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1 Introduction, motivation and preliminaries

Recently, fractional differential equations have been investigated in many papers in literature since they have several
applications in various fields. Following this development, more attentions is given to impulsive differential equations
of fractional order, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] where the questions on existence, uniqueness and stability
of solutions are treated. Moreover, when these processes involve hereditary phenomena or delay argument that may
cause undesirable performance in the system, it is necessary to analyze delay effects on the dynamical behaviors of the
impulsive fractional differential equations. For more results on impulsive fractional differential equations with delay, we
refer to [1,2,3,7].

Different methods have been applied to investigate the solvability of boundary value problems for impulsive
differential equations, such as fixed point theorems, upper and lower solutions method, variational methods and critical
point theorems.

Recently, fractional differential equations containing the left and right fractional derivatives have been considered in
[18,19,20,21,22,23,24,23,26]. The left and right fractional derivatives may arise naturally as in some physical situations,
where the state of the process depends on all its previous states and on the results of its future development, for more
details see [20,22].

In [14], the authors studied the following impulsive fractional problem

“py_ (CDéqu(t)) =f(t,u), 0<t<T,t+#t,
A (DY (“DY,u)) (1)) =1; (u(t;),j=1,2..n,
u(0)=u(T)=0,

where v € (%, 1, 0=ty <1 < -+ <ty < typy; = T. Using critical point theory and variational method, the authors
proved the existence of at least one solution or infinitely many solutions. Using Banach fixed point theorem and the
nonlinear alternative of Leray—Schauder, the authors in [7], explored the existence of solutions for the following initial
value problems of fractional order functional differential equations with infinite delay:
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DY u(t)=f(r,u), 0<r<b0<v<I,
u(t) = (p(t)at € [70050]

In [29], the following multi-base points fractional initial value problems with impulses on the half lines are
investigated:
(CDfu(t)) = f(t,u,CDiu) , t>0,
u(0)=0
Au(tj) =1 (t;,u(t;)) ,j=1,2...p,

where 0 < ¢ <v<1,0=1t9<t; <---, limg_t; = o0, DY is the standard Caputo fractional derivative at the base points
tr. That is for all ¢ € (t;, 1], we have € DPu (1) =€ Dpu(t). The authors discussed the existence of solutions on the half
line by means of Schauder fixed point theorem.

Our main objective is to discuss the existence of solutions for the following boundary value problem for impulsive
fractional differential equations with delay and involving multi-base points right and left Caputo derivatives (P):

CD%I (CD%M(I)) =f(t,u),0<t<1,t#t;;j=0,1...p (1.1)
u(t)=09(t),t € [-r0] (1.2)

W (0) =0 (13)

(e50) by, =5 (o (10 = (1)) G =01 (14
Au(t;) = h; (t;,u(t;)) J=12..p (1.5)

A (1) = b (t;,u(t;)) Jj=1,2.p (1.6)

where 0 < v < 1,1 < ¢ <2,suchthat v+¢ > 2, CD}’, , CDti are respectively the left and the right Caputo fractional
j+1 j

derivatives, u is the unknown function and the history of state is u; (6) = u(r +6), for 6 € [-r,0], £:[0,1] x D — R,
D = {u: [—r,0] = R,u is continuous everywhere except for a finite number of points 6 at which u (6) and the right limit
u(0 ) existandu(0~) =u(0)}, f (¢,u,) is measurable on [0, 1] according to 7 for any u, € D.

The functions ij,hj,g;:[0,1] x R =R, for j = 1,..., p, are given. The initial function ¢ : R — R, satisfies ¢ (0) = 0.

The impulsive moments # are such 0 =ty <ty < --- <t, <tpy1=1,Au(t;) =u (t;r) —u (t;) U (t;r) = hlir(r)1+u (ti+h),

and u (t;) = hlirgiu (ti+h), u (tj*) and u (t]’) are the right and the left limits of u(¢) at the pointt =¢;, j=1,...,p

h—0F h—0~ j |

respectively. Au’ (t;) = u’ (tf) —u (t;) ' (t;r) = lim «' (t;+h), and ' (t;) = lim «' (t;+h) and <Df+ u) =
le=t;,
lim D% u(t).
=10 J
Our approach is based on the Krasnoselskii fixed point theorem. To our best knowledge, no work has been reported
on the impulsive fractional differential equations involving both left and right fractional derivatives and in the presence of
a delay in the literature. Thus these results are considered as a contribution to this emerging field.

