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1 Introduction, motivation and preliminaries

Recently, fractional differential equations have been investigated in many papers in literature since they have several
applications in various fields. Following this development, more attentions is given to impulsive differential equations
of fractional order, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] where the questions on existence, uniqueness and stability
of solutions are treated. Moreover, when these processes involve hereditary phenomena or delay argument that may
cause undesirable performance in the system, it is necessary to analyze delay effects on the dynamical behaviors of the
impulsive fractional differential equations. For more results on impulsive fractional differential equations with delay, we
refer to [1,2,3,7].

Different methods have been applied to investigate the solvability of boundary value problems for impulsive
differential equations, such as fixed point theorems, upper and lower solutions method, variational methods and critical
point theorems.

Recently, fractional differential equations containing the left and right fractional derivatives have been considered in
[18,19,20,21,22,23,24,23,26]. The left and right fractional derivatives may arise naturally as in some physical situations,
where the state of the process depends on all its previous states and on the results of its future development, for more
details see [20,22].

In [14], the authors studied the following impulsive fractional problem







CDυ
T−

(

CDυ
0+

u(t)
)

= f (t,u) , 0 ≤ t ≤ T, t 6= t j,

∆
(

Dυ
T−

(

CDυ
0+

u
))

(t j) = I j (u(t j)) , j = 1,2...n,

u(0) = u(T ) = 0,

where υ ∈ ( 1
2
,1], 0 = t0 < t1 < · · · < tn < tn+1 = T. Using critical point theory and variational method, the authors

proved the existence of at least one solution or infinitely many solutions. Using Banach fixed point theorem and the
nonlinear alternative of Leray–Schauder, the authors in [7], explored the existence of solutions for the following initial
value problems of fractional order functional differential equations with infinite delay:
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{

CDυ
0+

u(t) = f (t,ut) , 0 ≤ t ≤ b,0 < υ < 1,

u(t) = ϕ(t), t ∈ [−∞,0] .

In [29], the following multi-base points fractional initial value problems with impulses on the half lines are
investigated:











(

CDυ
∗ u(t)

)

= f
(

t,u,C D
ς
∗u
)

, t > 0,
u(0) = 0

∆u(t j) = I j

(

t−j ,u(t
−
j )
)

, j = 1,2...p,

where 0 < ς < υ < 1, 0 = t0 < t1 < · · · , limk→∞ tk = ∞, CDυ
∗ is the standard Caputo fractional derivative at the base points

tk. That is for all t ∈ (tk, tk+1], we have CDυ
∗ u(t) =C Dυ

tk
u(t) . The authors discussed the existence of solutions on the half

line by means of Schauder fixed point theorem.

Our main objective is to discuss the existence of solutions for the following boundary value problem for impulsive
fractional differential equations with delay and involving multi-base points right and left Caputo derivatives (P):

CDυ
t−
j+1

(

CD
ς

t+j
u(t)

)

= f (t,ut) ,0 < t < 1, t 6= t j; j = 0,1...p (1.1)

u(t) = ϕ(t), t ∈ [−r,0] (1.2)

u′ (0) = 0 (1.3)

(

CD
ς

t+j
u

)

|t=t−j+1
= g j

(

t−j+1,u
(

t−j+1

)

− u
(

t+j

))

, j = 0,1, ..., p (1.4)

∆u(t j) = h j

(

t−j ,u(t
−
j )
)

, j = 1,2...p (1.5)

∆u′ (t j) =
∼
h j

(

t−j ,u(t
−
j )
)

, j = 1,2...p (1.6)

where 0 < υ < 1, 1 < ς < 2, such that υ + ς > 2, CDυ
t−
j+1

, CD
ς

t+j
are respectively the left and the right Caputo fractional

derivatives, u is the unknown function and the history of state is ut (θ ) = u(t +θ ) , for θ ∈ [−r,0] , f : [0,1]×D → R,
D = {u : [−r,0]→ R,u is continuous everywhere except for a finite number of points θ at which u(θ ) and the right limit
u(θ−) exist and u(θ−) = u(θ )}, f (t,ut) is measurable on [0,1] according to t for any ut ∈ D.

