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Abstract: This paper presents multi-thread structure for an LLRP server. To design the structure, (i) 

the requirements for an LLRP server are deduced; (ii) threads are divided to satisfy the requirements; 

(iii) the operation procedure of an LLRP system is investigated at the thread level; and (iv) the 

function of each thread and interaction among threads are specified. Then to validate the designed 

structure, first the design structure is modeled by using the DEVS formalism which specifies discrete 

event systems, and then it is validated by simulating the DEVS model. Finally, the structure is 

realized to a C++ program. To maximally utilize the validation result, the program is built on the 

basis of the simulation code. The test input sequences used during the validation process are also 

applied to the realized program. From the test result, we can confirm that the proposed structure 

satisfies the specified requirements. 
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1  Introduction 

An RFID (Radio Frequency Identification) 

system is composed of tags, readers, and the upper-

layer applications. Recently, RFID has been studied 

in a lot of researches [1-3]. RFID has great potential 

to be applied to various industrial domains. 

Nonetheless the technology has not been widely 

employed yet. One of the reasons is that most RFID 

readers employ distinct vendor-specific protocols 

while communicating with upper-layer applications, 

although they comply the standard protocols (e.g. 

EPCGlobal class 1 generation 2 [4]) while 

communicating with tags. To remove the obstacle, 

EPCGlobal announces a new standard protocol 

which defines interfaces between upper-layer 

applications and RFID readers, called LLRP (Low-

Level Reader Protocol) [5]. 

An LLRP system has client-server structure over 

the TCP/IP network. In the client-server structure, a 

server provides a set of services, whereas a client 

requests the services. In this respect, upper-layer 

applications correspond to clients, whereas RFID 

readers correspond to servers. Several researches 

have been conducted on the client side [7-9]. 

However, implementation of LLRP on the server 

side has been scarcely reported. In this paper, a 

software program which controls physical RFID 

readers according to the LLRP messages sent from 

upper-layer applications is referred to as an LLRP 

server. 

This paper presents multi-thread structure for an 

LLRP server. To design the structure, (i) the 

requirements for an LLRP server are deduced; (ii) 

threads are divided to satisfy the requirements; (iii) 

the operation procedure of an LLRP system is 

investigated at the thread level; and (iv) the function 

of each thread and interaction among threads are 

specified. 

Then the designed software structure is 

validated. For validation, the design result should be 

transformed into an executable form. In the classical 

approach, first the design result is implemented into 

a program, and then the design result is validated by 

executing the program. However it is very hard to 

validate a multi-thread program due to non-

deterministic characteristic of thread scheduling. 

Especially, if the program interacts with a hardware 
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device which has a time-critical operation, the 

validation becomes more difficult. In this paper, to 

reduce complexity in validation process, first the 

designed software structure is modeled by using the 

DEVS formalism [6] which specifies discrete event 

systems, and then it is validated by simulating the 

DEVS model. In DEVS, execution of components 

is strictly controlled by a synchronization 

mechanism based on virtual time. Thus non-

determinism in thread scheduling can be eliminated. 

Moreover, time-critical behavior of hardware 

devices can be also modeled by the DEVS 

formalism. One of the advantages of the DEVS 

formalism is that DEVS models can be easily 

simulated by using the DEVS abstract simulator 

algorithm [6]. In this paper, DEVSim++ [10] which 

implements the algorithm in C++ is employed for 

the simulation. 

Finally, the validated structure is realized to a 

C++ program. To maximally utilize the validation 

result, the program is built on the basis of the 

DEVSim++ simulation code. The test input 

sequences used during the validation process are 

also applied to the realized program. From the test 

result, we can conclude that the proposed structure 

satisfies the specified requirements. 

 

2  Design  
An LLRP server is designed in this section. To 

provide the functions defined in the LLRP standard, 

the following requirements should be considered. 

