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Abstract: The use of fractional order models are growing in the research field of modeling. However, there is no attempt to compare
different fractional order models. In this paper, a comparison of different fractional model structures is presented with a simulation of
various systems. The various model structures cover classical model, classical model with zero, commensurate, and non-commensurate
fractional model. The results of fractional model structures are also compared with an integer order model structure. Simulation results
show that non-commensurate fractional model is performingbetter than the other fractional and integer model structures.
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1 Introduction

Use of fractional calculus in the domain of engineering and science is increasing gradually [1,2,3,4,5]. In the control
system, it is mainly used for designing controller and process modeling [1,6]. A process model is useful for prediction, soft
sensor, control, monitoring, optimization, etc. [7,8]. Mainly, there are two approaches for process modeling: first principle
method and empirical method. A first principle-based model can be developed using different equations like mass and
energy equations for the most of the systems. In the empirical approach, a model is developed based on input/output
data. Selection of model structure is always a challenging task in empirical method. In the fractional model structures, it
becomes even more difficult task as compared to integer ordermodel.

In literature, a classical and commensurate fractional model structure are used by many researchers [6,9,10,11,12,
13,14,15]. However, there is no much attention from the research community on non-commensurate fractional model
structure for system identification. In this paper, different fractional model structures are compared with differentsystems.
Various models include classical, commensurate, non-commensurate fractional, and integer model structure.

A six different plants are used for simulation. These plantsare excited with various signals like pseudo-random
binary sequence (PRBS), step input, sinusoidal signal, colored signal, etc. Excitation of the system is critical for system
identification to capture dynamics of the system. Four plants are referred from a database of system identification
(DaISy), which includes different systems such as process control systems, mechanical systems, and thermal systems.

Fractional model structures are more stable than the integer order model structure [16]. The stability of fractional
order system is presented in this paper. The stable model structure has more advantages than the unstable model structure
in the analysis and design of the control system.

The fractional calculus has a property of short and long memory. The fractional operator needs infinite memory for
implementation. However, it is not possible in the real-time implementation. The fractional operator is approximatedin
the operating frequency range. Oustaloup recursive approximation method is used in approximation of fractional operator
for the most of the applications [17].

In Section 2, a basic of fractional calculus and fractional order system is presented briefly. Section3 describes for
system identification of the fractional model structure. Methodology to estimate various parameters for fractional model
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structures is discussed in Section4. Results and discussion are presented in Section5. Finally, conclusions are commented
in Section6 followed by references.

2 Fractional Calculus and Fractional Order System

2.1 Fractional calculus

Fractional calculus is a theory of derivatives and integersof real numbers. It induced the notation for integer order and
n fold integration. The fractional calculus is not very prevalent in the research field in spite of its three centuries old
as conventional calculus is. From a couple of decades, researchers have applied fractional calculus in different areasof
science and engineering (control system, signal processing, modeling of physical systems, etc.) [2,5,18,19,20,21].

There are many definitions of fractional calculus: startingfrom n-fold definitions to other different variations related
to definitions. The following definitions of fractional calculus are used widely in the area of control system [22].

2.1.1 Grunwald-Letnikov Definition

It is defined as

aDα
t = lim

h→0

1
hα

[ t−a
h ]

∑
r=0

(−1)r
(

n
r

)

f (t − rh), (1)

where[ t−a
h ] is an integer part,h is the step size for differentiation,n is an integer which satisfies the condition(n−1)≤

α ≤ n, andt anda are the boundaries of differentiation.

2.1.2 Riemann-Liouville Definition

It is defined as the following

aDα
t = DnJn−α f (t) =

1
Γ (n−α)

(

d
dt

)n∫ t

a

f (τ)
(t − τ)α−n+1dτ, (2)

wheren is an integer which fulfils the constraint(n−1)≤ α ≤ n, α is a real number,J is the integral operator, andt
anda are the boundaries of integration. For an example, ifα is 0.78, thenn would be two as 0≤ 0.78≤ 1.

2.1.3 M. Caputo Definition

It is given by

aDα
t =

1
Γ (n−α)

∫ t

a

f n(τ)
(t − τ)α−n+1dτ, (3)

wheren is an integer which fulfils the constraint(n−1)≤ α ≤ n, α is a real number, andt anda are the boundaries
of integration.