2 Preliminaries

In this section, we first introduce some necessary definitions and properties of fractional calculus which will be used in
this sequel. We refer the reader to [18,28,30] for more details.
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Definition 1. Let J = [a,b] be a finite interval of R. The left and the right Riemann-Liouville fractional integral I? f (t)
and I f (t) of order v € R are defined respectively by

1’1 (1) = F(lv) /(zfs)”*'f(s)ds,t > a.
1 ab
R f() = o) /(s—t)”"f(s)ds,t < b,

Provided the right-hand sides are pointwise defined on |a, D).

Definition 2. The left and the right Caputo fractional derivatives CD};+f (t) and CDg,f (t) of order v € R are defined
respectively by

DY, £ (1) = ﬁ/ﬂf (t— )™ £ (5)ds,

—1)\? b
DY f(t) = %/, (s— )"0~ £ (5) s,

where n =[] + 1, [v] means the integer part of V.

Proposition 1. Let v € R and let n =[]+ 1, if f € AC" ([a,b]), then

n—1 (k)a
_Zf (@)

a (t— a)k

I’°DY, f (1) = f (1)

k=0
and

n=1(_ 17k £(k)
pepy £y =r(n- Y, Oy

k=0

Next, we state Krasnoselskii’s fixed point theorem.

Theorem 1. Let M be closed bounded convex nonempty subset of a Banach space E. Suppose that A and B map M into
E such that

i) A is completely continuous,

ii) B is a contraction mapping,

iii) x,y € M implies Ax+By e M.

Then there exists z € M such that z = Az+ Bz.

3 Main results

In this section, we transform the problem (P) to an integral equation, then we apply Krasnoselski fixed point theorem.

Lemma 1. The boundary value problem (P) is equivalent to the following integral equation:

v
1 - .
“(I)WO/ / (t—9)"(u—s)"""ds f(p,uy)du

+mt/‘ b/(ts)gl(”s)ulds f([.t,u#)dy

s

+mgo (

nou(n)—u(0Y)),  refo,n),
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Jr1"(1))11—@)/ ( (t—s)>" (#S)vlds) f(t,uy)du
3| lli
+F(v)ll"(€)/ (/(ﬁ —s)"! (MS)“'dS) f(wouy)dp
0 0
S
iy (e u(e)) +1_,(gtl+])g0 (i u (i) —u (07))

lj+1

= /Gj(t,u)f(u,uﬂ)dwki (/ Fie () f (t,up) dp+ b (1 u (1))
=1 L.

Zj

_ 9
e ) () )

-1 g N
+k2:,(tj_tk) (/ Hi () f (1yup) dic+ (1 u (1))

) ) )
ra-)Y ( [ H ) £ (o) (o ()

P i)t )).
t€ (tptim], Jj=2,.p

:(P(t)v l‘E[*f’,O],

where
K ¢—1 v—1
| tf(t—s) (u—s)" ds,tj <pu<t<tj
Gj(t1) = 7=\ ¢
POITE | T g5 (w—s)"Vdsty <1 < p <y,
lj
VJ:O7 P
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and
1 H
Fm) = Frovprg | 9 e s
1 B i
Hj(u) = m / (tj—s)G*Z (,J_s)qus7

[J,]
tj*lgugtﬁ v.]:]77p

Proof.Since the history condition u(t) = ¢ (t),t € [—r,0] is known, so we will investigate the existence of solution in

[0,1]. Lett € [0,#;) and rewrite the equation (1.1) as
CD}’I, (CDg+u(t)) = f(t,u),0 <t <t
applying the fractional integral I” to the equation (3.1), we get
1
CD(Q)+M (1) = I:Iif(t,u,) + co,

using condition (1.4), we obtain
co=go (1 u(f) —u(07)),

substituting ¢ in (3.2), it yields
CD8+M (1) = Itllif(t,u,) +go(t;,u(ty)—u(0%)).

Now, applying the fractional integral Ig+ to the equation (3.3), we get

u(t) = IgJ;]’,f(t,u,) Jrlg+ (g0 (t;,u(t;)—u(0%))) +c1+cot.

Taking conditions (1.2) and (1.3) into account, we obtain
c1=¢(0)=0,c, =1 (0)=0,

substituting ¢; and ¢; in (3.4) yields

0 = )+ e ()~ (0")
_ ; / —s -1 / s — vl u N
B F(v)F(g)O/ (t=9)° tl/( W)’ (1oup)dp | d

s
PRy ()~ (0).

Using Fubini Theorem, we get

A

1 _ o
“(I)WO/ O/(fs)g Y —s) s | f (wup)du

+mt/‘ b/(ts)gl(”s)ulds f([.t,u#)dy

ey )~ (0)).

