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Abstract: The use of fractional order models are growing in the re$efietd of modeling. However, there is no attempt to compare
different fractional order models. In this paper, a comgmmiof different fractional model structures is presentét w simulation of
various systems. The various model structures cover cigsodel, classical model with zero, commensurate, anecnamrmensurate
fractional model. The results of fractional model struetuare also compared with an integer order model structimeil&ion results
show that non-commensurate fractional model is perforrbetter than the other fractional and integer model strestur
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1 Introduction

Use of fractional calculus in the domain of engineering atidrece is increasing gradually,p,3,4,5]. In the control
system, itis mainly used for designing controller and pssaaodelingZ, 6]. A process model is useful for prediction, soft
sensor, control, monitoring, optimization, eté,§]. Mainly, there are two approaches for process modelingg:firinciple
method and empirical method. A first principle-based model lse developed using different equations like mass and
energy equations for the most of the systems. In the empajmaroach, a model is developed based on input/output
data. Selection of model structure is always a challengialg in empirical method. In the fractional model structuites
becomes even more difficult task as compared to integer arddel.

In literature, a classical and commensurate fractionalehsttucture are used by many research,9,10,11,12,
13,14,15). However, there is no much attention from the research conityy on non-commensurate fractional model
structure for system identification. In this paper, differigactional model structures are compared with diffesgistems.
Various models include classical, commensurate, non-oemsarate fractional, and integer model structure.

A six different plants are used for simulation. These plarts excited with various signals like pseudo-random
binary sequence (PRBS), step input, sinusoidal signabredlsignal, etc. Excitation of the system is critical fosteyn
identification to capture dynamics of the system. Four glare referred from a database of system identification
(DalSy), which includes different systems such as procestal systems, mechanical systems, and thermal systems.

Fractional model structures are more stable than the ingier model structurelf]. The stability of fractional
order system is presented in this paper. The stable modetste has more advantages than the unstable model s&uctur
in the analysis and design of the control system.

The fractional calculus has a property of short and long nmignTdhe fractional operator needs infinite memory for
implementation. However, it is not possible in the realgirmplementation. The fractional operator is approximated
the operating frequency range. Oustaloup recursive appegion method is used in approximation of fractional opara
for the most of the applicationdT].

In Section 2, a basic of fractional calculus and fractiorraleo system is presented briefly. Sect®describes for
system identification of the fractional model structure tielology to estimate various parameters for fractionadeho
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structures is discussed in SectirResults and discussion are presented in SebtiBmally, conclusions are commented
in Section6 followed by references.

2 Fractional Calculus and Fractional Order System

2.1 Fractional calculus
Fractional calculus is a theory of derivatives and integéngal numbers. It induced the notation for integer ordet an
n fold integration. The fractional calculus is not very prievd in the research field in spite of its three centuries old
as conventional calculus is. From a couple of decades,ndsya have applied fractional calculus in different arefas
science and engineering (control system, signal proagssiadeling of physical systems, etc2)$,18,19,20,21].

There are many definitions of fractional calculus: starfiregn n-fold definitions to other different variations related
to definitions. The following definitions of fractional calcs are used widely in the area of control syst@2].
2.1.1 Grunwald-Letnikov Definition

Itis defined as

T R
OF = Jm - 5 (-1 () e=rm W
where[1:2] is an integer partyis the step size for differentiationjs an integer which satisfies the conditign- 1) <
a < n, andt anda are the boundaries of differentiation.
2.1.2 Riemann-Liouville Definition

Itis defined as the following

a __ nin—a _ 1 d " t f(T)
D% = D"J f(t)_m(a> /amdr, @)

wheren is an integer which fulfils the constraifn— 1) < a < n, a is a real numbed] is the integral operator, ard
anda are the boundaries of integration. For an example,ig 0.78, them would be two as £ 0.78 < 1.

