
Appl. Math. Inf. Sci. 6-3S No. 3S, 1117-1123 (2012) 1117

Design and Realization of Multi-Thread Structure for an

LLRP Server

Yun-Ho Kim
1
, Tae-Yeong Lee

1
, Yeong Rak Seong

1
 and Ha-Ryoung Oh

1

1
Department of Electrical Engineering, Kookmin University, Seoul, Korea

Email: yeong@kookmin.ac.kr

Received 01 Jul. 2011; Revised 13 Nov. 2011; Accepted 22 Jan. 2012

Abstract: This paper presents multi-thread structure for an LLRP server. To design the structure, (i)

the requirements for an LLRP server are deduced; (ii) threads are divided to satisfy the requirements;

(iii) the operation procedure of an LLRP system is investigated at the thread level; and (iv) the

function of each thread and interaction among threads are specified. Then to validate the designed

structure, first the design structure is modeled by using the DEVS formalism which specifies discrete

event systems, and then it is validated by simulating the DEVS model. Finally, the structure is

realized to a C++ program. To maximally utilize the validation result, the program is built on the

basis of the simulation code. The test input sequences used during the validation process are also

applied to the realized program. From the test result, we can confirm that the proposed structure

satisfies the specified requirements.

Keywords: LLRP, RFID, multi-thread, DEVS formalism, simulation

1 Introduction

An RFID (Radio Frequency Identification)

system is composed of tags, readers, and the upper-

layer applications. Recently, RFID has been studied

in a lot of researches [1-3]. RFID has great potential

to be applied to various industrial domains.

Nonetheless the technology has not been widely

employed yet. One of the reasons is that most RFID

readers employ distinct vendor-specific protocols

while communicating with upper-layer applications,

although they comply the standard protocols (e.g.

EPCGlobal class 1 generation 2 [4]) while

communicating with tags. To remove the obstacle,

EPCGlobal announces a new standard protocol

which defines interfaces between upper-layer

applications and RFID readers, called LLRP (Low-

Level Reader Protocol) [5].

An LLRP system has client-server structure over

the TCP/IP network. In the client-server structure, a

server provides a set of services, whereas a client

requests the services. In this respect, upper-layer

applications correspond to clients, whereas RFID

readers correspond to servers. Several researches

have been conducted on the client side [7-9].

However, implementation of LLRP on the server

side has been scarcely reported. In this paper, a

software program which controls physical RFID

readers according to the LLRP messages sent from

upper-layer applications is referred to as an LLRP

server.

This paper presents multi-thread structure for an

LLRP server. To design the structure, (i) the

requirements for an LLRP server are deduced; (ii)

threads are divided to satisfy the requirements; (iii)

the operation procedure of an LLRP system is

investigated at the thread level; and (iv) the function

of each thread and interaction among threads are

specified.

Then the designed software structure is

validated. For validation, the design result should be

transformed into an executable form. In the classical

approach, first the design result is implemented into

a program, and then the design result is validated by

executing the program. However it is very hard to

validate a multi-thread program due to non-

deterministic characteristic of thread scheduling.

Especially, if the program interacts with a hardware

Applied Mathematics & Information Sciences

 An International Journal
© 2012 NSP

 @ 2012 NSP

 Natural Sciences Publishing Cor.

1118 Y.-H. Kim et al: Design and Realization of Multi-Thread

device which has a time-critical operation, the

validation becomes more difficult. In this paper, to

reduce complexity in validation process, first the

designed software structure is modeled by using the

DEVS formalism [6] which specifies discrete event

systems, and then it is validated by simulating the

DEVS model. In DEVS, execution of components

is strictly controlled by a synchronization

mechanism based on virtual time. Thus non-

determinism in thread scheduling can be eliminated.

Moreover, time-critical behavior of hardware

devices can be also modeled by the DEVS

formalism. One of the advantages of the DEVS

formalism is that DEVS models can be easily

simulated by using the DEVS abstract simulator

algorithm [6]. In this paper, DEVSim++ [10] which

implements the algorithm in C++ is employed for

the simulation.