(1) An LLRP server should concurrently process 

request messages, which are asynchronously 

generated by LLRP clients, as well as errors 

and exceptions, which are abruptly occurred 

while the server operates. Thus, an LLRP 

server should be able to communicate with 

LLRP clients without regarding to its state. 

(2) An LLRP server should be able to store and 

manage configuration parameters contained 

in the messages transferred from LLRP 

clients. 

(3) An LLRP server should be able to process 

events and actions at the scheduled time. 

(4) An LLRP server should be able to provide 

low-level access to the RFID air interface. 

(5) An LLRP server should be able to support 

various RFID readers. In order to do this, the 

hardware-specific part of the LLRP server 

should be localized. 

(6) An LLRP server should be able to collect the 

communication results with tags, manage the 

state of readers, and report them to LLRP 

clients. 

 

To satisfy those requirements simultaneously, it 

is more appropriate that the LLRP sever is designed 

and realized with multi-thread structure. Now, let’s 

discuss how threads are separated. 

To satisfy (1), two threads which manage 

uplink/downlink communication with upper-layer 

applications should be separated from the main 

thread. The communication response time of the 

LLRP server would be reduced with the separated 

threads. Moreover, the LLRP server can be easily 

adapted to the environments by modifying only the 

related thread when the uplink/downlink 

communication protocol needs to change in real 

application environments. These roles are assigned 

to the SEND/RECV threads. 

To satisfy (3), a separated thread is required to 

manage a real-time clock. The thread receives 

requests for alarm calls from other threads, and 

sends alarm messages to them at the scheduled time 

instances. The TRIGGER thread has the duty. 

To satisfy (4) and (5), threads which manipulate 

RFID reader devices without regarding to operation 

of other threads are required. Meanwhile, an LLRP 

server would have many RFID readers. Moreover, 

each RFID reader vendor has its own API. 

Therefore, it would be desirable that each RFID 

reader is controlled by distinct threads, and the code 

independent on certain API is separated from 

others. In the API-independent code, RFID reader 

operations contained in an LLRP message are 

decomposed and sent to the threads which 

manipulate RFID readers. In this paper, an instance 

of the uHANDLER thread is assigned to each RFID 

reader, and the HANDLER thread is devoted to the 

API-independent codes.  

To satisfy (6), the REPORT thread is used. It 

collects and manages results of tag operations and 

status of physical RFID readers. Also the thread 

converts the information into LLRP messages, and 

then reports the messages to related clients. 

Finally, to satisfy (2) and to supervise overall 

system operation, the MANAGER thread is used. It 

decodes and stores LLRP messages sent by clients. 

Also, when one of the stored LLRP messages is 

ready to be executed, the thread initiates to execute 

the message. 
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Figure 1: A typical operation scenario of an LLRP system. 
 

With the separated threads, many operation 

scenarios of an LLRP server are recomposed at the 

thread level. For example, figure 1 shows the 

interaction among the separated threads for a typical 

operation scenario of an LLRP system. By 

investigating these interaction diagrams, the 

function of each thread and the control and 

information flows among threads are analyzed. 

Due to the page limit, a simplified version of the 

HANDLER thread is explained as an example in this 

paper. In the full version, the HANDLER thread 

becomes more complex for supporting more 

delicate operations. As shown in figure 1, execution 

of the HANDLER thread is initiated by the 

MANAGER thread. When the HANDLER thread is 

idle and an LLRP message which includes RFID 

reader operations is ready to be executed, the 

MANAGER thread sends the message to the 

HANDLER thread. Then, the HANDLER thread 

decomposes the message into many control 

commands, and sends them one by one to the 

uHANDLER thread. The uHANDLER thread 

directly interacts with the RFID reader, and reports 

the communication results between the reader and 

tags to the HANDLER thread. Then, the HANDLER 

thread updates its status and forwards the reported 

result to the MANAGER and REPORT threads. 

