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Abstract: In this research article, we develop and analyse the discrete fractional Laplace transform and obtain the properties of discrete

fractional Laplace transform. Also, the discrete fractional Laplace transforms of certain functions like polynomial factorial, exponential

functions, trigonometric functions, etc are derived. Moreover, we equate two types of solutions namely closed and summation forms

and verify its efficacy with numerical results by MATLAB.
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1 Introduction

Fractional calculus which deals with integration and differentiation with respect to arbitrary order has gained lot of

interest during the last three decades. Since L’Hopital’s letter to Leibniz in 1695 has raised a relevant question namely,

“What does
∂ m f (x)

∂xm
mean if m =

1

2
?”. This is considered to be the initiation of the idea of fractional calculus (Diethelm,

2010, Hilfer, 2000, Lazarevic, et al., 2014, Millar & Ross, 1993, Kumar & Saxena, 2016). These debates ended with

several types fractional operators in which the fractionalizing process mainly depends on iterating the integral or the

derivative. For example the Riemann-Liouville derivatives were defined after setting the Riemann-Liouville integrals

through the Leibniz-Cauchy formula. For the applications one can refer, [1–8]. In the last three years some new types

of fractional operators with nonsingular kernels have appeared where the fractionalizing manner depends on a limiting

process using delta dirac functions. For such fractional operators and their discrete versions we may refer to [9–14].

In 1989, Miller and Ross [15] initiated the process to develop the theory for fractional finite differences. Further

developments took place in 2007 and 2012 when the authors [16, 17] put forth several results and a discrete transform

method for fractional order difference equation. In 2009, the authors [18,19] have been founded the significance of Laplace

transform technique. One can refer [20–25] and [26]- [37].

In this paper, we continue to build on their work [16, 17] to develop properties of fractional h-differences, define

new type fractional Laplace and extorial transforms, and develop a method to apply the above transforms to polynomial
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factorial, geometric and logarithmic functions. Therefore, we review some notations and from the fractional calculus

in Section 2 and in Section 3, we present some relevant results on fractional ℓ−difference operators and its properties.

This results helps to solve problems on fractional Laplace transform in Section 4 and Section 5. Numerical examples are

provided to illustrate of our findings.Conclusions are depicted in Section 6.

2 Preliminaries

Definition 1. The ℓ-difference operator for the real valued function ψ(λ ), is defined by

∆ℓψ(λ ) =
ψ(λ + ℓ)−ψ(λ )

ℓ
, (1)

and the infinite sum is defined by

∆−1
ℓ ψ(λ )|∞θ = ∆−1

ℓ ψ(∞)−∆−1
ℓ ψ(θ ) = ℓ

∞

∑
i=0

ψ(θ + iℓ). (2)

Note that when ∆−1
ℓ ψ(λ ) at ∞ is 0, it is obvious to denote ∞∆−1

ℓ ψ(θ ) =−ℓ
∞

∑
i=0

ψ(θ + iℓ) and

hence ∞∆−1
ℓ ψ(λ ) =−ℓ

∞

∑
i=0

ψ(λ + iℓ) is obtained by ∆ℓ(∞∆−1
ℓ ψ(λ )) = ψ(λ ).

Example 1. Since ∆ℓ
1

2λ
=

1

ℓ

[

1

2λ+ℓ
−

1

2λ

]

=
1

ℓ2λ

(

1

2ℓ
− 1

)

, it is clear that ∆−1
ℓ

1

2λ
=

(

2ℓ

1− 2ℓ

)

ℓ

2λ
and ∆−1

ℓ

1

2∞
= 0.

By considering ψ(λ ) =
1

2λ
and θ = 0 in (2) we get

∆−1
ℓ

1

2λ

∣

∣

∣

∞

0
= ℓ

∞

∑
i=0

1

2iℓ
⇒ ∆−1

ℓ

1

2∞
−∆−1

ℓ

1

20
= ℓ

∞

∑
i=0

1

2iℓ
⇒

ℓ2ℓ

1− 2ℓ
= ℓ

∞

∑
i=0

1

2iℓ
. (3)

Here one can apply any real h > 0.

Even though the Example 1 is simple, arriving the relations (1) and (2) for fractional order difference operator ∞∆−ν
ℓ ,

ν is fraction, is complex but we have tried and achieved it. When ℓ→ 1, operator ∆ ν
ℓ coincides with the operators used

in [31,33,35]. As we are trying to find fractional order difference for polynomial factorial we give the following definitions

and lemmas.