3.1

(3.2)

(3.3)

(3.4)
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Now, for 7 € [t1,1,), we apply the fractional integral I”. to the equation (1.1) to get
2

CDfru(t) =12 £ (t:u) + bo, (3.5)

using condition (1.4), gives
bo=g1 (1 () —u(r)).
Substituting by in (3.5), we obtain

CDfru(t) = I;z’,f(t,u,) +g1(tuty)—u(t)). (3.6)
Applying the fractional integral Iti to the equation (3.6), we get
1
u(t) =1°1° f (t,u;) + mgl (5 u(ty)—u(t)) +b1+ba(t—1). (3.7)
[|+ 5 s r (Q + ]) 20 2 1

Taking conditions (1.5) and (1.6) into account, we obtain

by =u(ty) =hy (r7u(y)) +u(ty)

S

= hy (17 ,u(t))) ++ﬁgo (t7,u(t;) —u(0%))
1 | H
+— (1 —s)gl(u—s)vlds) f(u,uy)dp
F(D)F(G)O/(O g
and
by =i (1) = hy (u(t;)) +4d (17 )
tf’l

4] 153
+F( (0/ t—s)° s)vlds)f(y,uﬂ)dy.

o
Substituting b and b; in (3.7) and using Fubini Theorem, we get
u

u(t) = /t(/ (t—s)° — )Dlds)f(u,u“)du

tl Ul

(/ s)vlds) f(u,uy)du
3] IIIJ
/ ( t—s)° s)vlds) f(p,uy)du

0 0

\

5

T % (fu(n) —u(07))

+hi (1), (t;))+r(g+])

—1)¢ .
e () ~u (i)
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Continuing this process for ¢ € [, 1], the following integral equation is obtained

tfu
”(t):m/ /(tfs)g"(u—s)“*'ds £ (touy) du
1 t
+m/( (=9 =) s | st o) A

_ S
i () + G ()~ () )

p

#
+(t—1) ), m/ / (te—9)° 2 (—9)"""ds | f(1,uu)dp

k=1 1 -1

~ _ ¢-1
i)+ ) ) ).

Conversely, suppose that u satisfies the integral equations given in the Lemma 1. By a direct computation, it follows that
u satisfies the problem (P). This achieves the proof.

The functions G, F; and H; satisfy the following properties.

Lemma 2. The functions G;, Fj and H; are nonnegative and satisfy the following estimates:
1-Gj(t,u) < m,forallt,u S [tj;tj+1} ,j=0,---,p,
1 1 .
2- Fj(“) = (v+¢—2) (V)T (g) Cdej(l,L) < W]‘orallu S [tjfl,tj} ,ji=1,--,p.

ProofIt is obvious that G, F; and H; are nonnegative. Let; < u <t <t;,1, then

"
Gj(t,p) = m/(f—s)gfl (e —s)"""ds
1 [ju
< Fyr ) B
__(u—ry)” J < 1
oI'(v)I"(g) = (v+¢-2)I" (V)I'(¢)
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Fort; <t < u <tj,1, we have

G.m) = g [ 0= =9 as
1 / )
. r(v)F(g)/(“” e
(u—=1)" = (u—1)" 1

T (T (5~ (s ) (g)

1 . _
Consequently, G;(t,1) < mremrmr for all r,u € [tjstjs1], j = 0,---,p. Similarly, we prove that

1 1 .
Fj(u) < e DrOre and Hj (u) < Wforallue [tjfhtj]a]:]f” P
Define the Banach space E = PC([—r,1],R)NPC' ([0,1],R), with the norm ||u| = max,c(_j |u(t)|, where
PC(] ={u:[-r1] > RuecC((t,tjs1]) UC[-r0],

u(t;r) andu( ) j=1,---.p, ex1standu<t]+) (tj)}

PC'([0,1],R) = {u: 0,1] > RueC ((t,tj11]), o (tj*), u (z?),
j=1,---,p, existand i/ (t;) :u/(tj)}.

Definition 3. A function u € E is said to be a solution for problem (P) if it satisfies the differential equation (1.1) and the
conditions (1.2)-(1.6).