When the HANDLER thread has no more control 

commands to be executed or detects unrecoverable 

errors and exceptions, it informs its status to the 

MANAGER thread, and becomes idle. 

Figure 2 illustrates control and information 

flows among the threads.  To increase concurrency, 

each thread communicates with others by use of 

asynchronous message passing. 

 
Figure 2: Control and information flows among the threads. 
 

3  Modeling and Simulation 
In this section, the proposed multi-thread 

structure is validated. In this paper, first the 

structure is modeled and then it is validated by 

simulating the model. To achieve this, the DEVS 

formalism [6] is employed. The DEVS formalism 

specifies discrete event systems in a hierarchical, 

modular manner. The reasons why the DEVS 

formalism is employed in the paper are that (i) a 

multi-thread system can be modeled as a discrete 

event system; (ii) unlike a general programming 

language environment, execution of components is 

strictly controlled by a synchronization mechanism 

based on virtual simulation time in DEVS; and (iii) 

DEVS models can be easily simulated by using the 

DEVS abstract simulator algorithm [10]. Moreover, 

behavior of the environments which surrounds the 

designed software structure can be also modeled by 

using the DEVS formalism. 

The software development techniques using 

models have been attempted in many researches. 

Model-driven architecture (MDA) [11-12] launched 

by the Object Management Group (www.omg.org) 

is a well-known methodology of them. To specify a 

model, MDA most often uses the Unified Modeling 

Language (UML) [13-14]. Understandably, the 

models in those approaches are models that are 

related to developing software. In contrast, the 

models in the DEVS formalism are models that are 

related to specifying general discrete event systems. 

Thus, the DEVS formalism provides a more 

rigorous and systematic way for modeling and 

simulation. Additionally, it has many useful features 

for modeling the LLRP server as stated above. For 

those reasons, it is employed in this paper. 

There are two types of models in the DEVS 

formalism: atomic models and coupled models. An 

atomic DEVS model specifies dynamic behavior of 

an elementary component, whereas a coupled model 

specifies how to couple several components 

together to form a new compound component. An 

atomic DEVS model has a set of input ports, a set of 
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output ports, and a set of state variables. When it 

receives a message from an input port, it executes 

the external transition function; and it produces 

output messages by using the output function, just 

before it executes the internal transition function. 

The timing of internal transitions is strictly 

controlled by the time advance function. The detail 

description of the DEVS formalism can be found in 

[6]. 

 
Figure 3: Hierarchical structure of a simple LLRP system 

model. 
 

Figure 3 shows the hierarchical structure of a 

simple LLRP system model. Coupled model TOP 

represents an LLRP system which consists of an 

LLRP server, an LLRP client, and a population of 

tags. This paper assumes that the LLRP server has a 

single RFID reader. Coupled model SERVER 

corresponds to the proposed LLRP server and is 

further decomposed to the seven threads. Each of 

the threads, the LLRP client, and the population of 

tags are modeled as atomic models. 

 
Figure 4: Atomic model HANDLER 

 

The simplified version of the HANDLER thread 

is used again as an example of DEVS modeling. 

Figure 4(a) shows I/O ports and the state variables 

of the HANDLER model. The model has two input 

ports, and three output ports. From a global 

viewpoint, HANDLER would communicate with the 

MANAGER, REPORT, and uHANDLER models as 

shown in figure 2. However, since the DEVS 

formalism specifies a system in a hierarchical, 

modular way, HANDLER communicates with others 

only through its own input/output ports. It receives 

an LLRP message from the in port, sends control 

commands to the cmd port, receives tag 

communication result from the result port, forwards 

the result to the log port, and reports its status to the 

done port. Coupling relationships between I/O 

ports are specified in the parent coupled model 

SERVER. 

Meanwhile, HANDLER has two state variables; 

phase specifies processing stages of the model, and 

queue stores control commands.  Figure 4(b) 

illustrates phase transition of the HANDLER model. 