2.1.3 M. Caputo Definition

Itis given by

a_ 1 vt ()
aDi = I'(n—a)/a (t—r)"*"*ldr’ ®)

wheren is an integer which fulfils the constraif — 1) < a < n, a is a real number, andanda are the boundaries
of integration.

2.2 Fractional order linear system

A typical fractional differentiation equation is expreddsy

anDany(t) + anilDanfly(t) + . + aODaOy(t) =
bmDPu(t) + bm_1DPr1u(t) + - - - + boDPou(t),  (4)
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whereD? is denote the fractional differentiation order with timmiis of O tot, as, as—1, -+, ag, bm, bm_1, - -+, bg are
real constants andp, an_1, -+ , 0o, Bm, Bm-1," - , Bo are a positive real numbeyt) is the output of the system, amik)
is the input of the system.

The Eq.4 can be transformed into frequency domain using Laplacefeansing following property43],

L{D"x(t)} = s'X(s); if x(t) =0 Vvt < O. (5)
By using the above property, it can be presented in the eafghction as follows:
Y(S)  buSm+ by 1Pm1 4+ b ©)
U (s) B ansS?n + Sp_1S%-1 4 ... 4 ggsdo ’
_Y(s _ Q)
(s)= @ = W (7)

Eq. (6) can be called commensurate order systeoy éindf is an arithmetical progression with the same difference.
Mathematically,

G(s) =

ax =k x a;where k=0,1,2,-- ,n
B« = kx a;where k=0,1,2,-- .m

and the value ofr is between 0 to 1. The stability of fractional order system ba obtained using Riemann surface
shown in Fig.1.

Fig. 1: Riemann surface fast/3.

3 System ldentification

3.1 Introduction

The system identification deals with developing a suitabbeleh from input/output data. System identification is not a
just tool for getting the model from the gathered data. Havelt should be used with good experimental design and a
prior knowledge if available. The more details of systemidfecation can be found in7, 8].
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Fig. 2: Block diagram of output-error metho@4).

A fractional model structure was used in system identiftigably Le Lay in his Ph.D. thesis for frequency domain
system identificationd4]. Time domain system identification using fractional modes started by the Ph.D. theses of Le
Lay, J. Lin and O. CoisZ4, 25,26]. Mainly, two classes of methods are used in literaturea¢igu error-based method and
output error based methods. There are many real systemsh wéin be represented by the fractional model. It includes
electrode-electrolyte polarizatio@7), diffusion systems: electro-chemistry, heat transfat aelectromagnetisnip, 28],
Nuclear reactorq9], charge estimation of lead acid batte], Semi-infinite thermal systen®], Thermal diffusion in
a wall [13], Ultra-capacitors or super-capacitoB], fractional order chaotic system31], modeling for HIV infection
with drug therapy effect2], boost converterd3], etc.

3.2 Output error method for system identification

The parameters of different model structures can be estirat output error metho®fl]. Assuming tha® is required
to be an estimation of the exact parameiteThe data set for identification is composed\bflataset point§un, y;} with
sampling timeTe. y;, represents noise measurement of the exact oytputhe general block diagram of output error
method for system identification is shown in Fiy.

The output predication error,

& = Yn — Yn(un, 0). (8)
The optimal value o can be obtained by minimized of the mean square predicatronwhich is given by,
N
I=35 & (9)
n=1

Most of the timey;; is nonlinear. In this situation , the Marquardt’s algoritfi®®] can be used which gives a robust
convergence for parameters estimation. This algorithimeges parameters by following recursive formudg [

" 71 !
Ga=8-{ [ %} (10)
6=6
where
, N
Jo=-2 z €n0On6 : Gradient
n=1
" N
Joo =23 Ong 0, g Hessian
n=1
A is the monitoring parameters.
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oy e .
Ong = a—yn Output sensitivity function.
|
The mean squared error (MSE) is the mean of the squares ofrthretaat is, the difference between measured and
prediction values. Mathematically, it is represented by,

MSE= (v - "), (11)

whereN is the total number of samples.