Finally, the validated structure is realized to a

C++ program. To maximally utilize the validation

result, the program is built on the basis of the

DEVSim++ simulation code. The test input

sequences used during the validation process are

also applied to the realized program. From the test

result, we can conclude that the proposed structure

satisfies the specified requirements.

2 Design
An LLRP server is designed in this section. To

provide the functions defined in the LLRP standard,

the following requirements should be considered.

(1) An LLRP server should concurrently process

request messages, which are asynchronously

generated by LLRP clients, as well as errors

and exceptions, which are abruptly occurred

while the server operates. Thus, an LLRP

server should be able to communicate with

LLRP clients without regarding to its state.

(2) An LLRP server should be able to store and

manage configuration parameters contained

in the messages transferred from LLRP

clients.

(3) An LLRP server should be able to process

events and actions at the scheduled time.

(4) An LLRP server should be able to provide

low-level access to the RFID air interface.

(5) An LLRP server should be able to support

various RFID readers. In order to do this, the

hardware-specific part of the LLRP server

should be localized.

(6) An LLRP server should be able to collect the

communication results with tags, manage the

state of readers, and report them to LLRP

clients.

To satisfy those requirements simultaneously, it

is more appropriate that the LLRP sever is designed

and realized with multi-thread structure. Now, let’s

discuss how threads are separated.

To satisfy (1), two threads which manage

uplink/downlink communication with upper-layer

applications should be separated from the main

thread. The communication response time of the

LLRP server would be reduced with the separated

threads. Moreover, the LLRP server can be easily

adapted to the environments by modifying only the

related thread when the uplink/downlink

communication protocol needs to change in real

application environments. These roles are assigned

to the SEND/RECV threads.

To satisfy (3), a separated thread is required to

manage a real-time clock. The thread receives

requests for alarm calls from other threads, and

sends alarm messages to them at the scheduled time

instances. The TRIGGER thread has the duty.

To satisfy (4) and (5), threads which manipulate

RFID reader devices without regarding to operation

of other threads are required. Meanwhile, an LLRP

server would have many RFID readers. Moreover,

each RFID reader vendor has its own API.

Therefore, it would be desirable that each RFID

reader is controlled by distinct threads, and the code

independent on certain API is separated from

others. In the API-independent code, RFID reader

operations contained in an LLRP message are

decomposed and sent to the threads which

manipulate RFID readers. In this paper, an instance

of the uHANDLER thread is assigned to each RFID

reader, and the HANDLER thread is devoted to the

API-independent codes.

To satisfy (6), the REPORT thread is used. It

collects and manages results of tag operations and

status of physical RFID readers. Also the thread

converts the information into LLRP messages, and

then reports the messages to related clients.

Finally, to satisfy (2) and to supervise overall

system operation, the MANAGER thread is used. It

decodes and stores LLRP messages sent by clients.

Also, when one of the stored LLRP messages is

ready to be executed, the thread initiates to execute

the message.

Y.-H. Kim et al: Design and Realization of Multi-Thread 1119

Figure 1: A typical operation scenario of an LLRP system.

With the separated threads, many operation

scenarios of an LLRP server are recomposed at the

thread level. For example, figure 1 shows the

interaction among the separated threads for a typical

operation scenario of an LLRP system. By

investigating these interaction diagrams, the

function of each thread and the control and

information flows among threads are analyzed.

Due to the page limit, a simplified version of the

HANDLER thread is explained as an example in this

paper. In the full version, the HANDLER thread

becomes more complex for supporting more

delicate operations. As shown in figure 1, execution

of the HANDLER thread is initiated by the

MANAGER thread. When the HANDLER thread is

idle and an LLRP message which includes RFID

reader operations is ready to be executed, the

MANAGER thread sends the message to the

HANDLER thread. Then, the HANDLER thread

decomposes the message into many control

commands, and sends them one by one to the

uHANDLER thread. The uHANDLER thread

directly interacts with the RFID reader, and reports

the communication results between the reader and

tags to the HANDLER thread. Then, the HANDLER

thread updates its status and forwards the reported

result to the MANAGER and REPORT threads.