Definition 2. [32] The polynomial factorial function, for ℓ > 0,ν ∈ R is defined by

λ
[ν]
ℓ = ℓν Γ (λ

ℓ +ν)

Γ (λ
ℓ )

, (4)

where λ
[0]
ℓ = 1 and λ

ℓ +ν, λ
ℓ , /∈ {0,−1,−2,−3, ...}.

Remark. [34] The Euler Gamma function of an infinite product as defined by

Γ (λ ) =
1

λ

∞

∏
j=1

(1+ 1
j
)λ

(1+ λ
j
)
, j /∈ {0,−1,−2,−3, ...}.

The properties of the polynomial factorials are given in the following lemma.

Lemma 1. The results are satisfied the polynomial factorials;

(i) ℓ(λ
ℓ +ν)λ

[ν]
ℓ = λ

[ν+1]
ℓ , (ii) ℓ(λ

ℓ −ν)λ
(ν)
ℓ = λ

(ν+1)
ℓ ,

(iii) λ
[m+n]
ℓ = λ

[m]
ℓ (λ +mℓ)

[n]
ℓ ,

(iv) ∆ℓλ
[ν]
ℓ = ν(λ + ℓ)

[ν−1]
ℓ and (v) ∆ℓλ

(ν)
ℓ = νλ

(ν−1)
ℓ .
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Proof. The proof of (i) and (ii) are simple, hence omitted.

To prove (iii), taking ν = m+ n in (4) gives λ
[m+n]
ℓ = ℓm+n

Γ (λ
ℓ +m+ n)

Γ (λ
ℓ )

= ℓmℓn

[

(λ
ℓ +m+ n− 1)(λ

ℓ +m+ n− 2) · · ·(λ
ℓ +m)Γ (λ

ℓ +m)

Γ (λ
ℓ )

]

= λ
[m]
ℓ ℓn

[

(λ+mℓ
ℓ + n− 1)(λ+mℓ

ℓ + n− 2) · · ·(λ+mℓ
ℓ +m)Γ (λ+mℓ

ℓ )

Γ (λ+mℓ
ℓ )

]

,

which yields λ
[m+n]
ℓ = λ

[m]
ℓ ℓn

Γ (λ+mℓ
ℓ + n)

Γ (λ+mℓ
ℓ )

= λ
[m]
ℓ (λ +mℓ)

[n]
ℓ .

The results of (iv) and (v) are derived by taking a∆ℓ on polynomial factorials.

3 Fractional ℓ-difference operator and its properties

This section presents infinite sum representations of functions in hν(∞)-space. hν(∞)-space is the collection of all real

valued functions ψ(λ ) such that
∞

∑
r=0

(−1)r ℓ−νΓ (ν + 1)

Γ (r+ 1)Γ (ν − r+ 1)
ψ(λ + rℓ) is finite. In the continuous case, we have

definite integrals as well as indefinite integrals. As an analogous to continuous case, we define indefinite fractional

difference using Gamma functions.

Definition 3. For ν > 0 and the real valued function ψ , the fractional ℓ-difference operator ∆ ν
ℓ is defined by

∆ ν
ℓ ψ(λ ) = ℓ−ν

∞

∑
i=0

(−1)i Γ (ν + 1)

Γ (i+ 1)Γ (ν − i+ 1)
ψ(λ + iℓ). (5)

The following example is result of (5).

Example 2. The following identities are arrived from (5):

(i)

∆
1
2
ℓ ψ(λ ) = ℓ

1
2

[

ψ(λ )− 1
2
ψ(λ + ℓ)− 1

8
ψ(λ + 2ℓ)− 1

16
ψ(λ + 3ℓ)− 5

128
ψ(λ + 4ℓ)− 7

256
ψ(λ + 5ℓ)− 21

1024
ψ(λ + 6ℓ)− ...

]

(ii) ∆
− 1

2
ℓ ψ(λ ) =

ℓ−
1
2

[

ψ(λ )+ 1
2
ψ(λ + ℓ)+ 3

8
ψ(λ + 2ℓ)+ 5

16
ψ(λ + 3ℓ)+ 35

128
ψ(λ + 4ℓ)+ 63

256
ψ(λ + 5ℓ)+ 231

1024
ψ(λ + 6ℓ)+ ...

]

.