Define the operators A and B on E by

_ 0, [=r,0]
Au(t)_{Aju(t)a te[tjvthrl)?j:Oa"'ap

and
(p(t)a IE[—V,O]
Bu(t) =
u() {Bjum Eltptin)j= 0, p
where
Tj+1
Aju(t): /Gj(tau)f(“auu)duate[tjatj+l)ajzoa"'7p
tj

£ ms ) )

k=1 \txk—1
—t_1)° _ _
+(lkr(?+1|; g1 (1 ,u(r) _M(II:I)))

FE ) | A0 () di+ e (1)

k-1

el o (1) —u (i)

=) 8 (T A0 7 () dut i 1)

+%g1¢ (e u(r) _”(tktl)))’
Z‘G[tptﬂrl)f*o P
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Since the solution « is known on [—r, 0], we will investigate the existence of solution on [0, 1]. Obviously, problem (P)
has a solution if and only if A + B has a fixed point, i.e.

Au(t)+Bu(t) =u(t),t €[0,1].

The following hypotheses will be needed:
(H;) The function f(.,0) is continuous and not identically null on [0, 1], and there exists a nonnegative function
ke L;(0,1), such that

|f(t,x)—f(t,y)| Sk(t)|x—y|,0§t§ ],X,yER

and
(v+6-2)"(V)I"(¢)
[1kll, < (3.8)
b 24p
(Hy) The functions h;(.,0) = 0, for all j = 1,---,p and there exist nonnegative continuous functions
aj€C([0,1],Ry), j=1,---,p such that
‘hj(t)x)_hj(t7y)|Saj(t)lx_y|70§t§15x7y€Raj:]7”'7p
and
a= max (|[a] )<L (3.9)
j=1,.p J1iclo.1] Sp' ’
3 hi .,0)=0,forall j=1,---,p and there exist nonnegative functions b; € , 11, j=1,---,p, such that
H3) hj(.,0) =0,forall j =1 d th g fi b;eCl0,1],j=1 h th
Zj(t,x)—;lj(t,y)’§bj(l)|x—y|,0§t§l,x,yeR,jzl,---,p
b= max (| )<L (3.10)
j=1,p J11Cl0,1] 16p .
(Hy) There exist nonnegative functions ¢; € C[0,1], j=0,---, p, such that
‘gj(trx)_gj(t?y)’Scj(t)|x_y|50§t§1a-x7y€Raj:O7"'7p
r)
C_jf(}f.).(’p(HCch[o,l]) < a8p (3.11)

Let M = {u € E €,]ju|| <R}, where R is chosen such that

24pd
24pL 14
R = max (<v+g2>r<v>r<g>24n||kL] T (g)) ! (-12)

where L = max;¢ (o1 |/ (-,0)] and d = max—o.... |g; (,0)|. Clearly, M is a nonempty, bounded and convex subset of
E.

Theorem 2. Under the hypotheses (H,) — (Hy), the problem (P) has at least one nontrivial solution in M.

Proof-We will demonstrate that all the assumptions of the Krasnoselskii fixed point theorem are verified, so, the proof will
be done in a few steps. First, A is continuous on M. In fact, consider the sequence (un)n C M such that u,, — u in M, then
thanks to Lemma 2 and the Hypothesis (H)), it yields ¢ € I:tj,tj+]j| ,j=0,---p

At (1) — A1) = |A e (1) — Aju (1)

lj+1

< / G 1) |F () — 1 (1) b < ¢

Zj

[
vg-2r I "

—ull.
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Second, the family (Au) is uniformly bounded on M. Let u € M, then hypothesis (H ) implies fort € [t;,t41],j=0,---,p

lj+1

Au@)] = 4] < [ G0 |f () | an

tjit1 Ljt1

Gj(t, )| f (up) — f (1,0)|dp+ / Gj(t,1)[f (1,0)|du

Zj Ij

IN

lell - l&Il, +L Rilkll,, +L
T (+e=2)r()r(g) ~ (v+g-2)r(v)I(g)
Third, the family (Au) is equicontinuous on M. Letu € M, and t; < 11 < tp <tj11, j=0,---,p then

(3.13)

Au () — Au ()] = |Aju (o) — Aju ()|
My

S/!Gj(uz,u) G (i, )| | f (1, ) | dt

Zj

+/\Gj(uz,u) ()] [f (up)|dp

Lj+1

+/\G] ta, 1) — G (pa, 1) || f (1,up) | du

Iilli

<R|k”L1 JFL) / — ( 7S)g71) (n—s)° ' dsdu

tj tj

M p Tj+1 1
+// W —s v 1dsd[.1+// py —s) ! ) dsdu
i o

<3m- Rk, +L )
RV CESII RN
Hence, |Au () — Au(1)] tends to zero when py — .
This proves the equicontinuity in the case t #¢;,j = 1,...,p+ 1, it remains to examine the points ¢ = ¢;. First, we
prove the equicontinuity at# =7, let us fix 6 > 0 such that {#, k # j} N [t; — &1,1;+ &] =0, for 0 <h < &, it yields