When the HANDLER thread has no more control

commands to be executed or detects unrecoverable

errors and exceptions, it informs its status to the

MANAGER thread, and becomes idle.

Figure 2 illustrates control and information

flows among the threads. To increase concurrency,

each thread communicates with others by use of

asynchronous message passing.

Figure 2: Control and information flows among the threads.

3 Modeling and Simulation
In this section, the proposed multi-thread

structure is validated. In this paper, first the

structure is modeled and then it is validated by

simulating the model. To achieve this, the DEVS

formalism [6] is employed. The DEVS formalism

specifies discrete event systems in a hierarchical,

modular manner. The reasons why the DEVS

formalism is employed in the paper are that (i) a

multi-thread system can be modeled as a discrete

event system; (ii) unlike a general programming

language environment, execution of components is

strictly controlled by a synchronization mechanism

based on virtual simulation time in DEVS; and (iii)

DEVS models can be easily simulated by using the

DEVS abstract simulator algorithm [10]. Moreover,

behavior of the environments which surrounds the

designed software structure can be also modeled by

using the DEVS formalism.

The software development techniques using

models have been attempted in many researches.

Model-driven architecture (MDA) [11-12] launched

by the Object Management Group (www.omg.org)

is a well-known methodology of them. To specify a

model, MDA most often uses the Unified Modeling

Language (UML) [13-14]. Understandably, the

models in those approaches are models that are

related to developing software. In contrast, the

models in the DEVS formalism are models that are

related to specifying general discrete event systems.

Thus, the DEVS formalism provides a more

rigorous and systematic way for modeling and

simulation. Additionally, it has many useful features

for modeling the LLRP server as stated above. For

those reasons, it is employed in this paper.

There are two types of models in the DEVS

formalism: atomic models and coupled models. An

atomic DEVS model specifies dynamic behavior of

an elementary component, whereas a coupled model

specifies how to couple several components

together to form a new compound component. An

atomic DEVS model has a set of input ports, a set of

1120 Y.-H. Kim et al: Design and Realization of Multi-Thread

output ports, and a set of state variables. When it

receives a message from an input port, it executes

the external transition function; and it produces

output messages by using the output function, just

before it executes the internal transition function.

The timing of internal transitions is strictly

controlled by the time advance function. The detail

description of the DEVS formalism can be found in

[6].

Figure 3: Hierarchical structure of a simple LLRP system

model.

Figure 3 shows the hierarchical structure of a

simple LLRP system model. Coupled model TOP

represents an LLRP system which consists of an

LLRP server, an LLRP client, and a population of

tags. This paper assumes that the LLRP server has a

single RFID reader. Coupled model SERVER

corresponds to the proposed LLRP server and is

further decomposed to the seven threads. Each of

the threads, the LLRP client, and the population of

tags are modeled as atomic models.

Figure 4: Atomic model HANDLER

The simplified version of the HANDLER thread

is used again as an example of DEVS modeling.

Figure 4(a) shows I/O ports and the state variables

of the HANDLER model. The model has two input

ports, and three output ports. From a global

viewpoint, HANDLER would communicate with the

MANAGER, REPORT, and uHANDLER models as

shown in figure 2. However, since the DEVS

formalism specifies a system in a hierarchical,

modular way, HANDLER communicates with others

only through its own input/output ports. It receives

an LLRP message from the in port, sends control

commands to the cmd port, receives tag

communication result from the result port, forwards

the result to the log port, and reports its status to the

done port. Coupling relationships between I/O

ports are specified in the parent coupled model

SERVER.

Meanwhile, HANDLER has two state variables;

phase specifies processing stages of the model, and

queue stores control commands. Figure 4(b)

illustrates phase transition of the HANDLER model.