The normalized mean square error (NMSE) is a performandedtat for the overall deviations between measured
and prediction values. Mathematically, it is represented b

NMSE= %Y (12)
AR
where the overbar represents the mean over the samplintspoin

4 Methodology

For comparing different fractional model, six differenapts are used for simulation. These systems are taken 86m [
37). Plant 1 is a DC motor systen3], where plant 2 is higher order systeBi/]. Plant 3 to plants 6 are referred from a
database of system identification (DalSy), which is used bBgymesearchers in the field of system identificati®®) 39,
40,41]. In case of plant 1 and plant 2, data are gathered using 8ikndodel from system transfer function. Different
plants used for simulation are summarized in Tdble

Table 1: Different plants used for simulation.

Plant Descriptions Remark(s)

P Second order system Ref. [42]
(DC-Motor)

P, Higher order system Ref3[]
P; Hair dryer system DalSy
Py Ball beam system DalSy
Ps Wing flutter system DalSy
Ps Heating system DalSy

Detail of various plants as follows:
K

(Js+b)(Ls+R) +K?’
whereJ is the moment of inertia (0.0kg.m?), b is the motor viscous friction constant (Nlm.s.), L is the electrical

inductance (0.51), Ris the electric resistance (2), andK is the motor torque constant (0.8m/Amp. The modeling
of DC motor for fractional calculus can be found #4].

Pi(s) = (13)

1

S = g as 691 as+ 1

(14)
Plant 3 detail: Hair dryer system

—Inputs: voltage of the heating device

—Outputs: output air temperature

—Sampling time: 0.1 sec

—Description: laboratory setup. Air is fanned through a tabd heated at the inlet.

Plant 4 detail: Ball bear system

—Inputs: angle of the beam
—Sampling time: 0.1 sec
—Outputs: position of the ball
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Plant 5 detail: Wing flutter system

—Inputs: the input is highly colored.
—Sampling time: 0.1 sec

Plant 6 detail: Heating system

—Inputs: input drive voltage

—Output:temperature (deg. C)

—Sampling time: 2.0 sec

—Description: The data of expriment is a single-input sirgléput heating system. The input drives a 300 Watt Halogen
lamp, suspended several inches above a thin steel plate.

The excitation of different plants is PRBS signal, step inpimusoidal signal, colored signal, etc. The input anghout
plots for different plants are shown in Figdand4. These different types of signal captures different dyrami the
system. A dataset is divided into two sets: 50 % used for ifiestion and 50 % used for model validation.

Following fractional model structures are covered for datian:

—Model 1 (classical fractional model)
K
Gy(s) gra (15)
In Eq. (15), the following parameters are estimated in this papéf [

"=k a a

The range o andk are between 0 to 100, armdis between 0 to 2.
—Model 2 (classical fractional model with zero)

. b098+b1_a>

Gy(s) = : 16
2(9) %07 1 a1 (16)
In Eqg. (16), the following parameters are estimated
0T =[p b1 B a a a]
The range oy, a;, by andb; are between 0 to 100, amdand are between 0 to 2 wittr > 3.
—Model 3 (commensurate order)
K
G(§)= —5——. 17
(S aosf + a7 +ap an

In Eg. 17), the value offf is an integer multiple ofr. So, the above model structure is commensurate order. Here,
the value of is taken twice ofr (8 = 2a). The range o0&y, a;,a, andk are between 0 to 100, and the valuenois
between 0 to 1.

—Model 4 (Non-commensurate order)

_ bes” + by
aoSP + s +ap

In Eq. 18), the value ofo is not an integer multiple g8. So, the above model structure is non-commensurate order.
The range obg, by, a9,a; anda, are between 0 to 100, the valuemfandy are between 0 to 1, and the valuebfs
between 1 to 2.

—Model 5 (Integer order)
Assuming the plant dynamics is of higher order, we have usisdiiodel structures.