|Au(t;) = Au(tj — h)| = |Aj—1u(t;) — Aj_qu(t; — h)|

Rk, +L
< (2 (tj—tjfl)g—2(tj—fffl—h)g_hg) (r(v|+1|)L11“(;+1))

so, the right-hand side tends to zero as & — O.
Next, we prove the equicontinuity at ¢ = t;-r, fix 6, > O such that {z, k# j}N[tj — 02,tj+ 6] =0, for 0 < h < &, we
get

’Au(tj—i—h)—Au(tj)‘ = ‘Aju(tj—i-h)—Aju(tj)‘

<h€( Rk, +£ )—>0 ash — 0
- v+ 1)I'(g+1) ’ '
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Hence, we conclude that A is completely continuous on M by Arzela-Ascoli theorem.
Fourth, the mapping B is a contraction on M. Let u,v € M, then by hypothesis (H;) — (H,) , and for t € [1},1;41],

j=1,---,p,ityields
|Bu(t) —Bv(t)| = ‘Bju(t)fij(t)‘

[ 3plkll,
(V+6=2)I"(v)I"(5)

+ pa

6pc
+2pb+—] u—v
s =]

_ ey
— 2 b
so B is a contraction on M.

Fifth. Let u,v € M. Taking (3.12) and (3.13) into account, we obtain

Rk +L R _R

WS e r T (o) = 24p = 24

ueM

Proceeding as in the second step and taking (3.9)-(3.10)-(3.11) into account, we get forv € M

R
1B (1)] < mrearore

% (3Kll, +a(v+g=2) (V)T (g)+2b (5) +6c)

Lt(vic—2)dl(v) _
B3 orcarore = g

SO
17R
[Au(t)+Bv(t)] < |Au(t)|+|Bv ()| = Ers <R, u,veM.
Consequently, (Au+ Bv) € M, for all u,v € M. Thanks to Krasnoselskii fixed point theorem, we deduce that A+ B has a
fixed point u € M and then problem (P) has at least one nontrivial solution in M. The proof is complete.

Example: Consider the following impulsive problem with delay that we denote by (P1), withp=1,¢ = %, v=0.75,
c=1.75:

0 2
1
CD}’, (CDEM(;) :f(t,u,),E <t<l1
u(t) = @(r),t € [-r,0],u' (0) =0
D)y = (D) r =0
2

@© 2021 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

214 NS P E. Kenef, A. Guezane-Lakoud: Impulsive mixed fractional differential equations...

The assumptions of Theorem 2 are satisfied and hypothesis (H; ) holds:

tsint?
f(,0) = S:; nonidentical null on [0, 1],
sint
|f(t,x)—f(t,y)| < 15 |X7y| :k(t) |x—y|,t€ [Oal]axvyG]Ra

1
sinf?
Il :/ 15t = 0020685 <

0
(+6-2)I'(v)I'(S)

24 '
Let us check hypothesis (H):

hy(2,0) = 0,

COSt2
|hy (t,x) =y (t,y)] =

0.023463 =

|X*y|,t€ [Ovl]axvyeRv

2 1 1
ar(t) = CO; a= % = 0.067538 < 5 =0.125.

Hypothesis (H3) holds, in fact:

hy (£,0) = 0

~ ~ sin?
hl (I,X)—hl (tay) = 6

|x—y|,r€]0,1],x,y € R,

sin 1 1
b 16 0.05259 <16 0.0625

Hypothesis (Hy) holds. In fact,

B - I(175)
c=max|lej, =0 <=7
We have
sin 1
sup{|f (1,0)],0 <1 <1} = = =L =0.018699andd = 0,

and by computations we get
24pd
24pL 14
fnax ((v+gz)r(v>r<g>24p|kL] 'T(Q)

) =6.7311.

Now, if we choose R = 7, then we conclude by Theorem 2 the existence of at least one nontrivial solution u for problem
(P1) such that |ju]| <7.

4 Conclusion

In this paper, we have proven the existence of solutions to a boundary value problem with delay and involving multi-base
points right and left Caputo derivatives. The main tools are Arzela-Ascoli theorem, Banach contraction principle and
Krasnoselskii fixed point theorem. The presence of impulsive moments with left and right fractional derivatives in the
posed problem makes it more complicated and interesting. Similar problems with different types of fractional derivatives
will be studied in future works.
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