Initially, the model is in IDLE phase. When it

receives an LLRP message from the in port,

HANDLER translates the message to a sequence of

control commands, stores the commands in queue,

and goes in SEND phase. Then, it retrieves a control

command from queue, outputs the command to the

cmd port and goes in WAIT phase. In WAIT phase,

if a status input arrives from the result port within a

predetermined time interval, HANDLER goes in

RESP phase; otherwise, it transmits an error

message to the done port, and goes in IDLE phase.

At the end of RESP phase, HANDLER forwards the

received status information to the done port and

sends a log message to the log port. Also, if queue

is empty, HANDLER goes in IDLE phase; otherwise,

it goes in SEND phase again to send the next control

command to the cmd port.

For simulating the DEVS models, DEVSim++

[10] which implements the DEVS abstract simulator

algorithm in C++ is employed. Figure 5 shows the

DEVSim++ code of the HANDLER model in figure

4. The external transition function, the internal

transition function, the output function, and the time

advanced function are implemented as separated

C++ functions. The two external transitions in

figure 4(b) are implemented in ExtTransFn(). For

example, when HANDLER receives a message from

the in port during IDLE phase, it translates the

message into control commands, stores the

commands in queue by using MakeCmdSet(), and

goes in SEND phase. Three internal transitions are

implemented in IntTransFn(). As mentioned

earlier, the output function OutputFn() is called

just before IntTransFn() is called. For example, at

the end of SEND phase, HANDLER retrieves a

control command from queue by using GetCmd(),
outputs a control command to the cmd port by

using SetPortValue() in OutputFn(); and goes in

WAIT phase in IntTransFn(). The time advance

function TimeAdvanceFn() defines how long

HANDLER remains in each phase. For example, in

Y.-H. Kim et al: Design and Realization of Multi-Thread 1121

IDLE phase, HANDLER has no control commands to

be executed. Then, it should wait arrival of a new

input. Thus, TimeAdvanceFn() returns Infinity
(∞).

With the same way, other threads are also

modeled and implemented. Many cases, including

the typical operation scenario in figure 1, are tested

on the implemented DEVSim++ code. The

simulation result shows that the proposed LLRP

server structure produces expected behavior for

each test case.

4 Realization

In this section, the proposed LLRP server is

realized to a C++ program. To maximally utilize the

validation result, the program is built on the basis of

the DEVSim++ simulation code.

In this paper, nine atomic models and two

coupled models are developed and validated. Each

of the seven atomic models representing threads

must be realized as an actual thread. The CLIENT

and READER models represent a software program

or a hardware device. For testing the realized LLRP

server, they are briefly realized. Coupled model

TOP representing the overall system is used to set

up the test environment. Coupled model SERVER

integrates the seven threads into a single program

and specifies communication paths among threads.

The specification of SERVER is utilized while the

seven threads are realized.

Figure 6 shows the simplified code of the

HANDLER thread. Four characteristic functions of

the DEVSim++ code in figure 5 are integrated

together in a thread. The thread executes an infinite

loop. To execute external and internal transitions in

a unified way, two classes of messages are used.

The INPUT class corresponds to external transition,

whereas the TIME_EXPIRED class corresponds to

internal transition. In figure 6, the code which

matches with ExtTransFn() in figure 5 can be

easily found. However, IntTransFn() and

OutputFn() may not be easily matched with figure

6, since the two functions separated in the DEVS

formalism is merged in the code. The second switch

statement corresponds to the code. For each case

statement, IntTransFn() and OutputFn() are

merged. SendMsg() in figure 6 corresponds to

SetPortValue() in figure 5. The target thread of

each output port is originally specified in the parent

coupled model SERVER. The code which

corresponds to TimeAdvanceFn() is shown in the

end of figure 6.

The other threads are also realized with a similar

way, and linked to a single program. The program is

verified with the test cases used during the

validation process. From the test results, we can

confirm that the proposed structure satisfies the

specified requirements.