The functions h j,
∼
h j,g j : [0,1]×R→R, for j = 1, ..., p, are given. The initial function ϕ : R→R, satisfies ϕ (0) = 0.

The impulsive moments tk are such 0= t0 < t1 < · · ·< tp < tp+1 = 1, ∆u(t j) = u
(

t+j

)

−u
(

t−j

)

, u
(

t+j

)

= lim
h→0+

u(t j + h) ,

and u

(

t−j

)

= lim
h→0−

u(t j + h) , u

(

t+j

)

and u

(

t−j

)

are the right and the left limits of u(t) at the point t = t j, j = 1, . . . , p

respectively. ∆u′ (t j) = u′
(

t+j

)

− u′
(

t−j

)

,u′
(

t+j

)

= lim
h→0+

u′ (t j + h) , and u′
(

t−j

)

= lim
h→0−

u′ (t j + h) and

(

D
ς

t+j
u

)

|t=t−j+1

=

lim
t→t−j+1

D
ς

t+j
u(t).

Our approach is based on the Krasnoselskii fixed point theorem. To our best knowledge, no work has been reported
on the impulsive fractional differential equations involving both left and right fractional derivatives and in the presence of
a delay in the literature. Thus these results are considered as a contribution to this emerging field.

2 Preliminaries

In this section, we first introduce some necessary definitions and properties of fractional calculus which will be used in
this sequel. We refer the reader to [18,28,30] for more details.
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Definition 1. Let J = [a,b] be a finite interval of R. The left and the right Riemann-Liouville fractional integral Iυ
a+

f (t)

and Iυ
b−

f (t) of order υ ∈ R
+ are defined respectively by

Iυ
a+ f (t) =

1

Γ (υ)

t
∫

a

(t − s)υ−1
f (s)ds, t > a.

Iυ
b− f (t) =

1

Γ (υ)

b
∫

t

(s− t)υ−1
f (s)ds, t < b,

Provided the right-hand sides are pointwise defined on [a,b] .

Definition 2. The left and the right Caputo fractional derivatives CDυ
a+

f (t) and CDυ
b−

f (t) of order υ ∈ R
+ are defined

respectively by

CDυ
a+ f (t) =

1

Γ (n−υ)

∫ t

a
(t − s)n−υ−1

f (n) (s)ds,

CDυ
b− f (t) =

(−1)n

Γ (n−υ)

∫ b

t
(s− t)n−υ−1

f (n) (s)ds,

where n = [υ ]+ 1, [υ ] means the integer part of υ .

Proposition 1. Let υ ∈R
+ and let n = [υ ]+ 1, if f ∈ ACn ([a,b]) , then

IυC
a+ Dυ

a+ f (t) = f (t)−
n−1

∑
k=0

f (k) (a)

k!
(t − a)k

and

IυC
b− Dυ

b− f (t) = f (t)−
n−1

∑
k=0

(−1)k
f (k) (b)

k!
(b− t)k

.

Next, we state Krasnoselskii’s fixed point theorem.

Theorem 1. Let M be closed bounded convex nonempty subset of a Banach space E. Suppose that A and B map M into

E such that

i) A is completely continuous,

ii) B is a contraction mapping,

iii) x,y ∈ M implies Ax+By ∈ M.

Then there exists z ∈ M such that z = Az+Bz.

3 Main results

In this section, we transform the problem (P) to an integral equation, then we apply Krasnoselski fixed point theorem.

Lemma 1. The boundary value problem (P) is equivalent to the following integral equation:

u(t) =
1

Γ (υ)Γ (ς)

t
∫

0





µ
∫

0

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
1

Γ (υ)Γ (ς)

t1
∫

t





t
∫

0

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
tς

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

, t ∈ [0, t1),
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= 1
Γ (υ)Γ (ς)

t
∫

t1





µ
∫

t1

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+ 1
Γ (υ)Γ (ς)

t2
∫

t





t
∫

t1

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+ 1
Γ (υ)Γ (ς)

t1
∫

0





µ
∫

0

(t1 − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+h1

(

t−1 ,u(t−1 )
)

+
t
ς
1

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1
)

− u
(

0+
))

+
(t − t1)

ς

Γ (ς + 1)
g1

(

t−2 ,u
(

t−2
)

− u
(

t+1
))