Initially, the model is in IDLE phase. When it 

receives an LLRP message from the in port, 

HANDLER translates the message to a sequence of 

control commands, stores the commands in queue, 

and goes in SEND phase. Then, it retrieves a control 

command from queue, outputs the command to the 

cmd port and goes in WAIT phase. In WAIT phase, 

if a status input arrives from the result port within a 

predetermined time interval, HANDLER goes in 

RESP phase; otherwise, it transmits an error 

message to the done port, and goes in IDLE phase. 

At the end of RESP phase, HANDLER forwards the 

received status information to the done port and 

sends a log message to the log port. Also, if queue 

is empty, HANDLER goes in IDLE phase; otherwise, 

it goes in SEND phase again to send the next control 

command to the cmd port. 

For simulating the DEVS models, DEVSim++ 

[10] which implements the DEVS abstract simulator 

algorithm in C++ is employed. Figure 5 shows the 

DEVSim++ code of the HANDLER model in figure 

4. The external transition function, the internal 

transition function, the output function, and the time 

advanced function are implemented as separated 

C++ functions. The two external transitions in 

figure 4(b) are implemented in ExtTransFn( ). For 

example, when HANDLER receives a message from 

the in port during IDLE phase, it translates the 

message into control commands, stores the 

commands in queue by using MakeCmdSet( ), and 

goes in SEND phase. Three internal transitions are 

implemented in IntTransFn( ). As mentioned 

earlier, the output function OutputFn( ) is called 

just before IntTransFn( ) is called. For example, at 

the end of SEND phase, HANDLER retrieves a 

control command from queue by using GetCmd( ), 
outputs a control command to the cmd port by 

using SetPortValue( ) in OutputFn( ); and goes in 

WAIT phase in IntTransFn( ). The time advance 

function TimeAdvanceFn( ) defines how long 

HANDLER remains in each phase. For example, in 
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IDLE phase, HANDLER has no control commands to 

be executed. Then, it should wait arrival of a new 

input. Thus, TimeAdvanceFn( ) returns Infinity 
(∞). 

With the same way, other threads are also 

modeled and implemented. Many cases, including 

the typical operation scenario in figure 1, are tested 

on the implemented DEVSim++ code. The 

simulation result shows that the proposed LLRP 

server structure produces expected behavior for 

each test case. 

 

 

4  Realization  

In this section, the proposed LLRP server is 

realized to a C++ program. To maximally utilize the 

validation result, the program is built on the basis of 

the DEVSim++ simulation code. 

In this paper, nine atomic models and two 

coupled models are developed and validated. Each 

of the seven atomic models representing threads 

must be realized as an actual thread. The CLIENT 

and READER models represent a software program 

or a hardware device. For testing the realized LLRP 

server, they are briefly realized. Coupled model 

TOP representing the overall system is used to set 

up the test environment. Coupled model SERVER 

integrates the seven threads into a single program 

and specifies communication paths among threads. 

The specification of SERVER is utilized while the 

seven threads are realized. 

Figure 6 shows the simplified code of the 

HANDLER thread. Four characteristic functions of 

the DEVSim++ code in figure 5 are integrated 

together in a thread. The thread executes an infinite 

loop. To execute external and internal transitions in 

a unified way, two classes of messages are used. 

The INPUT class corresponds to external transition, 

whereas the TIME_EXPIRED class corresponds to 

internal transition. In figure 6, the code which 

matches with ExtTransFn( ) in figure 5 can be 

easily found. However, IntTransFn( ) and 

OutputFn( ) may not be easily matched with figure 

6, since the two functions separated in the DEVS 

formalism is merged in the code. The second switch 

statement corresponds to the code. For each case 

statement, IntTransFn( ) and OutputFn( ) are 

merged. SendMsg( ) in figure 6 corresponds to 

SetPortValue( )  in figure 5. The target thread of 

each output port is originally specified in the parent 

coupled model SERVER. The code which 

corresponds to TimeAdvanceFn( ) is shown in the 

end of figure 6. 