Handler::ExtTransFn(CMessage& X)
{
port = X.GetPort();
pMsg = X.GetValue();
if (GetPhase() == IDLE
&& port == “in”) {
MakeCmdSet(m_pMsg);
SetPhase(SEND);

}
else if (GetPhase() == WAIT
&& port == “result”) {
SaveCommStat(m_pMsg);
SetPhase(RESP);

}
}

Handler::IntTransFn()
{
switch (GetPhase()) {
case SEND:
SetPhase(WAIT);

case WAIT:
SetPhase(IDLE);

case RESP:
if (GetCmdCount() > 0)
SetPhase(SEND);

else
SetPhase(IDLE);

}
}

Handler::OutputFn(CMessage& Y)
{
switch (GetPhase()) {
case SEND:
pMsg = GetCmd();
Y.SetPortValue(“cmd”, pMsg);

case WAIT:
pMsg->type = NO_RESPONSE;
Y.SetPortValue(“done”, pMsg);

case RESP:
pMsg = GetCommLog();
Y.SetPortValue(“log”, pMsg);
pMsg = GetCommStat();
Y.SetPortValue(“done”, pMsg);

}
}

TimeType Handler::TimeAdvanceFn()
{
switch (GetPhase()) {
case IDLE: return Infinity;
case SEND: return SEND_TIME;
case WAIT: return TIMEOUT;
case RESP: return RESPONSE_TIME;
}

}

Figure 5: DEVSim++ code of the HANDLER model.

1122 Y.-H. Kim et al: Design and Realization of Multi-Thread

Handler thread()
{
while (true) {
msg = RecvWait(RecvQ);
switch (msg.class) {
case INPUT:
if (phase == IDLE &&
msg.GetPort() == “in”
MakeCmdSet(msg.GetValue());
phase = SEND;

}
else if (phase == WAIT &&
msg.GetPort() == “result”) {
SaveCommStat(msg.GetValue());
phase = RESP;

}

case TIME_EXPIRED:
switch (phase) {
case SEND:
SendMsg(“cmd”, GetCmd());
phase = WAIT;

case WAIT:
pMsg = ErrorMsg(NO_RESPONSE);
SendMsg(“done”, pMsg);
phase = IDLE;

case RESP:
pMsg = GetCommLog();
SendMsg(“log”, pMsg);
pMsg = GetCommStat();
SendMsg(“done”, pMsg);
if (GetCmdCount())
phase = SEND;

else
phase = IDLE;

}
}

switch (phase) {
case IDLE: t = INFINITY;
case SEND: t = SEND_TIME;
case RESP: t = RESP_TIME;
case WAIT: t = TIMEOUT;
}
if (t != INFINITY)
SetTimer(t, handlerQid);

}
}

Figure 6: C++ code of the HANDLER thread.

5 Conclusion

The key novelty of this paper is that it proposes

novel multi-thread structure for an LLRP server.

The server is decomposed into seven threads to

support the requirements of the target system

simultaneously. The function of each thread and

interactions among threads are specified by

investigating various operation scenarios of the

system. The second key contribution is that the

designed multi-thread structure is modeled as a

discrete event system by using the DEVS formalism,

and simulated by using DEVSim++ to reduce

complexity in the validation process,. The

simulation result shows that the proposed structure

produces expected behavior for each simulated case.

The last is that the structure is realized to a program.

From the testing result of the program, we can

confirm that the proposed LLRP server properly

operates with fast responsiveness. The proposed

structure can be employed in many RFID systems.

Meanwhile, the validation method used in the paper

can be a very promising solution for developing

other multi-thread applications.

Acknowledgements
This work was supported by research program

2012 of Kookmin University in Korea.

References
[1] C. Floerkemeier and S. Sarma, An Overview of RFID

System Interfaces and Reader Protocols. 2008 IEEE

International Conference on RFID. (2008), 232-240.

[2] S.Y. Choi, H.M. Jung, K.S. Bang, W.Y. Lee and Y.W.