+(t − t1)





1
Γ (υ)Γ (ς−1)

t1
∫

0





µ
∫

0

(t1 − s)ς−2 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

∼
+h1

(

u(t−1 )
)

+
t
ς−1
1

Γ (ς)
g

0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

)

,

t ∈ [t1, t2),

=

t j+1
∫

t j

G j (t,µ) f
(

µ ,uµ

)

dµ +
j

∑
k=1





tk
∫

tk−1

Fk (µ) f
(

µ ,uµ

)

dµ + hk

(

t−k ,u
(

t−k

))

+
(tk − tk−1)

ς

Γ (ς + 1)
gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

+
j−1

∑
k=1

(t j − tk)





tk
∫

tk−1

Hk (µ) f
(

µ ,uµ

)

dµ +
∼
hk

(

t−k ,u
(

t−k

))

+
(tk − tk−1)

ς−1

Γ (ς)
gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

+(t − t j)
j

∑
k=1





tk
∫

tk−1

Hk (µ) f
(

µ ,uµ

)

dµ +
∼
hk

(

t−k ,u
(

t−k

))

+
(tk − tk−1)

ς−1

Γ (ς)
gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

,

t ∈ (t j, t j+1], j = 2, · · · , p

= ϕ (t) , t ∈ [−r,0] ,

where

G j (t,µ) =
1

Γ (υ)Γ (ς)



















µ
∫

t j

(t − s)ς−1 (µ − s)υ−1
ds, t j ≤ µ ≤ t ≤ t j+1

t
∫

t j

(t − s)ς−1 (µ − s)υ−1
ds, t j ≤ t ≤ µ ≤ t j+1,

∀ j = 0, · · · , p.
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and

Fj (µ) =
1

Γ (υ)Γ (ς)

µ
∫

t j−1

(t j − s)ς−1 (µ − s)υ−1
ds,

H j (µ) =
1

Γ (υ)Γ (ς − 1)

µ
∫

t j−1

(t j − s)ς−2 (µ − s)υ−1
ds,

t j−1 ≤ µ ≤ t j, ∀ j = 1, · · · , p.

Proof.Since the history condition u(t) = ϕ (t) , t ∈ [−r,0] is known, so we will investigate the existence of solution in
[0,1]. Let t ∈ [0, t1) and rewrite the equation (1.1) as

CDυ
t−
1

(

CD
ς
0+

u(t)
)

= f (t,ut) ,0 < t < t1, (3.1)

applying the fractional integral Iυ
t−1

to the equation (3.1), we get

CD
ς
0+

u(t) = Iυ
t−1

f (t,ut)+ c0, (3.2)

using condition (1.4), we obtain

c0 = g0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

,

substituting c0 in (3.2) , it yields

CD
ς
0+

u(t) = Iυ
t−1

f (t,ut)+ g0

(

t−1 ,u
(

t−1
)

− u
(

0+
))

. (3.3)

Now, applying the fractional integral I
ς
0+

to the equation (3.3), we get

u(t) = I
ς
0+

Iυ
t−1

f (t,ut)+ I
ς
0+

(

g0

(

t−1 ,u
(

t−1

)

− u
(

0+
)))

+ c1 + c2t. (3.4)

Taking conditions (1.2) and (1.3) into account, we obtain

c1 = ϕ (0) = 0,c2 = u′ (0) = 0,

substituting c1 and c2 in (3.4) yields

u(t) = I
ς
0+

Iυ
t−1

f (t,ut)+
tς

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1
)

− u
(

0+
))

=
1

Γ (υ)Γ (ς)

t
∫

0



(t − s)ς−1

s
∫

t1

(s− µ)υ−1
f
(

µ ,uµ

)

dµ



ds

+
tς

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

.

Using Fubini Theorem, we get

u(t) =
1

Γ (υ)Γ (ς)

t
∫

0





µ
∫

0

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
1

Γ (υ)Γ (ς)

t1
∫

t





t
∫

0

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
tς

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

.
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Now, for t ∈ [t1, t2), we apply the fractional integral Iυ
t−
2

to the equation (1.1) to get

CD
ς

t+1
u(t) = Iυ

t−2
f (t,ut)+ b0, (3.5)

using condition (1.4), gives
b0 = g1

(

t−2 ,u
(

t−2
)

− u
(

t+1
))

.