We can easily verified that ∆
1
2
ℓ (∞∆

− 1
2

ℓ ψ(λ )) = ψ(λ ).

Remark.(i) If ν = m is a positive integer, then the infinite sum (5) becomes finite sum,

(i.e) ∆ m
ℓ ψ(λ ) = ℓ−m

m

∑
i=0

(−1)i Γ (m+ 1)

Γ (i+ 1)Γ (m− i+ 1)
ψ(λ + iℓ), since the remaining terms are zero.

(ii) Taking ψ(λ ) = ψ1(λ )+ψ2(λ ) in (5) gives the linear property of ∆ ν
ℓ .

Theorem 1. For two fractions ν and µ > 0, the following identities hold

(i) ∆ ν
ℓ (∆

µ
ℓ ψ(λ )) = ∆

ν+µ
ℓ ψ(λ ) and (ii) ∆ ν

ℓ (∆
−ν
ℓ ψ(λ )) = ψ(λ ).

Proof. (i) From the Definition 3, we have

∆ ν
ℓ (∆

µ
ℓ ψ(λ )) = ∆ ν

ℓ

(

∞

∑
i=0

(−1)i ℓ−µΓ (µ + 1)

Γ (i+ 1)Γ (µ − i+ 1)
ψ(λ + iℓ)

)

= ∆ ν
ℓ

[

ψ(λ )− µψ(λ + ℓ)+
µ(µ − 1)

2!
ψ(λ + 2ℓ)−

µ(µ − 1)(µ − 2)

3!
ψ(λ + 3ℓ)+ · · ·

]

=

[

ℓ−ν
∞

∑
i=0

(−1)i Γ (ν+1)
Γ (i+1)Γ (ν−i+1)ψ(λ + iℓ)− µ

∞

∑
i=0

(−1)i ℓ−νΓ (ν+1)
Γ (i+1)Γ (ν−i+1)ψ(λ +(i+ 1)ℓ)

+
µ(µ − 1)

2!

∞

∑
i=0

(−1)i ℓ−νΓ (ν+1)
Γ (i+1)Γ (ν−i+1)

ψ(λ +(i+ 2)ℓ)+ · · ·

]

.
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By expanding the summation and rearranging the terms, we get

∆ ν
ℓ (∆

µ
ℓ ψ(λ ) =

[

ψ(λ )− (ν + µ)ψ(λ + ℓ)+
(ν + µ)(ν + µ − 1)

2!
ψ(λ + 2ℓ)

−
(ν + µ)(ν + µ − 1)(ν + µ − 2)

3!
ψ(λ + 2 = 3ℓ)+ · · ·

]

= ℓ−µ−ν
∞

∑
i=0

(−1)i Γ (ν + µ)

Γ (i+ 1)Γ (ν + µ − i+ 1)
ψ(λ + iℓ) = ∆

ν+µ
ℓ ψ(λ ).

(ii) The proof follows by taking µ =−ν in (i), since ∆−ν
ℓ is inverse of ∆ ν

ℓ for ν > 0.

Definition 4. For ν > 0 and the real valued function ψ(λ ). The inverse fractional ℓ-difference operator is defined by

∆−ν
ℓ ψ(λ )

∣

∣

∣

∞

θ
=−ℓν

∞

∑
i=0

(−1)i Γ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
ψ(θ + iℓ). (6)

Remark. ∆−ν
ℓ ψ(∞)−∆−ν

ℓ u(θ ) =−
∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
ψ(θ + iℓ) yields

∆−ν
ℓ ψ(θ ) =

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
ψ(θ + iℓ) and it is denoted as ∞∆−ν

ℓ ψ(θ ).

Definition 5. The Caputo ℓ-difference operator for 0 < ν < 1, is defined by

a∆ ν
ℓ ψ(λ ) = ∆ℓ(a∆

−(1−ν)
ℓ ψ(λ )). (7)

Theorem 2. Let ν > 0 be a fraction, ψ ∈ [0,∞) and c 6= 0. Then, we have

a∆−ν
ℓ

1

cλ

∣

∣

∣

∞

a
=

ℓν

cλ

(

1−
1

cℓ

)−ν ∣
∣

∣

∞

a
=−

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)

1

ca+iℓ
. (8)

Proof. The expression ∆ ν
ℓ

1

cλ
=

∞

∑
i=0

(−1)i ℓ−νΓ (ν + 1)

Γ (i+ 1)Γ (ν − i+ 1)

1

cλ+ℓ
is obtained by taking ψ(λ ) =

1

cλ
in (5). The binomial

expansion for rational index gives a∆ ν
ℓ

1

cλ
=

ℓ−ν

cλ

(

1−
1

cℓ

)ν

.