Ko, Real-time Data Stream Management System for

Large Volume of RFID Events. 2008 International

Conference on Convergence and Hybrid Information

Technology. (2008), 515-521.
[3] S.W. Ahn, W.S. Ryu, B.H. Hong, H.S. Chae and J.H.

Lee, Dynamic Thread Management for Scalable RFID

Middleware. 2010 International Conference on

Information Science and Applications. (2010), 1-8.

[4] EPCGlobal Inc., UHF Class 1 Gen 2 Standard, Version

1.2.0, (2008),

http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_

1_2_0-standard-20080511.pdf

[5] EPCGlobal Inc., Low Level Reader Protocol (LLRP),

Version 1.1, (2010),

http://www.gs1.org/gsmp/kc/epcglobal/llrp/llrp_1_1-

standard-20101013.pdf

[6] B.P. Zeigler, Object-Oriented Simulation with

Hierarchical, Modular Models, Academic Press, (1990)

[7] S.S. Kang, G.J. Park, Design and Implementation of ALE

v1.1 Middleware in RFID systems. International

Conference on New Trends in Information and Service

Science. (2009), 815-821.

[8] Q. Wang, W. Ryu, S. Kim, and B. Hong, Demonstration

of an RFID Middleware: LIT ALE Manager. 18th ACM

Conference on Information and Knowledge Management.

http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.gs1.org/gsmp/kc/epcglobal/llrp/llrp_1_1-standard-20101013.pdf
http://www.gs1.org/gsmp/kc/epcglobal/llrp/llrp_1_1-standard-20101013.pdf

Y.-H. Kim et al: Design and Realization of Multi-Thread 1123

(2011), 2071-2072.

[9] M. Buettner, R. Prasad, M. Philipose and D. Wetherall,

Recognizing daily activities with RFID-based sensors.

11th international conference on Ubiquitous computing.

(2009), 51-60.

[10] T.G. Kim, DEVSim++ User's Manua: C++ Based

Simulation with Hierarchical Modular DEVS Models.

(1994)

[11] Object Management Group, MDA Guide, version 1.0.1,

(2003)

[12] A. Kleppe, J. Warmer, and W. Bast, MDA Explained:

The Model Driven Architecture— Practice and Promise,

Addison-Wesley Professional. (2003)

[13] Object Management Group, OMG Unified Modeling

Language(OMG UML) Superstructure, version 2.4,

(2011)

[14] R. Miles and K. Hamilton, Learning UML 2.0, O’Reilly

Media, Inc., (2006)

Yun-Ho Kim received the M.S.

degree in Department of Electrical

Engineering from Kookmin

University, He is currently an Student

in Department of Electrical

Engineering, Kookmin University. His

research interests are in the areas of

RFID, real-time processing, discrete event system

modeling and simulation.

 Tae-Yeong Lee received the M.S.

degree in Department of Electrical

Engineering from Kookmin

University. His research interests are

in the areas of discrete event system

modeling and simulation.

 Yeong Rak Seong received the B.S.

degree in electronics engineering from

Hanyang University, Seoul, Korea, in

1989 and the M.S. and Ph.D. degrees in

electrical engineering from Korea

Advanced Institute of Science and

Technology, Daejeon, Korea, in 1991

and 1995, respectively. Since 1996, he

has been with Kookmin University, Seoul, where he is

currently a professor. His current research interests

include real-time systems, wireless sensor networks, and

discrete event system modeling and simulation.

 Ha-Ryoung Oh was born in Busan,

Korea, in 1961. He received the B.S.

degree in electrical engineering from

Seoul National University, Seoul,

Korea, in 1983 and the M.S. and Ph.D.

degrees in electrical engineering from

Korea Advanced Institute of Science

and Technology, Daejeon, Korea, in

1988 and 1992, respectively. Since 1992, he has been a

professor with Kookmin University, Seoul. His current

research interests include RFID system, wireless sensor

network, and embedded system.