2.2 Fractional order linear system

A typical fractional differentiation equation is expressed by

anDαny(t)+an−1D
αn−1y(t)+ · · ·+a0D

α0y(t) =

bmDβnu(t)+bm−1D
βn−1u(t)+ · · ·+b0D

β0u(t), (4)
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whereDα is denote the fractional differentiation order with time limits of 0 tot, an, an−1, · · · , a0, bm, bm−1, · · · , b0 are
real constants andαn,αn−1, · · · ,α0, βm,βm−1, · · · ,β0 are a positive real number,y(t) is the output of the system, andu(t)
is the input of the system.

The Eq.4 can be transformed into frequency domain using Laplace transfer using following property [23],

L{Dγ x(t)}= sγX(s); if x(t) =0 ∀t < 0. (5)

By using the above property, it can be presented in the transfer function as follows:

G(s) =
Y(s)
U(s)

=
bmsβm +bm−1sβm−1 + · · ·+b0sβ0

ansαn + sn−1sαn−1 + · · ·+a0sα0
, (6)

G(s) =
Y(s)
U(s)

=
Q(sα)

P(sα)
. (7)

Eq. (6) can be called commensurate order system ifαk andβk is an arithmetical progression with the same difference.
Mathematically,

αk = k×α;where k=0,1,2,· · · ,n

βk = k×α;where k=0,1,2,· · · ,m

and the value ofα is between 0 to 1. The stability of fractional order system can be obtained using Riemann surface
shown in Fig.1.
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Fig. 1: Riemann surface fors1/3.

3 System Identification

3.1 Introduction

The system identification deals with developing a suitable model from input/output data. System identification is not a
just tool for getting the model from the gathered data. However, it should be used with good experimental design and a
prior knowledge if available. The more details of system identification can be found in [7,8].
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Fig. 2: Block diagram of output-error method [34].

A fractional model structure was used in system identification by Le Lay in his Ph.D. thesis for frequency domain
system identification [24]. Time domain system identification using fractional modelwas started by the Ph.D. theses of Le
Lay, J. Lin and O. Cois [24,25,26]. Mainly, two classes of methods are used in literature: equation error-based method and
output error based methods. There are many real systems, which can be represented by the fractional model. It includes
electrode-electrolyte polarization [27], diffusion systems: electro-chemistry, heat transfer and electromagnetism [10,28],
Nuclear reactor [29], charge estimation of lead acid battery [11], Semi-infinite thermal system [6], Thermal diffusion in
a wall [13], Ultra-capacitors or super-capacitors [30], fractional order chaotic systems [31], modeling for HIV infection
with drug therapy effect [32], boost converter [33], etc.

3.2 Output error method for system identification

The parameters of different model structures can be estimated by output error method [34]. Assuming thatθ̂ is required
to be an estimation of the exact parameterθ . The data set for identification is composed ofN dataset points{un,y∗n} with
sampling timeTc. y∗n represents noise measurement of the exact outputyn. The general block diagram of output error
method for system identification is shown in Fig.2.

The output predication error,

εn = y∗n− ŷn(un, θ̂ ). (8)

The optimal value of̂θ can be obtained by minimized of the mean square predication error which is given by,

J =
N

∑
n=1

ε2
n . (9)

Most of the time ˆyn is nonlinear. In this situation , the Marquardt’s algorithm[35] can be used which gives a robust
convergence for parameters estimation. This algorithm estimates parameters by following recursive formula [7],

θi+1 = θi −

{

[

J
′′

θθ +λ I
]−1

J
′

θ

}

θ̂=θi

, (10)

where

J
′

θ =−2
N

∑
n=1

εnσnθi : Gradient

J
′′

θθ ≈ 2
N

∑
n=1

σn,θi σ
T
n,θi

Hessian

λ is the monitoring parameters.
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σn,θi =
∂ ŷn

∂θi
Output sensitivity function..