Gy(s) (18)

_ bos+ by
St agStad+ast+ag

The parameters(, b1, ag,a1,a, andag) of Eq. (19) are in the range of 0 to 100 and estimation by same approach as
used for fractional model.

Gs(s)

(19)

The summary of different model structure is given in Tabigith number of parameters to be estimated.
The parameters of the various model structure are estimagig) optimization toolbox. The steps for obtaining
parameters of different models follow:
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Fig. 3: Input and output signal for plant 1 to plant 3.
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Fig. 4: Input and output signal for plant 4 to plant 6.
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Table 2: Number of parameters to be estimate in various model sireictu

Sr. No Model Structure No of Parameters
1 Gi(S) = 75 3
2 Gals) = 25t 6
3 Gs(s) = m 5
4 Ga(s) = sl 8
5 Gs(9= grasradiasa 6

1.Experiment is carried out to generate data using Simulink

2.Dataset is collected using experiment or referred froratalthse of system identification (DalSy).

3.Dataset is divided into two parts: 50 % for parameter ifieation and 50 % for model validation.

4.Using identification dataset, model outputs are caledl&r selected model structure.

5.Error index function (MSE/NMSE) is minimized in the sdadomain using optimization method (Genetic algorithm).
6.The estimated parameters are validated using validdtitaset.

5 Results and Discussions

The above method, which is described in the previous sedfi@pplied to six plants. For every model structure, theeal

of MSE and NMSE is calculated. For model structure 1, which idassical fractional model, the different parameters
are estimated. Results are tabulated in T&blEhe value of NMSE does not depend on the range of input. Hexyéwe
value of MSE depends on the range of input. In estimationrihelatasets are mostly normalized before using for system
identification.

Table 3: Results for model structure 1.

Plant K a a MSE NMSE
PL | 01339 1.0831 1.341% 4.0915E-6| 0.0120
P, | 0.2006 1.1431 0.1993 0.00426 | 0.0199
P; | 1.6223 1.3296 1.6853 0.3496 0.3998
P, | 0.0100 0.0170 0.3460 0.0053 | 4.0201
Ps 0.5745 0.0001 1.7293 1.5837 20.1734
P; | 29862 0.6392 0.1227 218.5861 | 0.1083

Six parameters are estimated for model structure 2. Refrlthis model structure are tabulated in TaldleA
commensurate model structure (model structure 3) is aled & comparison of different model structures. In this
simulation, the value o8 is taken twice the value af, where the range af is between 0 to 1. Results are presented in
Table5. This model structure gives better results than model strad and 2.

A non-commensurate model structure is also used for ideatifin of plants dynamics. In the nhon-commensurate
model, the value ofr andf are not in the multiple of an integer. Results are provide@able6. This model structure
gives much better results than other model structures. Mexore parameters are required to be estimated in thisimod
structure. An integer model is also developed using the saetbod as used for the fractional model structure. In this
model structure, there are six parameters need to be estinfdte results are tabulated in TaBle

Finally, step response for different plants is shown in Fig$, 7, 8, 9 and10. It demonstrates that fractional models
capture more dynamics expect for plant 4. For plant 1 and plathe model structure 3 (commensurate model) is giving
minimum MSE and NMSE. As mention earlier, plant 2 is highetes model system of3order. So, integer order model
gives better results in this case. However, non-commetesteaults are closed to integer order model. For plant 3 and
plant 5, the non-commensurate model gives good resultsplgot 4, integer and fractional order model structure are
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Table 4: Results for model structure 2.

Plant bg b1 B Qg a1 a MSE NMSE
Py 0.0849 0.1687 0.0104 1.6536 2.5612 1.3051.4669e-05| 0.0051
P, | 5.9361e-05 0.35922 1.0336 2.1581 0.3686 1.19500.00358 | 0.0165
Ps 0.0100 1.7961 0.0265 1.0417 1.8751 1.3342 0.3478 0.3858
Py 0.3819 0.7872 0.0105 8.6821 0.0100 1.9999 0.0049 | 11.1552
Ps 0.2331 0.0129 1.1722 0.0600 1.2012 1.3697 0.1022 0.0647
Ps 4.8057 29773 0.6463 2.6610 0.1294 0.8130261.8012 | 0.1138

Table 5: Results for model structure 3.