Substituting b0 in (3.5), we obtain

CD
ς

t+1
u(t) = Iυ

t−2
f (t,ut)+ g1

(

t−2 ,u
(

t−2

)

− u
(

t+1

))

. (3.6)

Applying the fractional integral I
ς

t+1
to the equation (3.6), we get

u(t) = I
ς

t+1
Iυ
t−2

f (t,ut)+
(t − t1)

ς

Γ (ς + 1)
g1

(

t−2 ,u
(

t−2
)

− u
(

t+1
))

+ b1 + b2 (t − t1) . (3.7)

Taking conditions (1.5) and (1.6) into account, we obtain

b1 = u
(

t+1

)

= h1

(

t−1 u(t−1 )
)

+ u
(

t−1

)

= h1

(

t−1 ,u(t−1 )
)

++
t
ς
1

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1
)

− u
(

0+
))

+
1

Γ (υ)Γ (ς)

t1
∫

0





µ
∫

0

(t1 − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

and

b2 = u′
(

t+1

)

=
∼
h1

(

u(t−1 )
)

+ u′
(

t−1

)

=
∼
h1

(

u(t−1 )
)

+
t
ς−1
1

Γ (ς)
g

0

(

u
(

t−1

)

− u
(

0+
))

+
1

Γ (υ)Γ (ς − 1)

t1
∫

0





µ
∫

0

(t1 − s)ς−2 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ .

Substituting b1 and b2 in (3.7) and using Fubini Theorem, we get

u(t) =
1

Γ (υ)Γ (ς)

t
∫

t1





µ
∫

t1

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
1

Γ (υ)Γ (ς)

t2
∫

t





t
∫

t1

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
1

Γ (υ)Γ (ς)

t1
∫

0





µ
∫

0

(t1 − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+h1

(

t−1 ,u(t−1 )
)

+
t
ς
1

Γ (ς + 1)
g

0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

+
(t − t1)

ς

Γ (ς + 1)
g1

(

t−2 ,u
(

t−2

)

− u
(

t+1

))

+(t − t1)





1

Γ (υ)Γ (ς − 1)

t1
∫

0





µ
∫

0

(t1 − s)ς−2 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

∼
+h1

(

u(t−1 )
)

+
t
ς−1
1

Γ (ς)
g

0

(

t−1 ,u
(

t−1

)

− u
(

0+
))

)

.
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Continuing this process for t ∈ [tp,1] , the following integral equation is obtained

u(t) =
1

Γ (υ)Γ (ς)

t
∫

tp





µ
∫

tp

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
1

Γ (υ)Γ (ς)

1
∫

t





t
∫

tp

(t − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
p

∑
k=1





1

Γ (υ)Γ (ς)

tk
∫

tk−1





µ
∫

tk−1

(tk − s)ς−1 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+hk

(

t−k ,u
(

t−k

))

+
(tk − tk−1)

ς

Γ (ς + 1)
gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

+
p−1

∑
k=1

(tp − tk)





1

Γ (υ)Γ (ς − 1)

tk
∫

tk−1





µ
∫

tk−1

(tk − s)ς−2 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
∼
hk

(

t−k ,u
(

t−k

))

+
(tk − tk−1)

ς−1

Γ (ς)
gk

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

+(t − tp)
p

∑
k=1





1

Γ (υ)Γ (ς − 1)

tk
∫

tk−1





µ
∫

tk−1

(tk − s)ς−2 (µ − s)υ−1
ds



 f
(

µ ,uµ

)

dµ

+
∼
hk

(

t−k ,u
(

t−k

))

+
(tk − tk−1)

ς−1

Γ (ς)
gk

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

.

Conversely, suppose that u satisfies the integral equations given in the Lemma 1. By a direct computation, it follows that
u satisfies the problem (P). This achieves the proof.

The functions G j, Fj and H j satisfy the following properties.