The mean squared error (MSE) is the mean of the squares of the error, that is, the difference between measured and
prediction values. Mathematically, it is represented by,

MSE=
1
N
(y∗n− ŷ∗n

2
), (11)

whereN is the total number of samples.
The normalized mean square error (NMSE) is a performance indicator for the overall deviations between measured

and prediction values. Mathematically, it is represented by,

NMSE=
y∗n− ŷ∗n

2

ȳ∗n
¯̂y∗n

, (12)

where the overbar represents the mean over the sampling points.

4 Methodology

For comparing different fractional model, six different plants are used for simulation. These systems are taken from [36,
37]. Plant 1 is a DC motor system [36], where plant 2 is higher order system [37]. Plant 3 to plants 6 are referred from a
database of system identification (DaISy), which is used by many researchers in the field of system identification [38,39,
40,41]. In case of plant 1 and plant 2, data are gathered using Simulink model from system transfer function. Different
plants used for simulation are summarized in Table1.

Table 1: Different plants used for simulation.

Plant Descriptions Remark(s)
P1 Second order system

(DC-Motor)
Ref. [42]

P2 Higher order system Ref. [37]
P3 Hair dryer system DaISy
P4 Ball beam system DaISy
P5 Wing flutter system DaISy
P6 Heating system DaISy

Detail of various plants as follows:

P1(s) =
K

(Js+b)(Ls+R)+K2, (13)

whereJ is the moment of inertia (0.01kg.m2), b is the motor viscous friction constant (0.1N.m.s.), L is the electrical
inductance (0.5H), R is the electric resistance (1Ω ), andK is the motor torque constant (0.01N.m/Amp). The modeling
of DC motor for fractional calculus can be found in [43].

P2(s) =
1

s4+4s3+6s2+4s+1
. (14)

Plant 3 detail: Hair dryer system

–Inputs: voltage of the heating device
–Outputs: output air temperature
–Sampling time: 0.1 sec
–Description: laboratory setup. Air is fanned through a tubeand heated at the inlet.

Plant 4 detail: Ball bear system

–Inputs: angle of the beam
–Sampling time: 0.1 sec
–Outputs: position of the ball
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Plant 5 detail: Wing flutter system

–Inputs: the input is highly colored.
–Sampling time: 0.1 sec

Plant 6 detail: Heating system

–Inputs: input drive voltage
–Output:temperature (deg. C)
–Sampling time: 2.0 sec
–Description: The data of expriment is a single-input single-output heating system. The input drives a 300 Watt Halogen
lamp, suspended several inches above a thin steel plate.

The excitation of different plants is PRBS signal, step input, sinusoidal signal, colored signal, etc. The input and output
plots for different plants are shown in Figs.3 and4. These different types of signal captures different dynamics of the
system. A dataset is divided into two sets: 50 % used for identification and 50 % used for model validation.

Following fractional model structures are covered for simulation:

–Model 1 (classical fractional model)

G1(s) =
K

sα +a
. (15)

In Eq. (15), the following parameters are estimated in this paper [10]

θ T = [k α a]

The range ofa andk are between 0 to 100, andα is between 0 to 2.
–Model 2 (classical fractional model with zero)

G2(s) =
b0sβ +b1

a0sα +a1
;α ≥ β . (16)

In Eq. (16), the following parameters are estimated

θ T = [b0 b1 β a0 a1 α]

The range ofa0,a1,b0 andb1 are between 0 to 100, andα andβ are between 0 to 2 withα ≥ β .
–Model 3 (commensurate order)

G3(s) =
K

a0sβ +a1sα +a2
. (17)

In Eq. (17), the value ofβ is an integer multiple ofα. So, the above model structure is commensurate order. Here,
the value ofβ is taken twice ofα (β = 2α). The range ofa0,a1,a2 andk are between 0 to 100, and the value ofα is
between 0 to 1.

–Model 4 (Non-commensurate order)

G4(s) =
b0sγ +b1

a0sβ +a1sα +a2
. (18)

In Eq. (18), the value ofα is not an integer multiple ofβ . So, the above model structure is non-commensurate order.
The range ofb0,b1,a0,a1 anda2 are between 0 to 100, the value ofα andγ are between 0 to 1, and the value ofβ is
between 1 to 2.

–Model 5 (Integer order)
Assuming the plant dynamics is of higher order, we have used this model structures.