The other threads are also realized with a similar 

way, and linked to a single program. The program is 

verified with the test cases used during the 

validation process. From the test results, we can 

confirm that the proposed structure satisfies the 

specified requirements. 

Handler::ExtTransFn(CMessage& X)
{
port = X.GetPort();
pMsg = X.GetValue();
if (GetPhase() == IDLE
&& port == “in”) {
MakeCmdSet(m_pMsg);
SetPhase(SEND);

}
else if (GetPhase() == WAIT
&& port == “result”) {
SaveCommStat(m_pMsg);
SetPhase(RESP);

}
}

Handler::IntTransFn()
{
switch (GetPhase()) {
case SEND:
SetPhase(WAIT);

case WAIT:
SetPhase(IDLE);

case RESP:
if (GetCmdCount() > 0)
SetPhase(SEND);

else
SetPhase(IDLE);

}
}

Handler::OutputFn(CMessage& Y)
{
switch (GetPhase()) {
case SEND:
pMsg = GetCmd();
Y.SetPortValue(“cmd”, pMsg);

case WAIT:
pMsg->type = NO_RESPONSE;
Y.SetPortValue(“done”, pMsg);

case RESP:
pMsg = GetCommLog();
Y.SetPortValue(“log”, pMsg);
pMsg = GetCommStat();
Y.SetPortValue(“done”, pMsg);

}
}

TimeType Handler::TimeAdvanceFn()
{
switch (GetPhase()) {
case IDLE: return Infinity;
case SEND: return SEND_TIME;
case WAIT: return TIMEOUT;
case RESP: return RESPONSE_TIME;
}

}

Figure 5: DEVSim++ code of the HANDLER model. 
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Handler thread()
{
while (true) {
msg = RecvWait(RecvQ);
switch (msg.class) {
case INPUT:
if (phase == IDLE &&
msg.GetPort() == “in”
MakeCmdSet(msg.GetValue());
phase = SEND;

}
else if (phase == WAIT &&
msg.GetPort() == “result”) {
SaveCommStat(msg.GetValue());
phase = RESP;

}

case TIME_EXPIRED:
switch (phase) {
case SEND:
SendMsg(“cmd”, GetCmd());
phase = WAIT;

case WAIT:
pMsg = ErrorMsg(NO_RESPONSE);
SendMsg(“done”, pMsg);
phase = IDLE;

case RESP:
pMsg = GetCommLog();
SendMsg(“log”, pMsg);
pMsg = GetCommStat();
SendMsg(“done”, pMsg);
if (GetCmdCount())
phase = SEND;

else
phase = IDLE;

}
}

switch (phase) {
case IDLE: t = INFINITY;
case SEND: t = SEND_TIME;
case RESP: t = RESP_TIME;
case WAIT: t = TIMEOUT;
}
if (t != INFINITY)
SetTimer(t, handlerQid);

}
}

  
Figure 6: C++ code of the HANDLER thread. 

 

5  Conclusion 

The key novelty of this paper is that it proposes 

novel multi-thread structure for an LLRP server. 

The server is decomposed into seven threads to 

support the requirements of the target system 

simultaneously. The function of each thread and 

interactions among threads are specified by 

investigating various operation scenarios of the 

system. The second key contribution is that the 

designed multi-thread structure is modeled as a 

discrete event system by using the DEVS formalism, 

and simulated by using DEVSim++ to reduce 

complexity in the validation process,. The 

simulation result shows that the proposed structure 

produces expected behavior for each simulated case. 

The last is that the structure is realized to a program. 

From the testing result of the program, we can 

confirm that the proposed LLRP server properly 

operates with fast responsiveness. The proposed 

structure can be employed in many RFID systems. 

Meanwhile, the validation method used in the paper 

can be a very promising solution for developing 

other multi-thread applications. 
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