Now (8) follows by taking a∆−ν
ℓ on both sides, linear property and replacing ψ by a.

Example 3. For the particular values of c = 2, h = 3,a = 3 and ν = 0.5 in (8) gives

3∆−0.5
3

1

2λ

∣

∣

∣

∞

3
=

30.5

2λ

(

1−
1

23

)−0.5 ∣
∣

∣

∞

3
=

∞

∑
i=0

(−1)i 30.5Γ (0.5)

Γ (i+ 1)Γ (0.5− i)

1

23+3i
.

Which are verified by MATLAB with the coding as given below:

3.∧ (0.5)(1./8).× ((7./8).∧ (−0.5))= symsum(((−1).∧ i.× 3.∧ (0.5).× gamma(0.5))./(gamma(i+1).×

gamma(0.5− i).× (2.∧ (3+3.× i))), i,0, in f ).

Corollary 1. Let ψ be the real valued function and ν, ℓ > 0, then we have

a∆−ν
ℓ

1

esλ

∣

∣

∣

∞

a
=

ℓν

esλ

(

1−
1

esℓ

)−ν ∣
∣

∣

∞

a
=−

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)

1

esa+iℓ
. (9)

Proof. Replacing
1

cλ
by

1

esλ
in Theorem 2, we get the proof.
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4 Fractional Laplace transform by ℓ-difference operator

Here, we define and develop a new type fractional Laplace transform and it properties. The fractional Laplace transform

of certain functions are derived and presented with numerical examples.

Definition 6. For the real valued function ψ(λ ). Then the Fractional Laplace Transform(FLT) is defined as

Lν
ℓ [ψ(λ )] = ∆−ν

ℓ ψ(λ )e−sλ
∣

∣

∣

∞

0
=−

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
ψ(iℓ)e−siℓ. (10)

Theorem 3. Let ν, ℓ > 0 and λ ∈ [0,∞), we have

θ ∆−ν
ℓ λ

(µ)
ℓ =

Γ (µ + 1)

Γ (µ +ν + 1)
λ
(µ+ν)
ℓ . (11)

Proof. Since for ν > 0, the proof follows by proving ∆ℓ[ f (λ )] = ∆ℓ[g(λ )],

where g(λ ) =
Γ (µ + 1)

Γ (µ +ν + 1)
λ
(µ+ν)
ℓ and f (λ ) = θ ∆−ν

ℓ λ
(µ)
ℓ .

From the Lemma 1, we get

∆g(λ ) =
Γ (µ + 1)

Γ (µ +ν + 1)
∆λ

(µ+ν)
ℓ =

Γ (µ + 1)(µ +ν)ℓ

Γ (µ +ν + 1)
λ
(µ+ν−1)
ℓ =

Γ (µ + 1)

Γ (µ +ν)
λ
(µ+ν−1)
ℓ . (12)

By repeating from Lemma 1, which gives

∆ℓ[ f (λ )] = ∆ℓ(θ ∆−ν
ℓ )λ

(µ)
ℓ = θ ∆

−(ν−1)
ℓ λ

(µ)
ℓ =

Γ (µ + 1)

Γ (µ +ν)
λ
(µ+ν−1)
ℓ . (13)

Equating (12) and (13), we get the proof.

Theorem 4. Let ν, ℓ > 0, and λ ∈ [0,∞), then we have

∆−ν
ℓ [λ

(µ)
ℓ e−sλ ] =

µ+1

∑
i=1

(−1)i−1ℓν µ (i−1)

(i− 1)!

(ν + i− 2)(i−1)ℓi−1

(1− e−sℓ)i+ν−1

λ
(µ+1−i)
ℓ

es(λ+(i−1)ℓ)
. (14)

Proof. The proof follows by proceeding in the same way of Theorem 3.

Corollary 2. Let ν, ℓ > 0, and λ ∈ [0,∞), then we have

∆−ν
ℓ [λ

(µ)
ℓ e−sλ ]

∣

∣

∣

∞

0
=

(−1)µℓν µ (µ)

µ!

