy eigenvalues and the maximum number of bound states respectively as: 

                                                                                                                                (12) 

and  

                                                                                                                       (13) 

where Emax, is the potential at the turning points, that is,    , , is the screening length,  

 

5 Computational Results and Discussion 

The channeling potential has been calculated for perfect SWCNTs. The calculations covered (6,0), (8,0), (5,5), (8,8), (8,2) 
and (11,5) tubes at  nanotube temperature ~ 790 K, ( i. e, at thermal vibration amplitude u1 = 0.0053 nm), by using Debye 
approximation as a function of a distance ρ from the center of the tube in a plane normal to the tube axis is shown in Fig. 2. 
The numerical results showed that the effect of temperature on the channeling potential is very small and gave approximately 
the same results as that for the static nanotube at nanotube center. 
The energy eigenfunctions and the position probability density in the transverse plane to the nanotube axis for the first three 
states of positrons channeled in perfect SWCNTs with incident energy 100 MeV in a direction parallel to the nanotube axis 
is illustrated in Figs. 3, 4, 5, 6, 7, and 8, respectively. The position probability density has its maximum value at nanotube 
center ( ) and decreases as increases (i.e., towards the nanotube wall).  
The energy eigenvalues of the channeled positrons as calculated from Eq. (12) in different types of single-walled carbon 
nanotubes are given in Table 2. The maximum number of bound states, as calculated from Eq. (13), are given in Table 1. 
The calculations show that the estimated maximum number of bound states increases as the nanotube radius increase for 
zigzag, chiral and armchair carbon nanotubes.  
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Table 2. Energy eigenvalues of positrons with incident energy 100 MeV in a direction parallel to the nanotube axis 
channeled in different types of single-walled carbon nanotubes calculated by using WKB approximation. 

 
Bound state Zigzag (n,0) Armchair (n,n) Chiral (n,m) 

En (6,0) (8,0) (5,5) (8,8) (8,2) (11,5) 
E0 14.6231 7.4622 4.9240 0.6805 4.1535 0.6092 
E1 15.1089 8.0110 5.2409 0.9825 4.4876 0.9215 
E2 16.0803 9.1087 5.8746 1.5866 5.1560 1.5461 
E3 17.5375 10.7551 6.8251 2.4927 6.1584 2.4832 
E4 19.4805 12.9504 8.0925 3.7008 7.4951 3.7325 
E5 21.9091 15.6945 9.6767 5.2109 9.1658 5.2941 
E6 24.8235 18.9874 11.5777 7.0231 11.1708 7.1681 
E7 28.2237 22.8292 13.7956 9.1373 13.5099 9.3544 
E8 32.1095 27.2197 16.3303 11.5535 16.1831 11.8531 
E9 36.4811 32.1591 19.1819 14.2718 19.1905 14.6641 
E10 41.3385 37.6473 22.3503 17.2919 22.5321 17.7874 
E11 46.6816 43.6843 25.8356 20.6143 26.2078 21.2231 
E12 52.5104 50.2702 29.6377 24.2387 30.2177 24.9711 
E13  57.4048 33.7567 28.1649 34.5618 29.0314 
E14   38.1925 32.3934 39.2400 33.4041 
E15   42.9451 36.9238 44.2523 38.0890 
E16   48.0146 41.7562 49.5988 43.0863 
E17   53.4009 46.8907 55.2795 48.3961 
E18    52.3272  54.0180 

 
 
 

 
 
Figure 2. Channeling potential for positrons channeled in single-walled Carbon nanotubes with different chiral indices (n,m) 
as a function of the distance  from the nanotube center in a plane normal to the nanotube axis.  
 

r
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Figure 3. The first three states of positrons channeled in single-walled carbon nanotube (6,0) with incident energy 100 MeV 
in a direction parallel to the nanotube axis. (a) Energy eigenfunctions, (b) The position probability density.  
 

 

 

 

 
Figure 4. The first three states of positrons channeled in single-walled carbon nanotube (8,0) with incident energy 100 MeV 
in a direction parallel to the nanotube axis. (a) Energy eigenfunctions, (b) The position probability density.  
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Figure 5. The first three states of positrons channeled in single-walled carbon nanotube (5,5) with incident energy 100 MeV 
in a direction parallel to the nanotube axis. (a) Energy eigenfunctions, (b) The position probability density.  
 
 
 
 

 
 
 
Figure 6. The first three states of positrons channeled in single-walled carbon nanotube (8,8) with incident energy 100 MeV 

in a direction parallel to the nanotube axis. (a) Energy eigenfunctions, (b) The position probability density.  
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Figure 7. The first three states of positrons channeled in single-walled carbon nanotube (8,2) with incident energy 100 MeV 
in a direction parallel to the nanotube axis. (a) Energy eigenfunctions, (b) The position probability density.  
 
 
 

 

 
 
 

Figure 8. The first three states of positrons channeled in single-walled carbon nanotube (11,5) with incident energy 100 MeV 
in a direction parallel to the nanotube axis. (a) Energy eigenfunctions, (b) The position probability density.  
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