Plant K ag a a a MSE NMSE

P1 0.1366 0.3896 0.5739 1.3505 0.79321.7055e-06| 0.0007
P, 0.6109 0.8417 3.6960 1.3538 0.5968 0.00139 0.0068
Ps 0.9320 0.3683 0.2503 0.9560 0.7850 0.3300 0.3641
Py 0.1075 1.4980 0.3017 0.4875 0.9899 0.0048 7.2427
Ps 0.2235 0.0255 0.2948 0.7375 4.3e-p4 1.5838 20.0248
Ps 0.8586 1.609e-04 0.1847 0.0343 0.5480197.1101 | 0.1016

Table 6: Results for model structure 4.

Plant bo by y ag a a a B MSE NMSE
P 0.2586 0.0959 0.7787 24208 1.7031 0.9188 0.6962 1.63246831e-05| 0.0158
P, | 8.8503e-04 0.1779 0.9252 0.3192 1.1121 0.1734 0.7806 4.5930.00161 | 0.0082
P 1.0694 0.9238 0.0460 1.2103 0.4455 1.8496 0.7955 1.9999.3133 0.3446
Py 2.8643 0.0 0.9904 1.4109 0.5078 3.4839 0.9961 1.201680.0052 29.4533
Ps 0.1387 7.1585e-05 0.2459 0.1646 0.0368 0.8610 0.1619 3.8620.0866 0.0548
Ps 2.8061 2.2568 0.0983 1.1856 0.0745 0.1399 0.5510 1.9991P9.6909 | 0.1006

not mapping dynamics of the system. The validation of oleimodels are carried out and their responses are plotted
in Figs.11and12 The obtained parameters also give good results with wididaataset, which is not used during the
identification process.

6 Conclusions and future directions

In this paper, different fractional model structures armpared with various systems. A non-commensurates fraaition
model gives better results regarding MSE and NMSE. Stgtofidifferent fractional model structures is also presdnte
briefly. A comparison is also made with an integer order matieicture, which is identified by system identification
toolbox. Fractional model structures are capable to captdynamics of many systems. However, the presence of the
fractionality in the system needs to cross check beforeseteof fractional model.

A non-commensurates fractional model can be explored nmodetails, which should work with initial conditions.
System identification toolbox may be extended for user définedel structure including fractional model.
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Fig. 5: Step response for plant 1.
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Step Response for Plant 2
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Fig. 6: Step response for plant 2.
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Step Response for Plant 3
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Fig. 7: Step response for plant 3.
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Step Response for Plant 4
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Fig. 8: Step response for plant 4.
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Step Response for Plant 5
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Fig. 9: Step response for plant 5.
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Fig. 10: Step response for plant 6.
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Fig. 11: Model validations for plant 1 to plant 3.
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Fig. 12: (continued) Model validations for plant 4 to plant 6.
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Table 7: Results for integer model structure 5.

Plant bg by ag a a1 ) MSE NMSE
P 0.1824  0.1169 1.0268 3.7431  3.0562 1.1795.2784e-04 0.0847
P, 0.0565  0.2959 1.7065 2.0587  1.2499 0.2958.4765e-05 0.0011

9.9057  1.0238 1.3453 10.9092 10.8039 1.0626 1.9484 1.2793

Py 0.0290  0.3449 1.3443 1.6814  0.3304 0.6289 0.0048 5.6742

Ps 12.8342 19.6285 1.4254e-04 3.7377  0.4532  3.87670.9667 1.7431

Ps 5.1563 0.9057 0.3425 0.0641 1.5008 0.0408345.5185 0.1251

F
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