Lemma 2. The functions G j, Fj and H j are nonnegative and satisfy the following estimates:

1- G j (t,µ)≤
1

(υ+ς−2)Γ (υ)Γ (ς)
, for all t,µ ∈

[

t j, t j+1

]

, j = 0, · · · , p,

2- Fj (µ)≤
1

(υ+ς−2)Γ (υ)Γ (ς) and H j (µ)≤
1

(υ+ς−2)Γ (υ)Γ (ς) for all µ ∈
[

t j−1, t j

]

, j = 1, · · · , p.

Proof.It is obvious that G j, Fj and H j are nonnegative. Let t j ≤ µ ≤ t ≤ t j+1, then

G j (t,µ) =
1

Γ (υ)Γ (ς)

µ
∫

t j

(t − s)ς−1 (µ − s)υ−1
ds

≤
1

Γ (υ)Γ (ς)

µ
∫

t j

(µ − s)υ−1
ds

=
(µ − t j)

υ

υΓ (υ)Γ (ς)
≤

1

(υ + ς − 2)Γ (υ)Γ (ς)
.
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For t j ≤ t ≤ µ ≤ t j+1, we have

G j (t,µ) =
1

Γ (υ)Γ (ς)

t
∫

t j

(t − s)ς−1 (µ − s)υ−1
ds

≤
1

Γ (υ)Γ (ς)

t
∫

t j

(µ − s)υ−1
ds

=
(µ − t j)

υ − (µ − t)υ

υΓ (υ)Γ (ς)
≤

1

(υ + ς − 2)Γ (υ)Γ (ς)
.

Consequently, G j (t,µ) ≤ 1
(υ+ς−2)Γ (υ)Γ (ς) , for all t,µ ∈

[

t j, t j+1

]

, j = 0, · · · , p. Similarly, we prove that

Fj (µ)≤
1

(υ+ς−2)Γ (υ)Γ (ς) and H j (µ)≤
1

(υ+ς−2)Γ (υ)Γ (ς) for all µ ∈
[

t j−1, t j

]

, j = 1, · · · , p.

Define the Banach space E = PC ([−r,1] ,R)∩PC1 ([0,1] ,R) , with the norm ‖u‖= maxt∈[−r,1] |u(t)| , where

PC ([−r,1] ,R) =
{

u : [−r,1]→R,u ∈C
((

t j, t j+1

])

∪C [−r,0] ,

u

(

t+j

)

and u

(

t−j

)

, j = 1, · · · , p, exist and u

(

t+j

)

= u(t j)
}

,

PC1 ([0,1] ,R) =
{

u : [0,1]→R,u ∈C1
((

t j, t j+1

])

, u′
(

t+j

)

, u′
(

t−j

)

,

j = 1, · · · , p, exist and u′
(

t−j

)

= u′ (t j)
}

.

Definition 3. A function u ∈ E is said to be a solution for problem (P) if it satisfies the differential equation (1.1) and the

conditions (1.2)-(1.6).

Define the operators A and B on E by

Au(t) =

{

0, t ∈ [−r,0],
A ju(t) , t ∈ [t j, t j+1), j = 0, · · · , p

and

Bu(t) =

{

ϕ (t) , t ∈ [−r,0]
B ju(t) , t ∈ [t j, t j+1), j = 0, · · · , p

where

A ju(t) =

t j+1
∫

t j

G j (t,µ) f
(

µ ,uµ

)

dµ , t ∈ [t j, t j+1), j = 0, · · · , p

B ju(t) =























































































j

∑
k=1

(

tk
∫

tk−1

Fk (µ) f
(

µ ,uµ

)

dµ + hk

(

t−k ,u
(

t−k

))

+
(tk−tk−1)

ς

Γ (ς+1) gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

+
j−1

∑
k=1

(t j − tk)

(

tk
∫

tk−1

Hk (µ) f
(

µ ,uµ

)

dµ +
∼
hk

(

t−k ,u
(

t−k

))

+
(tk−tk−1)

ς−1

Γ (ς) gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

+(t − t j)
j

∑
k=1

(

tk
∫

tk−1

Hk (µ) f
(

µ ,uµ

)

dµ +
∼
hk

(

t−k ,u
(

t−k

))

+
(tk−tk−1)

ς−1

Γ (ς) gk−1

(

t−k ,u
(

t−k

)

− u
(

t+k−1

))

)

,

t ∈ [t j, t j+1), j = 0, · · · , p
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Since the solution u is known on [−r,0], we will investigate the existence of solution on [0,1]. Obviously, problem (P)
has a solution if and only if A+B has a fixed point, i.e.