G5(s) =
b0s+b1

s4+a3s3+a2s2+a1s+a0
. (19)

The parameters (b0,b1,a0,a1,a2 anda3) of Eq. (19) are in the range of 0 to 100 and estimation by same approach as
used for fractional model.

The summary of different model structure is given in Table2 with number of parameters to be estimated.
The parameters of the various model structure are estimatedusing optimization toolbox. The steps for obtaining

parameters of different models follow:
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(c) Plant 3

Fig. 3: Input and output signal for plant 1 to plant 3.
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Fig. 4: Input and output signal for plant 4 to plant 6.
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Table 2: Number of parameters to be estimate in various model structure.

Sr. No Model Structure No of Parameters

1 G1(s) =
K

sα+a 3

2 G2(s) =
b0sβ+b1
a0sα+a1

6

3 G3(s) =
K

a0sβ+a1sα+a2
5

4 G4(s) =
b0sγ+b1

a0sα+a1sβ+a2
8

5 G5(s) =
b0s+b1

s4+a3s3+a2s2+a1s+a0
6

1.Experiment is carried out to generate data using Simulink.
2.Dataset is collected using experiment or referred from a database of system identification (DaISy).
3.Dataset is divided into two parts: 50 % for parameter identification and 50 % for model validation.
4.Using identification dataset, model outputs are calculated for selected model structure.
5.Error index function (MSE/NMSE) is minimized in the search domain using optimization method (Genetic algorithm).
6.The estimated parameters are validated using validationdataset.

5 Results and Discussions

The above method, which is described in the previous section, is applied to six plants. For every model structure, the value
of MSE and NMSE is calculated. For model structure 1, which isa classical fractional model, the different parameters
are estimated. Results are tabulated in Table3. The value of NMSE does not depend on the range of input. However, the
value of MSE depends on the range of input. In estimation theory, datasets are mostly normalized before using for system
identification.

Table 3: Results for model structure 1.

Plant K α a MSE NMSE

P1 0.1339 1.0831 1.3415 4.0915E-6 0.0120

P2 0.2006 1.1431 0.1993 0.00426 0.0199

P3 1.6223 1.3296 1.6853 0.3496 0.3998

P4 0.0100 0.0170 0.3460 0.0053 4.0201

P5 0.5745 0.0001 1.7293 1.5837 20.1734

P6 2.9862 0.6392 0.1227 218.5861 0.1083

Six parameters are estimated for model structure 2. Resultsfor this model structure are tabulated in Table4. A
commensurate model structure (model structure 3) is also used for comparison of different model structures. In this
simulation, the value ofβ is taken twice the value ofα, where the range ofα is between 0 to 1. Results are presented in
Table5. This model structure gives better results than model structure 1 and 2.

A non-commensurate model structure is also used for identification of plants dynamics. In the non-commensurate
model, the value ofα andβ are not in the multiple of an integer. Results are provided inTable6. This model structure
gives much better results than other model structures. However, more parameters are required to be estimated in this model
structure. An integer model is also developed using the samemethod as used for the fractional model structure. In this
model structure, there are six parameters need to be estimated. The results are tabulated in Table7.

Finally, step response for different plants is shown in Figs. 5, 6, 7, 8, 9 and10. It demonstrates that fractional models
capture more dynamics expect for plant 4. For plant 1 and plant 6, the model structure 3 (commensurate model) is giving
minimum MSE and NMSE. As mention earlier, plant 2 is higher-order model system of 4th order. So, integer order model
gives better results in this case. However, non-commensurate results are closed to integer order model. For plant 3 and
plant 5, the non-commensurate model gives good results. Forplant 4, integer and fractional order model structure are
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Table 4: Results for model structure 2.

Plant b0 b1 β a0 a1 α MSE NMSE

P1 0.0849 0.1687 0.0104 1.6536 2.5612 1.30511.4669e-05 0.0051

P2 5.9361e-05 0.35922 1.0336 2.1581 0.3686 1.19500.00358 0.0165

P3 0.0100 1.7961 0.0265 1.0417 1.8751 1.3342 0.3478 0.3858

P4 0.3819 0.7872 0.0105 8.6821 0.0100 1.9999 0.0049 11.1552

P5 0.2331 0.0129 1.1722 0.0600 1.2012 1.3697 0.1022 0.0647

P6 4.8057 2.9773 0.6463 2.6610 0.1294 0.8130261.8012 0.1138

Table 5: Results for model structure 3.