(ν + µ − 1)(µ)ℓµ

(1− e−sℓ)µ+ν

1

esµℓ
. (15)

Proof. Taking the limits 0 to ∞ in (14), we get the proof.

Corollary 3. By applying the fractional Laplace transform, we get

Lν
ℓ [λ

(µ)
ℓ ] =

(−1)µℓν µ (µ)

µ!

(ν + µ − 1)(µ)ℓµ+1

(1− e−sℓ)µ+ν

1

esµℓ
=

∞

∑
i=0

(−1)i ℓ
νΓ (1−ν)(iℓ)

(µ)
ℓ e−siℓ

Γ (i+ 1)Γ (1−ν − i)
. (16)

Proof. Product on both sides of (15) by ℓ, which gives

Lν
ℓ [λ

(µ)
ℓ ] = ∆−ν

ℓ [λ
(µ)
ℓ e−sλ ]

∣

∣

∣

∞

0
=

(−1)µℓν µ (µ)

µ!

(ν + µ − 1)(µ)ℓµ+1

(1− e−sℓ)µ+ν

1

esµℓ
. (17)

Now the proof of (16) is arrived from (10).
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Example 4. For the particular values of µ = 2 in (16), we have

Lν
ℓ [λ

(2)
ℓ ] =

(ν)(ν + 1)ℓν+3

(1− e−sℓ)2+νe2sℓ
=

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
(iℓ)

(2)
ℓ e−siℓ. (18)

For ν = 0.6,s= 4 and h= 3 in (18), which is verified and the coding as: (0.6.∗(1.6).∗27).∗3.∧(0.6)./((1−exp(−12)).∧

(2.6).∗exp(24)) = 3.∗symsum(((−1).∧ i.∗3.∧(0.6).∗gamma(0.4).∗(3.∗ i).∗(3.∗ i−3).∗exp(−12.∗ i))./(gamma(i+

1).∗ gamma(0.4− i)), i,0, in f ).

The diagrams of outcomes of FLT for polynomial factorial generated by MATLAB are shown below. Figure 1. tells that

the input function(signal) as polynomial factorial and Figure 2. tells that the output signal in the frequency domain by

varying the values of ν .

Fig. 1: Time Domain Signal for Polynomial Factorial

Fig. 2: Frequency Signal for Fraction

5 Fractional extorial transform by ℓ-difference operator

Definition 7. Let ν,h > 0, we define the extorial function as

eλ
[ν]
ℓ = 1+

λ
[ν]
ℓ

1!
+

λ
[2ν]
ℓ

2!
+

λ
[3ν]
ℓ

3!
+ · · · (19)
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Remark. (i) In particular value of ν = 1, (19) gives

eλ
[1]
ℓ = 1+

λ
[1]
ℓ

1!
+

λ
[2]
ℓ

2!
+

λ
[3]
ℓ

3!
+ · · · (20)

(ii) Since eλ 6= eλ
[1]
ℓ .

Definition 8. For the real valued function ψ , then the Fractional extorial transform is defined by

E
ν
ℓ [ψ(λ )] = ∆−ν

ℓ ψ(λ )e−sλ
[ν]
ℓ

∣

∣

∣

∞

0
=−

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
ψ(iℓ)e−s(iℓ)

[ν]
ℓ . (21)

The fractional extorial transform of certain functions like polynomial factorial and logarithmic functions are obtained.

Theorem 5. Let λ ∈ [0,∞), then

E
ν
ℓ [λ

(µ)
ℓ ] =−

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
(iℓ)

(µ)
ℓ e−s(iℓ)

[ν]
ℓ . (22)

Proof. Taking ψ(λ ) = λ
(µ)
ℓ in (21).

Theorem 6. Let λ ∈ [0,∞), then

E
ν
ℓ [logaλ ] =−

∞

∑
i=0

(−1)i ℓνΓ (1−ν)

Γ (i+ 1)Γ (1−ν − i)
loga(iℓ)e−s(iℓ)

[ν]
ℓ , (23)

Proof. Applying the fractional extorial transform for the function ψ(λ ) = logat we get (23).

Remark. To get the classical Laplace transform one can apply ℓ→ 0 and ν = 1.

6 Conclusion

In this research, we have defined the discrete fractional Laplace transform using inverse fractional difference operators

and obtained several related results. Also, we have proposed a new type of fractional extorial transform and eventually

discussed its sums. The properties and several results have been obtained by its transform for certain functions. A

verification of our findings by MATLAB has been provided as well.
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