Au(t)+Bu(t) = u(t) , t ∈ [0,1] .

The following hypotheses will be needed:

(H1) The function f (.,0) is continuous and not identically null on [0,1], and there exists a nonnegative function
k ∈ L1 (0,1), such that

| f (t,x)− f (t,y)| ≤ k (t) |x− y| ,0 ≤ t ≤ 1,x,y ∈R

and

‖k‖L1
<

(υ + ς − 2)Γ (υ)Γ (ς)

24p
(3.8)

(H2) The functions h j (.,0) = 0, for all j = 1, · · · , p and there exist nonnegative continuous functions
a j ∈C ([0,1] ,R+) , j = 1, · · · , p such that

∣

∣h j (t,x)− h j (t,y)
∣

∣≤ a j (t) |x− y| ,0 ≤ t ≤ 1,x,y ∈ R, j = 1, · · · , p

and

a = max
j=1,··· ,p

(

∥

∥a j

∥

∥

C[0,1]

)

<
1

8p
. (3.9)

(H3)
∼
h j (.,0) = 0,for all j = 1, · · · , p and there exist nonnegative functions b j ∈C [0,1] , j = 1, · · · , p, such that

∣

∣

∣

∣

∼
h j (t,x)−

∼
h j (t,y)

∣

∣

∣

∣

≤ b j (t) |x− y| ,0 ≤ t ≤ 1,x,y ∈R, j = 1, · · · , p

b = max
j=1,··· ,p

(

∥

∥b j

∥

∥

C[0,1]

)

<
1

16p
. (3.10)

(H4) There exist nonnegative functions c j ∈C [0,1] , j = 0, · · · , p, such that

∣

∣g j (t,x)− g j (t,y)
∣

∣≤ c j (t) |x− y| ,0 ≤ t ≤ 1,x,y ∈ R, j = 0, · · · , p

c = max
j=0,··· ,p

(

∥

∥c j

∥

∥

C[0,1]

)

<
Γ (ς)

48p
. (3.11)

Let M = {u ∈ E ∈,‖u‖ ≤ R} , where R is chosen such that

R ≥ max

(

24pL

(υ+ς−2)Γ (υ)Γ (ς)−24p‖k‖L1

,
24pd

Γ (ς)

)

, (3.12)

where L = maxt∈[0,1] | f (.,0)| and d = max j=0,··· ,p

∣

∣g j (.,0)
∣

∣ . Clearly, M is a nonempty, bounded and convex subset of
E.

Theorem 2. Under the hypotheses (H1)− (H4), the problem (P) has at least one nontrivial solution in M.

Proof.We will demonstrate that all the assumptions of the Krasnoselskii fixed point theorem are verified, so, the proof will
be done in a few steps. First, A is continuous on M. In fact, consider the sequence (un)n ⊂ M such that un → u in M, then

thanks to Lemma 2 and the Hypothesis (H1) , it yields t ∈
[

t j, t j+1

]

, j = 0, · · · , p

|Aun (t)−Au(t)|=
∣

∣A jun (t)−A ju(t)
∣

∣

≤

t j+1
∫

t j

G j (t,µ)
∣

∣ f
(

µ ,unµ

)

− f
(

µ ,uµ

)∣

∣dµ ≤
‖k‖L1

(υ + ς − 2)Γ (υ)Γ (ς)
‖un − u‖ .

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


212 E. Kenef, A. Guezane-Lakoud: Impulsive mixed fractional differential equations...

Second, the family (Au) is uniformly bounded on M. Let u∈M, then hypothesis (H1) implies for t ∈
[

t j, t j+1

]

, j = 0, · · · , p

|Au(t)| =
∣

∣A ju(t)
∣

∣≤

t j+1
∫

t j

G j (t,µ)
∣

∣ f
(

µ ,uµ

)∣

∣dµ

≤

t j+1
∫

t j

G j (t,µ)
∣

∣ f
(

µ ,uµ

)