Plant K a0 a1 a2 α MSE NMSE

P1 0.1366 0.3896 0.5739 1.3505 0.79321.7055e-06 0.0007

P2 0.6109 0.8417 3.6960 1.3538 0.5968 0.00139 0.0068

P3 0.9320 0.3683 0.2503 0.9560 0.7850 0.3300 0.3641

P4 0.1075 1.4980 0.3017 0.4875 0.9899 0.0048 7.2427

P5 0.2235 0.0255 0.2948 0.7375 4.3e-04 1.5838 20.0248

P6 0.8586 1.609e-04 0.1847 0.0343 0.5480 197.1101 0.1016

Table 6: Results for model structure 4.

Plant b0 b1 γ a0 a1 a2 α β MSE NMSE

P1 0.2586 0.0959 0.7787 2.4208 1.7031 0.9188 0.6962 1.63941.5831e-05 0.0158

P2 8.8503e-04 0.1779 0.9252 0.3192 1.1121 0.1734 0.7806 1.5934 0.00161 0.0082

P3 1.0694 0.9238 0.0460 1.2103 0.4455 1.8496 0.7955 1.99990.3133 0.3446

P4 2.8643 0.0 0.9904 1.4109 0.5078 3.4839 0.9961 1.21680.0052 29.4533

P5 0.1387 7.1585e-05 0.2459 0.1646 0.0368 0.8610 0.1619 1.8623 0.0866 0.0548

P6 2.8061 2.2568 0.0983 1.1856 0.0745 0.1399 0.5510 1.9997199.6909 0.1006

not mapping dynamics of the system. The validation of obtained models are carried out and their responses are plotted
in Figs.11 and12. The obtained parameters also give good results with validation dataset, which is not used during the
identification process.

6 Conclusions and future directions

In this paper, different fractional model structures are compared with various systems. A non-commensurates fractional
model gives better results regarding MSE and NMSE. Stability of different fractional model structures is also presented
briefly. A comparison is also made with an integer order modelstructure, which is identified by system identification
toolbox. Fractional model structures are capable to captures dynamics of many systems. However, the presence of the
fractionality in the system needs to cross check before selection of fractional model.

A non-commensurates fractional model can be explored more in details, which should work with initial conditions.
System identification toolbox may be extended for user defined model structure including fractional model.
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Fig. 5: Step response for plant 1.
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Fig. 6: Step response for plant 2.
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Fig. 7: Step response for plant 3.

c© 2018 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


546 P. Shah et al. : System identification with fractional-ordermodels

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

Am
pl

itu
de

Step Response for Plant 4

 

 
Plant Data
Model 1
Model 2
Model 3
Model 4
Model 5

(a) Actual

10 11 12 13 14 15 16 17 18 19 20
−0.2

−0.15

−0.1

−0.05

0

0.05

Time

Am
pl

itu
de

Step Response for Plant 4

 

 
Plant Data
Model 1
Model 2
Model 3
Model 4
Model 5

(b) Zoomed

Fig. 8: Step response for plant 4.
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Fig. 9: Step response for plant 5.
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Fig. 10: Step response for plant 6.
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Fig. 11: Model validations for plant 1 to plant 3.
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Fig. 12: (continued) Model validations for plant 4 to plant 6.
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Table 7: Results for integer model structure 5.

Plant b0 b1 a3 a2 a1 a0 MSE NMSE

P1 0.1824 0.1169 1.0268 3.7431 3.0562 1.17951.2784e-04 0.0847

P2 0.0565 0.2959 1.7065 2.0587 1.2499 0.29536.4765e-05 0.0011

P3 9.9057 1.0238 1.3453 10.9092 10.8039 1.0626 1.9484 1.2793

P4 0.0290 0.3449 1.3443 1.6814 0.3304 0.6289 0.0048 5.6742

P5 12.8342 19.6285 1.4254e-04 3.7377 0.4532 3.87670.9667 1.7431

P6 5.1563 0.9057 0.3425 0.0641 1.5008 0.0408345.5185 0.1251
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