− f (µ ,0)
∣

∣dµ +

t j+1
∫

t j

G j (t,µ) | f (µ ,0)|dµ

≤
‖u‖ .‖k‖L1

+L

(υ + ς − 2)Γ (υ)Γ (ς)
≤

R‖k‖L1
+L

(υ + ς − 2)Γ (υ)Γ (ς)
(3.13)

Third, the family (Au) is equicontinuous on M. Let u ∈ M, and t j < µ1 < µ2 < t j+1, j = 0, · · · , p then

|Au(µ2)−Au(µ1)| =
∣

∣A ju(µ2)−A ju(µ1)
∣

∣

≤

µ1
∫

t j

∣

∣G j (µ2,µ)−G j (µ1,µ)
∣

∣

∣

∣ f
(

µ ,uµ

)∣

∣dµ

+

µ2
∫

µ1

∣

∣G j (µ2,µ)−G j (µ1,µ)
∣

∣

∣

∣ f
(

µ ,uµ

)∣

∣dµ

+

t j+1
∫

µ2

∣

∣G j (µ2,µ)−G j (µ1,µ)
∣

∣

∣

∣ f
(

µ ,uµ

)∣

∣dµ

≤

(

R‖k‖L1
+L

Γ (υ)Γ (ς)

)





µ1
∫

t j

µ
∫

t j

(

(µ2 − s)ς−1 − (µ1 − s)ς−1
)

(µ − s)υ−1
dsdµ

+

t j+1
∫

µ1

µ1
∫

t j

(

(µ2 − s)ς−1 − (µ1 − s)ς−1
)

(µ − s)υ−1
dsdµ

+

µ2
∫

µ1

µ
∫

µ1

(µ2 − s)ς−1 (µ − s)υ−1
dsdµ +

t j+1
∫

µ2

µ2
∫

µ1

(µ2 − s)ς−1 (µ − s)υ−1
dsdµ





≤ 3(µ2 − µ1)

(

R‖k‖L1
+L

Γ (υ + 1)Γ (ς + 1)

)

.

Hence, |Au(µ2)−Au(µ1)| tends to zero when µ1 → µ2.

This proves the equicontinuity in the case t 6= t j, j = 1, . . . , p+ 1, it remains to examine the points t = t j. First, we

prove the equicontinuity at t = t−j , let us fix δ1 > 0 such that {tk, k 6= j}∩ [t j − δ1, t j + δ1] = /0, for 0 < h < δ1, it yields

∣

∣Au(t j)−Au(t j − h)
∣

∣=
∣

∣A j−1u(t j)−A j−1u(t j − h)
∣

∣

≤
(

2
(

t j − t j−1

)ς
− 2
(

t j − t j−1 − h
)ς

− hς
)

(

R‖k‖L1
+L

Γ (υ + 1)Γ (ς + 1)

)

,

so, the right-hand side tends to zero as h → 0.
Next, we prove the equicontinuity at t = t+j , fix δ2 > 0 such that {tk, k 6= j}∩ [t j − δ2, t j + δ2] = /0, for 0 < h < δ2, we

get
∣

∣Au(t j + h)−Au(t j)
∣

∣ =
∣

∣A ju(t j + h)−A ju(t j)
∣

∣

≤ hς

(

R‖k‖L1
+L

Γ (υ + 1)Γ (ς + 1)

)

→ 0, as h → 0.
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Hence, we conclude that A is completely continuous on M by Arzela-Ascoli theorem.

Fourth, the mapping B is a contraction on M. Let u,v ∈ M, then by hypothesis (H1)− (H4) , and for t ∈
[

t j, t j+1

]

,

j = 1, · · · , p, it yields

|Bu(t)−Bv(t)| =
∣

∣B ju(t)−B jv(t)
∣

∣

≤

[

3p‖k‖L1

(υ + ς − 2)Γ (υ)Γ (ς)
+ pa

+2pb+
6pc

Γ (ς)

]

‖u− v‖

≤
‖u− v‖

2
,

so B is a contraction on M.

Fifth. Let u,v ∈ M. Taking (3.12) and (3.13) into account, we obtain

|Au(t)| ≤
R‖k‖L1

+L

(υ + ς − 2)Γ (υ)Γ (ς)
≤

R

24p
≤

R

24
,u ∈ M

Proceeding as in the second step and taking (3.9)-(3.10)-(3.11) into account, we get for v ∈ M

|Bv(t)| ≤ Rp
(υ+ς−2)Γ (υ)Γ (ς)

×
(

3‖k‖L1
+ a(υ + ς − 2)Γ (υ)Γ (ς)+ 2bΓ (ς)+ 6c

)

+3p
L+(υ+ς−2)dΓ (υ)
(υ+ς−2)Γ (υ)Γ (ς)

≤
5R

8
,

so

|Au(t)+Bv(t)| ≤ |Au(t)|+ |Bv(t)|=
17R

24
≤ R, u,v ∈ M.

Consequently, (Au+Bv) ∈ M, for all u,v ∈ M. Thanks to Krasnoselskii fixed point theorem, we deduce that A+B has a
fixed point u ∈ M and then problem (P) has at least one nontrivial solution in M. The proof is complete.

Example: Consider the following impulsive problem with delay that we denote by (P1), with p= 1, t1 =
1
2
, υ = 0.75,

ς = 1.75:

CDυ
1
2

−

(

CD
ς
0+

u(t)
)

= f (t,ut) ,0 ≤ t <
1

2

CDυ
1−

(

CD
ς
1
2

+u(t)

)

= f (t,ut) ,
1

2
≤ t < 1

u(t) = ϕ(t), t ∈ [−r,0] ,u′ (0) = 0

(

CD
ς
0+

u
)

|
t= 1

2

− =

(

CD
ς
1
2

+u

)

|t=1− = 0

∆u

(

1

2

)

= h1

(

1

2

−

,u(
1

2

−

)

)

, ∆u′
(

1

2

)

=
∼
h1

(

1

2

−

,u(
1

2

−

)

)

,

f (t,x) =
2sin t2

45

(

x−
t

2(1+ x2)

)

,

h1 (t,x) = x
cost2

8
,

∼
h1 (t,x) = x

sin t2

16
, t ∈ [0,1] ,x ∈ R,
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The assumptions of Theorem 2 are satisfied and hypothesis (H1) holds:

f (t,0) =
t sin t2

45
nonidentical null on [0,1] ,

| f (t,x)− f (t,y)| ≤
sin t2

15
|x− y|= k (t) |x− y| , t ∈ [0,1] ,x,y ∈R,

‖k‖L1
=

1
∫

0

sin t2

15
dt = 0.020685<

0.023463 =
(υ + ς − 2)Γ (υ)Γ (ς)

24
.

Let us check hypothesis (H2):

h1 (t,0) = 0,

|h1 (t,x)− h1 (t,y)| =
cost2

8
|x− y| , t ∈ [0,1] ,x,y ∈ R,

a1 (t) =
cost2

8
,a =

cos1

8
= 0.067538<

1

8
= 0.125.

Hypothesis (H3) holds, in fact:

∼
h1 (t,0) = 0

∣

∣

∣

∣

∼
h1 (t,x)−

∼
h1 (t,y)

∣

∣

∣

∣

=
sin t2

6
|x− y| , t ∈ [0,1] ,x,y ∈ R,

b =
sin1

16
= 0.052592<

1

16
= 0.0625.

Hypothesis (H4) holds. In fact,

c = max
j=0,1

∥

∥c j

∥

∥

L1
= 0 <

Γ (1.75)

24
.

We have

sup{| f (t,0)| ,0 ≤ t ≤ 1}=
sin 1

45
= L = 0.018699andd = 0,

and by computations we get

max

(

24pL

(υ+ς−2)Γ (υ)Γ (ς)−24p‖k‖L1

,
24pd

Γ (ς)

)

= 6.7311.

Now, if we choose R = 7, then we conclude by Theorem 2 the existence of at least one nontrivial solution u for problem
(P1) such that ‖u‖ ≤ 7.

4 Conclusion

In this paper, we have proven the existence of solutions to a boundary value problem with delay and involving multi-base
points right and left Caputo derivatives. The main tools are Arzela-Ascoli theorem, Banach contraction principle and
Krasnoselskii fixed point theorem. The presence of impulsive moments with left and right fractional derivatives in the
posed problem makes it more complicated and interesting. Similar problems with different types of fractional derivatives
will be studied in future works.
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